
Making text editors more like computer games may seem ridiculous on
the surface, but these "games" use basic motivational techniques-

something designers of application systems have overlooked.

EL A -L ,_ _vL-..._neuiuvenTure oT
Geftfng to Know
a Computer

John M. Carroll
IBM Thomas J. Watson Research Center __

It is suppertime, and most everyone in the computing
center has already gone home. But framed against one
bright gray wall sits a lone explorer. In his mind, he is deep
underneath the surface of the earth in a dark and danger-
ous cave-but he is entering into a world of color, im-
agination, action, and general amazement. He is playing
Adventure. On the screen is a cryptic message: "The bird
was unafraid when you entered, but as you approach, it
becomes disturbed and you cannot catch it. " He stares in-
tently, his thoughts are almost tangible, leaping between
his head and the screen. He is going over every variation
of every possibly relevant parameter of the situation, and
he will do this over and over again until he has wrung out
at least 470 points. It's just a game.
The very next morning, someone else is sitting in the

same chair, directly in front of the same console, staring
into the very same tube. Despite the background bustle,
this person also sits quietly mesmerized by the cryptic
message on the screen: "Task not applicable at this
time." Like her predecessor, this person is silently ex-
amining her knowledge and her hypotheses about the
system: "What is atask?" "Does 'not applicable' mean I
don't need to do this or that I have to do it, but not this
way?" "If I sit here and wait for some time to pass, will it
work then?"

But unlike her predecessor, this person is not navi-
gating a cave far below the surface of the earth-she is
trapped between two menus in a text editing facility. Also
unlike her Adventure counterpart, she will probably not
win all 470 points, at least not for a long time, because she
can resolve the task-not-applicable problem more quickly
than the other can resolve the bird problem-she simply

decides that "Task not applicable at this time" means
nothing very much at all and goes on. She gets to the next
menu, or the prior menu, or she just turns the machine off
and starts fresh-the lessons, whatever they might have
been in the prior session segment, are sacrificed. The goal,
after all, is to learn how to get a letter typed out-this is no
game!

Here we have two people, a player ofAdventure, a well-
known and popular computer game, and a user who is try-
ing to learn an application system. Despite their obvious
differences, they have much in common: both are strug-
gling to cope with an unfamiliar environment, and both
are experiencing certain types of learning difficulties. To
a large extent, these difficulties are inevitable characteris-
tics of -human-computer interaction and as such are
potential problems in any system. In Adventure, how-
ever, problems are turned into challenges; whereas in ap-
plication systems, they are burdens-even severe learning
obstacles at times. This difference may partially explain
why people master computer games with no useful (prac-
tical) goal, while they fail to become even accomplished
novice users of application systems like text editors.

Studies of office personnel learning to use text editors
show that the type of learning environment affects how
the user perceives the system and how easily he learns to
use it. 1-3 A computer game like Adventure has a concep-
tual, mazelike learning approach, which I call an ex-
ploratory environment, that makes the player want to
overcome the problems, even invent ways to use them to
his advantage. The application system, on thEother hand,
has a more passive, prescribed environment that seems to
frustrate more than help. What I hope to show ip this arti-

0018-9162/82/1100-0049S00.75 1 1982 IEEE 49November 1982



cle is that by examining the similarities and differences
between the Adventure player and the inexperienced user,
we can find some insights to use in designing application
systems that are easier for the user to learn.

The common basis

Computers are freeing us from paper and pencil. For
example, Adventure is quite similar to the paper-and-
pencil game, Dungeons and Dragons, but games like
Adventure are masters at keeping track of the sorts of
details that would render paper and pencil versions
unbearably tedious. Players don't have to wait to find out
what happens to them in the course of a move; they don't
have to throw dice; they don't have to write things on bits
of paper. They just get the good stuff.

Text editors, and other application systems, are in some
ways even better. * They relieve people of having to scrawl
things on paper-even people who are writing a letter!
Once in the system, text can be revised, manipulated, or
printed out. Repetitive tasks, like mass mailing, can be
automated by the use of variables: once input, forever
done. Using a text editor can help a child learn to write
more fluently and more quickly, and it can make an adult
feel more comfortable and confident about writing.5'6
Moreover, learning to use a text editor is easy-at least
relative to learning to write or type. Text editing is really
only a step away from typing and actually reenforces this
skill.

But although text editors are potentially "easy" to
learn to use, people are still having tremendous difficulty
learning to use them. In most cases, they are learned in-

'Malone4 distinguishes sharply between application tools (e.g., text
editors) and puzzles, which include computer games like Adventure. But
his distinction rests on an error. He says, " in the case of text editors,
the central problem is not how to use editing commands, but how to im-
prove the document being edited." In studies of those learning to use text
editors, we at the research center have never come across a subject who
thought of the task in these narrow terms. The problem our learners spon-
taneously-and quite stubbornly-orient to is "how does this system
work?"

Table 1.
Typical problems faced by new users and Adventure players.

Disorientation The user/player doesn't know what to do in the system
environment

Illusiveness What the user/player wants to do is deflected towards
other, perhaps undesired, goals.

Emptiness The screen is effectively vacant of hints as.to what to do
or what went wrong.

Mystery messages

Slipperiness

Side effects

Paradox

Laissez-faire

The system provides feedback that is useless and/or
misleading.
Doing the "same thing" in different situations has
unexpectedly different consequences.
Taking an action has consequences that are unintended
and invisible, but cause trouble later.
The system tells the learner/player to do something that
is clearly inappropriate.
The system provides no support or guidance for overall
goals (e.g., "winning," "typing a letter").

completely and after significant confusion and error. A
variety of severe problems beset people who are learning
to use contemporary text editors. 1-3 7 From these, I have
selected eight specific problems that are shared by a per-
son learning to use an application system and a person
playing Adventure. These learning problems, which are
summarized in Table 1, may seem bizarre and exotic to
those unfamiliar with text editors, but they are fairly
typical with respect to both learners and systems.

These problems are an unpalatable potpourri of trou-
bles. People have difficulty getting started at all because
they are disoriented by the screen display, by the manual,
and by the bad fit of both to their own expectations.
The system is unresponsive to what they do (illusiveness);
the screen is empty and/or unchanging. When informa-
tion does appear on the screen, it is, for them, like a
mystery message-and often useless. It may stay on the
screen too long and confuse later work; it may flash
momentarily, or be located in a remote part of the
display, and be missed. Subtleties of command inter-
pretation and command architecture make the causal
connection between commands and functions appear un-
predictable (slippery) or paradoxical. Invisible side ef-
fects of user actions intensify this impression. Finally, the
system's laissez-faire structure allows the new user to
become lost in a maze of mystery messages, commands,
and side effects.

Disorientation. Computing systems are often very alien
to the backgrounds of new users. When a novice enters a
computing environment, the first reaction is disorienta-
tion. Learners my colleagues and I have studied spend in-
terminable amounts of time just trying to sign on-and
then trying to figure out what happened when they did
sign on. Suppose they manage to log into the local system,
and even to enter the text editing environment. They see at
the top of the screen:

EDIT: 'TEXTSCRIPTA1' TABS: 1 6 111621 2631

In the middle of the screen, at the left:

EOF:

And at the bottom of the screen, at the right:

YKTVMV RUNNING

"OK, now what?" the users ask, and naturally, help is
not available in this initial state.

Likewise, the player enters an environment like Adven-
ture with no idea of what will be there. Presumably some
sort of adventure will occur, but from the start, he doesn't
know what sort of adventure or where to find it. The first
message from the game to the player is simply

You are standing at the end of a road before a small
brick building. Around you is a forest. A small
stream flows out of the building and down a gully.

Where is the adventure? In the building? Surely not in the
stream. Perhaps in the forest . . . The answer just isn't
there.

Illusiveness. Computing systems, even the ones data
processing professionals consider elementary, are com-
plex. The new user may sign on with a goal, like typing a

COMPUTER50



memo. But very quickly that goal is all but lost in a morass
of decisions and subgoals that develop and must be con-
fronted during the session's interaction. First, the user
might find out that what he calls "typing in a letter," is
known to the system only as Create Document or Input
Mode. ("Ah-ha," the user thinks, "so that's what I
wanted to do!") But first, he must dispose of the Create
Document Menu, which asks for a "document name";
whether the document will be "shared access" or
"private"; what "retention period" is desired; which
"Document Format Source" is to be invoked; and what
"Charge Number" will be used. By the time the user has
dealt with all these matters, he will be lucky indeed to
remember the content of the letter!

Adventure is again closely parallel. Because the task
situation of the game changes constantly from one instant
to the next, the overall goal of winning (like typing a let-
ter) evolves endlessly into a succession of more imme-
diate, lower level goals. At one point, a player's goal is
FIND TREASURE, but he then stumbles into a maze-
the new goal is GET OUT. Suddenly, a little dwarf attacks
with knives, and the player's goal becomes KILL
DWARF. Note that the player has not done anything to
change the game situation. From the player's perspective,
while trying to accomplish X, something unforeseen oc-
curred that changed things, impelling him to accomplish Y.

Emptiness. To protect the user from what's going on
inside the application system, designers typically opt to
display little or nothing to define what has just happened
or what is now happening. Frequently during a learning
session, the new user is staring at a blank, or at least static,
screen. For example, when each new command is issued,
the display is typically cleared of prior commands. The
learner is thus deprived of any trace of the session, which
he may need in planning further action. Indeed, many ac-
tions that a user initiates have no visible consequence on
the screen at any time-although inside the system they
are being executed. This lack of response is often true for
both appropriate and inappropriate commands. Wildly
wrong keypresses, for example, those that have no mean-
ing anywhere in the system, may only trigger a reset condi-
tion, which is signalled by a tiny light on the side of the
screen (where learners often fail to notice it). Maybe
you're right; maybe you're wrong; maybe you're making
progress; and maybe you're not-but the machine's not
telling.

Here, the Adventure parallel breaks down just a bit.
For although the screen per se is frequently empty and
static in Adventure, the game does put forth some
response to every user action-albeit brief and cryptic:
"You can't be serious!" or "I don't understand that!"
Moreover, the language that the system employs is ex-
tremely vivid; the world that Adventure constructs is one
of extraordinary visual intensity, even though the scenar-
io of the game is in caves, which in the real world are dimly
lit places of limited color. In Adventure, when you kill a
dwarf, "The body vanishes in a cloud of greasy black
smoke." When you enter a room, it seems to light up:

You are at the east end of the two-pit room. The
floor here is littered with thin rock slabs, which

make it easy to descend the pits. There is a path
bypassing the pits to connect passages from east to
west. There are holes all over, but the only big one is
on the wall directly over the west pit where you
can't get to it.

Even when the ambient light is low and things are
shadowy, the descriptions are still vividly intense.

Mystery messages. System messages are designed to be
succinct and precise, but even when they are they may be
of little use to the new user. Quite often messages that the
system delivers to the user are puzzles rather than
prompts, problems rather than assistance. For example,
one system says "Task not valid at this time," which is
really too vague to be helpful. The message is also a bit
jargony, since few new users have figured out what a
"task" is, and it stays on the screen almost permanently,
worrying the user about a continuing error. One subject
we studied interpreted the message as meaning that her re-
quest could not be completed at that time and thought
that if she waited, it would later work all right. "Task not
applicable in this situation," would be somewhat of an
improvement, but it, too, is jargony and conveys only
that something is amiss.

Adventure is full of these mystery messages. For exam-
ple, early in the game one approaches a little bird.

The bird was unafraid when you entered, but as
you approach, it becomes disturbed and you can-
not catch it.

Now even a player who has barely managed to get this far
in the game knows that the bird must be captured or taken
along somehow, but something is still not being said-
just the something that the player needs to know.

Slipperiness. Computing systems require that com-
mands be entered exactly. A slight deviation in spelling or
syntax renders a command meaningless, or worse,
changes the meaning to something unintended and entire-
ly different. Commands also frequently function dif-
ferently when issued in different system states. The
learner, then, may not notice a slight misspelling amid all
the disorienting confusion, and he typically cannot
recognize the difference between relevant system states.
From the user's viewpoint, and from the player's as well,
the very same action mysteriously elicits unpredictably
different consequences when employed on different occa-
sions. In one text editor, a buttonpress command,
"Cancel, " is used to escape from many situations (for ex-
ample, menus). Learners invariably try to use Cancel to
escape from a typed page display, for example, when they
have completed a memo and want to store it or print it
out. However, Cancel does nothing; instead, the mystery
message "Task not valid at this time. " appears. To escape
from the typed page situation, the user must employ a dif-
ferent command entirely.

Adventure is also slippery. Early on, the adventurer
comes upon a rod, which he can wave, but a mystery
message says, "Nothing happens." Only when he waves

the rod in a certain place in the cave does something hap-
pen: a crystal bridge appears at the great fissure. Another
example is the Pirate's treasure, which does not materi-

November 1982 51



alize in the cave until all other treasures are collected.
Adventure is slippery because of its probabilistic aspects.
When a dwarf attacks a player, he thinks, "If I am pru-
dent and lucky enough to have an axe with me, I can
throw the axe at the dwarf. Having done all this, I might
kill the dwarf and save myself, or I might miss and have to
make a death-defying attempt to retrieve the axe and try
again." Success in killing a dwarf depends on doing the
right things, but also on random luck. The game is slip-
pery here; the player can do everything right and still end
up dead.

Side effects. Each command causes a variety of effects,
only some of which are visible to the user. Nevertheless,
the other, invisible, effects of a command can become
relevant to the user's goals later on. Quite often the inex-
perienced user or the Adventure player can do something
that seems harmless enough-perhaps even right-at the
time but that later produces a negative side effect. For ex-
ample, printing a document may cause it to become inac-
cessible for re-editing (while it is on the print queue). To
the new user, this side effect is unpredictable, and the
system may give no hint that it has occurred. So when the
learner asks to have the file again for reformatting, the
mystery message "Document Unavailable" comes up.
Sometimes users believe that someone else has ap-
propriated their document. Sometimes they believe that
the machine has temporarily lost the document. They
never guess that they caused this undesirable situation.

In Adventure a player encounters a magic rod, which he
generally picks up and takes along. Later he encounters a
little bird. However, he cannot now catch the bird. As the
message (given above) indicates, the bird is now afraid.
What the player doesn't know is that while he is holding
the rod, the bird is afraid. This is an odd side effect of the
rod and an unpredictable obstacle to progress in the
game. As a tricky consolation, the game allows him to kill
the little bird (which he is inclined to do after not being
able to capture it):

The little bird is now dead. Its body disappears.

But side effects from this action will occur: killing the bird
will make progress impossible later in the game.

Paradox. New users come to a system with a rich, and
often idiosyncratic, body of knowledge and experience.
They use this background to interpret each message and
instruction that is presented to them. When prior knowl-
edge is generalized correctly, it can be useful, but it can
also be trouble. Often new users and players are presented
with actions or choices that seem clearly wrong. Consider
an instruction manual that says "Backspace to erase."
The typical learner, probably thinking of typewriters,
reads this as a paradox. Backspace doesn't erase on a
typewriter; it just moves the typing point back. Indeed, I
have watched learners come to a complete standstill dur-
ing an exercise and stare vacantly at this instruction. The
paradox-real though it may be to the novice-is only ap-
parent, because if the user throws intuition to the wind
and backspaces anyway, he finds that backspace does
delete prior text. In the same system, CHAR DEL can

also delete blank lines-since the system views them as
characters in the data stream.

Adventure is a game about collecting treasures, yet at
one point the player encounters a troll who demands one
treasure be given up in payment for crossing his bridge,
which the player rightly suspects will lead to more
treasures. How can this be? Of course, the lucky player
can foil the troll and avoid giving up a treasure, but even
so, he is faced with the immediate paradox. Another ex-
ample is that, at the end of the game, the player must
decide whether or not to blow up the cave through which
he has so carefully navigated.

Laissez-faire. Systems are finally tools, and as such
they are intended to be used. Although initially the user
may be led through programmed learning exercises, ulti-
mately the user will direct the system. Except for truly in-
telligent systems, the system must play a limited role in
directing and supporting the user's goals. Thus situations
will inevitably occur in which each command issued is cor-
rect in the short term-but also perfectly useless since the
command fails to advance the user's overall goals. In-
deed, these situations are commonplace of novices.
Not only is laissez-faire inevitable, but it is also a bit

cruel. Computer systems, like anything complex, can be
conceptual mazes-I have often observed learners wan-
dering hopelessly and without end. The system just ac-
cepts each new command, letting the lost learner race on-
ward to nothing at all. The game scenario in Adventure is
quite literally maze learning, and Adventure doesn't
merely allow the player to wander; it traps and compels
him to wander. For example, one region of the Adventure
cave consists of "twisty little passages all alike."

Remedial actions

Having defined these problems, we can now look for
ways to treat them. The first approach that comes to mind
is using common sense. A serious common-sense analysis
of the new user's plight may provide some insight, but as
the past bears out, it alone is not likely to solve the prob-
lem. The more fundamental point is that people want to
do things with computers and, particularly when they are
learners, they make errors. These errors tangle up the
"pure" forms of the problems in Table 1 and are impossi-
ble to anticipate (or to diagnose) by mere common sense.
The bottom line is that people do not, and possibly can-
not, learn passively-although many current system
designs incorporate this learning approach.

Common sense. I have presented the learning problems
in their extreme form, which may not be something we
have to live with. Indeed, we should be able to resolve the
extreme cases fairly quickly. For example, messages can
be purged of gratuitous jargon merely by adding some
common sense to the design process. In one system,
menus are defined as displays containing "items." Subse-
quently, an item is called a "parameter" in a menu. Now
this label would be reasonable if parameters were not
always items, but they are. To complicate things further,

COMPUTER52



the command that moves the cursor between items/pa-
rameters in a menu is VAR ADV (Variable Advance)-
even though all variables are parameters. What we have,
then, is item-parameter-variable, three terms instead of
one. Even worse, the system recognizes only parameter
and variable, which are the two terms learners don't
know.

Getting this kind ofcommon sense into system design is
evidently easier said than done, but for the sake of argu-
ment, suppose we could. I'm not certain that even then we
could resolve the troublesome usability concomitants of
these problems. Systems are complex, and any action we
take will have side effects. Perhaps these side effects can
be made more visible to the user, but they wilt be there,
nonetheless. To resolve emptiness, we need to strike a
balance between empty or static screens and screens so
cluttered with explanation and aids that they are poten-
tially confusing. However, we cannot simply "solve" this
problem.
The problems of laissez-faire and illusiveness have a

certain inevitability that is, surprisingly, somewhat de-
sirable. If the application system is to be a tool and not a
task master, then endless wandering is always possible, at
least until we can anticipate user goals. And any task in-
volving complex and dynamic goal elaboration has a cer-
tain degree of illusiveness. However, Bandura and
Schunk8 and Csikszentmihalyi9 argue that these problems
may be beneficial. The possible short-term goals that can
emerge from the interaction of agent and environment are
crucial in motivating a user and keeping him oriented to a
task.

Allowing for user error. Many problems in Table 1
have a hybrid form that develops through interaction with
user error. Thus, pure slipperiness is probably something
that a serious understanding of psychological consistency
can ease considerably. 10 But slipperiness can also be ap-
parent, that is, caused by error. In learning the text editor
referred to above, users often picked up use of the Cancel
key quickly. Although in many situations, Cancel is
essentially an undo or escape key, it can also be a Request
if the Code key is not held down. Since Cancel and Re-
quest are the same physical key, whose function depends
on whether or not the Code key is held down, we can see
how new users could get into trouble. Suppose a user
wishes to escape from an environment. All he needs to do
is press the Code key and then the Cancel/Request key.
But what if he presses Code too late and actually issues a
Request?

Request causes the cursor to move to the Request line
and allows the user to issue a request. However, the user
who struck Request by mistake didn't want any of this, so
he hits Cancel, which he supposes is the right thing to do.
Unfortunately, Cancel in this context cancels only the re-
quest. Hence, after the failed Cancel and the successful
Cancel the user is looking at the original screen. In his
opinion, Cancel has failed twice. Later, he will probably
learn about environments and will realize that thinking of
Cancel only as escape is reckless. But for now the user
simply concludes that Cancel is slippery-sometimes it

works and sometimes it doesn't.

Even if we managed to get large quantities of common
sense into the design process and to solve the troubles
associated with all the problems in Table 1, we would still
have to deal with the pervasive difficulties that result from
interactions of systems characteristics and learner error.
Naturally, we cannot reasonably envisage any application
system that can prevent learners from making errors of
the Cancel/Request sort. Therefore, if people are always
going to make errors we need to motivate them to be ac-
tive problem solvers as they are learning.

Active learning. Why is laissez-faire a problem for new
users? Why would anyone faced with these disorienting,
illusive, slippery, secretive, and paradoxical mystery
makers even hope to be given guidance in their personal
goals? One user I observed believed that the screen's
Reset/Help light, which came on when she entered illegal
characters or keypresses, was the machine telling her that
in its view she needed some help: "It thinks I need help,"
she said. This perception was doubly unfortunate, since
not only was the machine not worrying about her progress
towards high-level goals, but also when she inadvertently
got the light to go off by trying Help uncoded (Reset), she
concluded that the machine felt she was now on the
straight and narrow again. Too bad.
One answer to the laissez-faire puzzle is that while the

systems are indeed fraught with troubles for the learner,
they also implicitly promise to be traditional environ-
ments: the exercises of their self-instruction manuals
promise this; their reference-book Help facilities promise
this; and even their jargon, paradoxes, side effects, slip-
periness, and all-around inscrutability promise this.
However, the systems are not like traditional learning en-
vironments. These depend crucially on the special design
skills of a human teacher, while the systems are notorious-
ly stupid without even rudimentary problem-solving
capabilties. Also, traditional learning environments fail
most decisively to encourage active learning.'l

Exploratory environments

So how does Adventure come off so well for people
even though it causes all the problems we've discussed?
Part of the answer is surely that Adventure is recreation
whereas application systems are work. In our culture, we
sharply isolate work from recreation, and we consequent-
ly may have quite different response modes to these two
situations. Adventure is dealing in fantasies, while ap-
plication systems are dealing in accounting, word process-
ing, and the like. Text editors are not about dragons or
treasure; they a, e about documents, printers, and
libraries. (I may not be totally secure in this argument,
since Adventure is often played by programmers, and
other computer professionals and hobbyists, while ap-
plication systems are typically learned and used by non-
programmer adults. Possibly, these differences make
comparison of the two experiences invalid, but to be cer-
tain, we would need a more empirical study, perhaps of
secretaries learning Adventure.)

This contrast between work and play should not be
viewed as monolithic, however; indeed, we can learn

November 1982 53



much about work by examining play environments. We
can see how particular aspects of recreation and work co-
exist in complex human activities and experiences and can
use that knowledge to structure work environments that
are based on the organization of play. What Adventure
does not share with a typical application system makes it
compelling to learn, even though it has some of the same
problems that application systems suffer. This difference
is what I call the exploratory environment (Table 2).

Ironically, Adventure is a parody of applications sys-
tems because it presents the learner with an exploratory
environment. Consequently, the Adventure player is not
frustrated by the laissez-faire problem, but rather expects
it. Neither is the player frustrated, or beaten into passi-
vity, by the other problems in Table 1; rather he fights
back, actively extracting each secret from the game.
The key is motivation. In an exploratory environment

the learning experience belongs to the learner. Extrinsic
authority, like a teacher, manual, or system, is absent,
making the learner the sole control. * Since extrinsic
penalties are ruled out, the usual sort of learning anxiety

*The consensus on learner control at the moment seems to be that it im-
proves task-oriented motivation and may reduce anxiety but often slows
down learning rate. St udents tend to choose the easy problems over the dif-
ficult ones. 12- 15 However, I caution against applying these conclusions to
the context presented here. First, learner control as a real-world issue in in-
structional design may have quite a different complexion from what it has
in these studies, which are very limited in scope. The most extensive study
only tracked learning for 15 days of half-hour sessions. Second, most of
these studies focused on learning unintegrated material by rote or on refin-
ing arithmetic skills. This focus is quite different from what is involved in
learning to use application systems and in playing Adventure-namely, ac-
quiring integrated conceptual structures. Finally, these studies focus ex-
clusively on children, who would most likely be pretty bad at designing the
character of their own instructional environments. Results from this type
of study might be quite irrelevant to adult learning.

Table 2.
Typical characteristics of an exploratory environment.*

Responsiveness

Benchmarks

Acceptable uncertainty

Safe conduct

Learning by doing

Opportunity

Taking charge

Control

When you do something, you get some feedback (at
least informational).
You can tell where you are within a given episode or
session. You have the means for assessing
achievement and development of skill.

Being less than fully confident of your understanding
and expertise is OK.
You cannot do anything too wrong.

You do so that you can learn to do: you design a
plan; you do not merely follow a recipe.
Most of the things you learn to do work everywhere.
You can reason out how to do many other things.

If progress stagnates, something new is suggested
or happens spontaneously.

You are in control, or at least have the illusion of
being in control.

*The properties in Table 2-and for that matter in Table 1- are clearly a nonexhaustive,
somewhat arbitrary set of contrasts and similarities. make no claim to the contrary. can't call
on any substantive psychological theory of either computer games like Adventure or text editors to
clarity my list, since no theory really exists. Hence, even if I'm basically right about the learning
benefits of so-called exploratory environments, may be overlooking the role psychological factors
play and may have the right conclusions for the wrong reasons.

just can't arise. Extrinsic rewards are also ruled out,
which is not necessarily a bad thing.16 Rather, the en-
vironment affords, encourages, and even demands con-
ceptual and empirical experiment. We can have no
unengaged learner in such an environment, and this
motivational orientation overcomes the cognitive learn-
ing problems in Table 1.

Responsiveness. Even though the screen display is
often empty and static, Adventure tends to provide some
reaction for every user action; it is not always helpful or
supportive but it is at least some reaction. The player can-
not issue a command that will fail to elicit some message
(however mysterious) from the system. If you issue a com-
mand that is syntactically and situationally correct, you
will see some sensible consequences immediately. If you
issue a command that is incorrect, you will still see some
consequence-even if it is only "Huh?" This may not
seem like a lot, but it keeps players responding. The one
thing that a learner cannot seem to overcome is the silent
treatment. Informing the learner of consequences on the
occasion of learning can help him recognize when to
engage this learning in the future. 17,18
For a prime example of unresponsiveness, pick any text

editor. Even a major command like Print often elicits
nothing from the system. On one text editor, a print
message is sent to the user but held in a message reservoir.
The unsophisticated user doesn't recognize what has hap-
pened and quite often doesn't realize that anything has
been printed. If the user fails to examine the print message
when it is sent and waits-or simply discovers it later-he
might end up getting a print confirmation message for
File 1, having just created or even printed File 2.)

Benchmarks. Adventure allows the player to assess his
progress in skill and achievement. The continuum from
novice to seasoned expert is finely and intricately seg-
mented. At any point in an Adventure session, the player
may get a score, reflecting the success he has had in dis-
patching the various tasks of the game scenario. This
score is also a basis for classifying the player at the end of
an adventure. The challenge of such clear mappings of
personal progress increases the learner's task-oriented
motivation.4,11,19

Again, we have a contrast because application systems
eschew benchmarks. For example, when a user first signs
on, the text editor does not display any message like "You
have successfully signed on"; rather, it immediately
brings up the task selection menu. The sign-on challenge,
"do you want to use the system and are you authorized to
do so?" is replaced by the task challenge, "What do you
want to do?" The shrewd user will of course recognize
that a new menu is a benchmark, but then again the
shrewd user isn't the one who needs to know. Perhaps the
saddest case of this sort is signing off from the first ses-
sion. When a user successfully signs off, the sign-on menu
comes up immediately. Again the experienced user knows
that the system is saying good-bye and hello, but the new
user is quite apt to see it only as another request to fill in an
inscrutable menu, which he then does-inadvertently
signing back on again. Is there no end to this misery?

54 COMPUTER



Acceptable uncertainty. In Adventure, having low,
even virtually no, confidence in one's strategy or under-
standing of the game's inner workings doesn't matter a
bit. In fact it adds to the fun, to the uncertainty, and to the
indeterminacy (as the player's mental model of the game
shifts and changes dynamically). Indeed, the game's in-
terface is written with the obvious expectation that
players will often be struggling. In contrast, the interface
and training for a real application system presumes and
implies that the user will succeed perfectly on the first try.
No wonder our subjects have exclaimed, "It makes me
feel stupid!!"
The new user of a text editor gets messages on various

wavelengths that the experience is not fun. Unfortunate-
ly, the general context in which work is performed in our
society quite typically presupposes a disjoint relation to
fun. True, the system is not to blame but it doesn't do
even a little to change this learning bias. Training
materials are stuffy, stilted, and oriented towards "cor-
rect performance," never towards personal growth and
discovery.

People often prefer to be uncertain, at least of their ac-
tual possibilities of success or failure. Weiner20 found
that people prefer goal-driven activities in which their
probability of success is near 0.5. Berlyne21 argues exten-
sively that the conceptual conflict due to the uncertainty
of outcome is a fundamental source of curiosity. In other
words, games like Adventure keep players interested by
keeping them uncertain.

Safe conduct. The intolerance with which application
systems view diffidence suggests to learners that mistakes
will be costly. Text editor learners we have studied in-
variably ask whether they might accidentally destroy
something during an exercise. The policy of our research
group is to tell them "no" to put them at ease, but with no
trouble at all, a new user can obliterate all the files. The
machine itself is saying "look out!" through its interac-
tions with them. For example, in one editor, the user may
enter DEL/ anywhere in a file to delete the current
line-anywhere, that is, except the end-of-file line. If the
user enters DEL/ here, the whole file will be deleted. One
user who did this, quickly issuing a FILE command in
panic, compounded the problem by saving a consequent-
ly empty file instead of his whole day's work.

In Adventure, players cannot really do anything too
wrong. The pirate may get your treasure, the dwarves may
indeed get you, but the game flow will survive. Players
can't accidentally destroy their game, and they know it.
This property of Adventure is what Moore and Ander-
son1 i called the "autotelic principle." This principle
states that in initial stages of learning, the learner should
be protected from the consequences of mistakes. Early
learning should be enjoyed as much as possible for its own
sake, and costly mistakes spoil this.

Learning by doing. In Adventure, if you want to know
about it, you do it. A miniscule part of its total instruction
is what we call "passive." The player customizes an ex-
ploratory foray, actively carries it out, and draws what
conclusions he can. Nothing comes for free, and almost

nothing comes passively. Empirical data support this con-
cept also. Animals in maze learning experiments learn
faster and more thoroughly when they actively traverse a
maze than when they are passively carted around the
maze. A person learns the layout of a new town much
faster if he is the driver (active), rather than rider
(passive).

Current training programs for application systems rely
heavily on traditional passive modes of instruction, such
as reading and classes. Fortunately, largely because of the
desire to reduce costs, self-instruction approaches are
becoming prevalent-but even these are passive. The
learner merely follows instructions and does not exert any
prerogative as to what to do or how to do it. Moreover,
self-instruction approaches apparently fail anyway, and
the new user's co-workers end up providing the instruc-
tion. When learners were restricted to the self-instruction
materials, they had severe and wide-ranging learning
problems. A learner who succeeded in following an exer-
cise passively often asked, "What did I do?" upon com-
pleting it.

Opportunity. By providing a command architecture
that affords action, Adventure supports a learn-by-doing
orientation. Virtually all canonical Adventure commands
can be issued anywhere in the system. Quite typically, a
player can deduce a command, or a proper course of ac-
tion, on the basis of other experience with the game, like
treasure taking and escape. Consequently, the player can
always do something; maybe he can't win, maybe he can't
do what he wants, and maybe he can't do anything that
seems particularly rewarding or useful-but he can do
something. Moore and Anderson11 describe this extend-
able consistency as a "productive principle."

Things are grimmer with application systems. Much
more often than you would think, novice users find them-
selves in a part of the system from which only one com-
mand can deliver them, and they don't know that com-
mand. Being in this situation cannot really be described,
and it isn't pleasant to watch. Of course, they can always
switch the machine off and escape to a clean start, but this
strategy isn't elegant, and it nullifies at least some of the
potential for learning from the previous segment of the
session. A "flatter" command architecture might be use-
ful here, since the system is really a myriad of small com-
partments, each with its own special meanings for
commands.

Taking charge. Problems like those in Table 1 can often
cause a temporary conceptual paralysis. When the conse-
quences of the user's actions are routinely uninter-
pretable, he is encouraged to simply stop taking action at
all. Adventure does not allow this to happen. If the player
founders even a bit, the game will actively intervene:

Adventure: You are in a maze of twisty little
passages, all alike.
Carroll: (about 100 moves ensue)
Adventure: Do you need help getting out of the
maze?
Carroll: Yes.

November 1982 55



Adventure: I am prepared to give you a hint, but it
will cost you 4 points. Do you want the hint?
Carroll: Yes.
Adventure: You can make the passages look less
alike by dropping things.

Indeed, the game may do more than merely suggest new
possibilities. It may actually reconfigure the player's im-
mediate situation. Thus, an explorer who is aimlessly
wandering the caves carrying treasure may suddenly be
robbed by the cave's Pirate:

There are faint rustling noises in the darkness
behind you. Out from the shadows behind you
pounces a bearded pirate! "Har, Har," he
chortles, "I'll just take all this booty and hide it
away with me chest deep in the maze." He takes
your treasure and disappears in the gloom.

The player doesn't ask for this and doesn't want it; it just
happens. The chance of being attacked by marauding
dwarfs also increases when the player is stuck.

Control. The player learns by doing or can always do
something in Adventure, but more important is that the
player directs what goes on-as the chief instigator.
Perhaps this illusion of overall control is what fundamen-
tally drives the aggression fantasies of games like Adven-
ture. Imagine an adventure in which the player is a base
camp and can only send up mail and provisions and give
advice to the real explorer-who may or may not take it.
That scenario just wouldn't do. Zimbardo22 showed that
even the illusion of control can increase motivation to per-
form a task.
An important distinction about learners of application

systems is that not only are they not in control but they are
made tofeel that way. In harsher terms, they are made to
feel incompetent. Within the first ten minutes a new user
is staring at a message, "Parameter omitted or not valid."
She is a very bright woman; she even knows what param-
eter means. However, she does not know what it means
here, and indeed it can mean any of the several things dis-
played on the screen. She explores various of these and
concludes that parameter must be the boxlike character
directly above the cursor, which identifies a free-key field.
She is, of course, wrong, and any illusions she might have
had about being in control have been discouraged. (Maybe
system designers like to use words like parameter and de-
fault so that they can feel they're in control.)

So there you have it: people seem to like learning in ex-
ploratory environments. Of course most of my evidence is
in anecdote and, as such, does not make the case that ap-
plications systems ought to be modeled on computer
games. Indeed, I am not arguing that they should be.
Adventure, for example, has no "undo" key. However,
our studies of people learning to use text editors strongly
indicates that some such function would substantially
ease many of the difficulties learners experience. I am
merely trying to say that something might be learned from
a study of what's going on in computer games like Adven-
ture and new insights could be applied to the design of ap-
plication systems. At the very least, we could get some ad-
ditional perspective on what makes application systems

difficult. We might even find new design techniques that
make them easier to learn to use. Only a fool looks a gift
horse in the mouth.

Implications

The properties that define exploratory environments
transform the problems in Table 1 shared by Adventure
and typical application systems-into challenges for the
learner. Now the difference between a challenge and an
obstacle can be fine, but as writers like Malone4'23 and
Moore and Anderson1I1 extensively argue, it hinges on the
character of the learning environment. If the learner's
motivation is task oriented and if the learner feels in con-
trol of the situation, then obstacles can become chal-
lenges. (Malone, in fact, examined computer games from
this perspective, but focused on explicitly pedagogical
skill games, like Breakout and Darts, rather than on con-
ceptual maze learning games like Adventure.4)

This transformation of obstacles into challenges can
happen in an exploratory environment. The player is im-
mediately apprised whenever he manages to do some-
thing. Through explicit functions, the learner is kept in-
formed of his progress and achievement-but he also
always knows that it doesn't matter too much if he does
make mistakes. A dynamic world is presented in which
the learner not only can act-without worry about un-
toward consequence-but must act: the learner's ex-
ploration is what this world is about.
A person traversing an exploratory environment ex-

pects laissez-faire and illusiveness; regards paradox, side
effects, and slipperiness as intriguing potential keys to the
inner logic of the environment; and is unperturbed by
disorientation, emptiness, and mystery messages. Each
new problem is an intimate and preemptive invitation to
learn. In such an environment, the learning truly belongs
to the learner.

In any case, if we assume that learners will always make
some errors-no matter how good our cognitive solutions
to interface design are-then the issue becomes one of
motivating learners to actively solve the problems they
encounter.

The game metaphor. Adventure may provide a
metaphor from which to construct interface concepts for
application systems.24'25 The logic for this is straightfor-
ward: the game is similar to the application systems, but
the potential "troubles" shared by both are real troubles
only in the systems, not in the game. So why not look at
why the two differ and try to make the systems more like
the game? We could really go overboard: text editors that
award points, or tell you that you're "dead" if you try to
print an empty file-but why be silly? To really exploit the
game metaphor in making application systems easier to
learn will clearly require a considerable and systematic
research effort in software psychology and system design.
It is serious business.
To get an inkling, in a very small way, of what the

metaphor could come to, we may only have to ask people
to explore a conventional text editor as if it were an

COMPUTER56



Adventure-like maze. In ongoing work at the research
center, my colleagues and I have been attempting to pro-
ject the "typewriter metaphor" to ground the subject's
understanding of the task and the "game metaphor" to
ground the subject's task-oriented motivation. We in-
structed one typist to read the following instructions on
exploring a computer maze:

We are studying how people learn to use small
computing systems. We are interested in how a per-
son goes about such a learning task when noformal
instruction at all is provided. What we want you to
do is to interact just as you please with the com-
puter, to explore its capacities, and to learn to do
interesting things with it (HINT: this computer is in
many ways a sort of super-typewriter). This,
should you decide to accept, is your mission.
We want to emphasize several aspects of this

learning task. Most importantly, you should not
worry about doing the "wrong" thing. In this
situation, the only wrong thing you can do is
nothing. The most important thing to do is explore:
the computer is in many ways like a maze and you
have to find out how to get around (getting lost a lit-
tle on the way is inevitable). This mazelike quality
also means that you should be willing to change
your goals from time to time. We have found that
in the course of trying to do X, a person very often
stumbles onto Y-but you have to be willing to give
up on X for the moment!

This super-typewriter-maze idea may sound like
a video game in disguise. In fact, we would like you
to think of this learning experience as a sort of
game. The more you explore of the computer-
maze, the higher your "score." If you get stuck, we
will answer direct and specific questions. Don't
waste your questions, for we will answer only 10
(ten) throughout the entire session. But by all
means ask for help when you really need it (other-
wise you'll be holding yourself back from further
exploration). If you can get by without a ques-
tion-Bravo!

Because we want to learn how people approach
this sort of learning task, we will ask you to try to
"think aloud" (as thoughts occur to you, just
speak them out loud). To help this along, from time
to time we will ask you "What are you thinking just
now?" and the like. (You'll get used to it.) In the
service of thinking aloud, feel free to ask
"rhetorical" questions: we won't charge you for
telling us what questions are on your mind-unless
you ask us to answer them!

Finally, here are two HINTS.
1. Try these keys for interesting results: CODE,
ENTER, HELP, RESET, REQST, VAR ADV
(we will show you where each of these keys is
on the keyboard).
2. The computer "believes" that your Opera-
tor Name is your first name.

These instructions were presented instead of the nor-

mal training materials we had used with other subjects.

The trade-off here is that while the normal-case subjects
were passively led through a series of exercises that
presented them with knowledge about the system, our ex-
plorer subject was forced to be active, to discover
knowledge about the system, or learn nothing. The other
important difference is that while normal-case subjects
were run in a 16-hour learning procedure, our explorer
subject was run for only four hours.

In many ways, the explorer's experience was com-
parable to that of our other subjects. She failed to notice
an indicator light, then tried unsucessfully to type in a
reset condition, and became frustrated. She failed to hold
down the Code key consistently and was then surprised at
the "inconsistency" of the system. She wrongly
generalized Cancel and Enter as commands that get you
to the next menu-even though they in fact do, but only
occasionally and as side effects, etc., etc., etc. These
similarities are not really surprising. The system is dif-
ficult to learn to use-as work with normal-case subjects
made clear. We would have had quite a finding indeed if
simply taking away the training materials had made learn-
ing easier.
The character of what the explorer did was somewhat

different from that for normal-case subjects. The ex-
plorer used Help more in her 4-hour session than any of
our other subjects had in 16 hours. This difference is im-
portant, since the training manual explicitly tells learners
how to use Help, and encourages its use. One of the four
training modules we used for our prior subjects was con-
cerned centrally with the use of Help. Her use of Help-
and of all the information displayed on screens-was
qualitatively different too. She read it.
Our normal-case subjects, who had the manual to more

or less lead them by the hand, often didn't "see" the
screen displays. The most striking case was a subject who,
after three days of working with the system, insisted that
she had never seen the sign-on menu; her reason was that
in trying to passively follow the manual, she had been try-
ing not to look at the screen! The explorer got into areas of
the system that the training manual prevented other sub-
jects from discovering. She learned about text blocks,
document archiving, margin changes (line format
changes), and document duplication. Of course, she also
had new problems: because she read the screen informa-
tion, she was really hurt when it was incomplete, turgid
and jargony, or misleading.

Nonconclusions

Generally speaking, simple answers do more harm than
good in behavioral science. Luckily, from this vantage
point, we cannot generate any simple answers from this
discussion. My analysis is fully consistent with the view
that an Adventure metaphor for application systems
could make them easier to learn to use. But the indications
for this are still indirect and our confidence must be
qualified accordingly. And even if the empirical and
theoretical issues were resolved sharply and favorably, we
would still not know to what degree such a metaphor
should be implemented in the actual development of in-

November 1982 57



terface designs and instructional materials.26'27 In
guideline definition, we still have so far to go that it's hard
to tell when we've taken a step.E

Acknowledgments

I am grateful to Norman Brenner, Colette Daiute, Fred
Damerau, Clayton Lewis, Robert Mack, Don Nix, and
John Thomas for helpful comments on earlier versions of
this paper. Clayton Lewis, in particular, said several
things that totally changed the paper. The original
Adventure game was written by Willie Crowther at MIT.
It was later revised and extended by Don Woods at the
Stanford Al Lab.

References

I. J. M. Carroll and R. Mack, "Learning To Use a Word Pro-
cessor: By Doing, by Thinking, and by Knowing," to ap-
pear in Human Factors in Computer Systems, J. Thomas
and M. Schneider, eds., Ablex, Norwood, New Jersey.

2. J. M. Carroll and R. Mack, "Actively Learning to Use a
Word Processor," manuscript, 1982b, to appear in
Cognitive Aspects ofSkilled Typewriting, W. Cooper, ed.,
Springer-Verlag, New York.

3. R. Mack, C. Lewis, and J. Carroll, Learning To Use Office
Systems: Problems and Prospects, manuscript, 1982.

4. T. W. Malone, What Makes Things Fun To Learn? A
Study Of Intrinsically Motivating Computer Games,
Xerox PARC Report CIS-7, 1980, p. 55.

5. C. A. Daiute, "Where Has All the Paper Gone?" Elec-
tronic Learning, Jan. 1982.

6. J. D. Gould, "Composing Letters with Computer-Based
Text Editors," Human Factors, Vol. 23,1981, pp.593-606.

7. R. Bott, A Study ofComplex Learning: Theory andMeth-
odology, CHIP report 82, University of California, La
Jolla, 1979.

8. A. Bandura and D. Schunk, Cultivating Competence, Self-
Efficacy, and Intrinsic Interest Through Proximal Self-
Motivation, Stanford University, 1980.

9. M. Csikszentmihalyi, Beyond Boredom and Anxiety,
Jossey-Bass, San Francisco, 1975.

10. J. M. Carroll, "Learning, Using, and Designing Command
Paradigms," Human Learning: J. Practical Research and
Application, Vol. 1, 1982, pp. 31-62.

11. 0. K. Moore and A. R. Anderson, "Some Principles for
the Design of Clarifying Educational Environments,"
Handbook of Socialization Theory and Research, D.
Goslin, ed., Rand McNally, New York, 1969.

12. M. D. Fisher, et al., "Effects of Student Control and
Choice on Engagement in a CAI Arithmetic Task in a Low-
Income School," J. Educational Psychology, Vol. 67,
1975, pp. 776-783.

13. J. P. Fry, "Interactive Relationship Between In-
quisitiveness and Student Control of Instruction," J.
Educational Psychology, Vol. 63, 1972, pp. 459-465.

14. J. B. Hansen, "Effects of Feedback, Learner Control, and
Cognitive Abilities on State Anxiety and Performance in a
Computer-Assisted Instruction Task," J. Educational
Psychology, Vol. 66, 1974, pp. 247-254.

15. E. R. Steinberg, "Review of Student Control in Computer-
Assisted Instruction," J. Computer-Based Instruction,
Vol. 3, 1977, pp. 84-90.

16. M. R. Lepper, D. Greene, and R. E. Nisbett, "Undermin-
ing Children's Intrinsic Interest with Extrinsic Rewards: A
Test of the Overjustification Hypothesis," J. Personality
and Social Psychology, Vol. 28, 1973, pp. 129-137.

17. E. M. Abernathy, "The Effect of Changed Environmental
Conditions upon the Results of College Examinations," J.
Psychology, Vol. 10, 1940, pp. 293-301.

18. J. A. McGeoach, The Psychology of Human Learning,
Longmans Green, New York, 1942, pp. 501-505.

19. E. L. Deci, IntrinsicMotivation, Plenum Press, New York,
1975.

20. B. Weiner, Human Motivation, Rand McNally, Chicago,
1980.

21. D. E. Berlyne, Structure and Direction in Thinking, John
Wiley & Sons, New York, 1965.

22. P. G. Zimbardo, Cognitive Control ofMotivation, Scott,
Foresman & Co., Glenview, Illinois, 1969.

23. T. W. Malone, "What Makes Computer Games Fun?"
Byte, Dec. 1981, pp. 258-277.

24. J. M. Carroll and J. C. Thomas, "Metaphor and the
Cognitive Representation of Computing Systems," IEEE
Trans. Systems, Man, and Cybernetics, Vol. SMC-12,
1982, pp. 107-116.

25. H. G. Petrie, "Metaphor and Learning," Metaphor and
Thought, A. Ortony, ed., Cambridge University Press,
New York, 1979.

26. H. A. Simon, Sciences of the Artificial,-2nd ed., MIT
Press, Cambridge, Massachusetts, 1981.

27. J. C. Thomas and J. M. Carroll, "Human Factors in Com-
munication," IBM Systems J., Vol. 20, 1981, pp. 237-263.

John M. Carroll has been a research staff
member in the Computer Science Depart-
ment of the IBM Thomas J. Watson Re-
search Center in Yorktown Heights, New
York, since 1977. His research is in the
analysis of basic cognitive skills and
capacities that underly complex human
behavior and experience. He is the author
of Toward A Structural Psychology of

. Cinema and of 45 technical papers in-
cluding, "The Psychological Study of Design," "Creative Anal-
ogy and Language Evolution," "Human Factors in Communi-
cation," and "Structure in Visual Communication." He was
also coeditor of Talking Minds (in press), the proceedings of an
interdisciplinary conference held at the Watson Research
Center.

Carroll is a member of the Linguistics Society of America and
the Psychonomic Society. He received a BA in mathematics and
a BA in information science from Lehigh University in 1972 and
a PhD in experimental psychology from Columbia University in
1976.

COMPUTER58


