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Foreword

This text provides an undergraduate level introduction to mathematical logic
from the perspective of “model theory”. Mathematical logic is studied by math-
ematicians, logicians, and philosophers alike. It is the backbone of most logical
and mathematical arguments, and provides insight into the extent of our rea-
soning. Model theory presents a formalization of syntax, proofs, and truth, so
hopefully the reader can understand its importance.

More practically, the study of model theory can provide a great comfort to
budding mathematicians. No doubt you have at one point come across some ob-
tuse description that and wondered if it is really useful. After all, one can read
the properties of some objects like the hyperreals, or an infinite-dimensional vec-
tor space, but what good is it if no examples of such objects can be found?
The results in this text assure us that these structures in a sense “exist.” Con-
versely, how can we know the worth of exploring the logical consequences of some
sentences, especially if we might run into a contradiction? Model theory again
provides an answer, as we will show that, for example, the axioms of a group
will not imply a contradiction so long as we can provide an example of a group.

At the heart of this text is the proof of the Gödel Completeness Theorem.
Naively, the notion of what statements are “true” and what statements are “prov-
able” seem related, but in some sense different. After all, why would a statement
about the real numbers, for example, be falsifiable or not? But as we will see, to
an extent, these two notions are equivalent.

But be forewarned since (mathematical) life is always full of surprises. This
is not to say that mathematical truth is exactly captured by proof. But that is
the story of the Gödel Incompleteness Theorem, which is the sequel to the Gödel
Completeness Theorem.
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1

Propositional logic

Propositional logic governs the way by which propositions are combined in
compound sentences.

Informally, a proposition is a declarative sentence, such as any of the follow-
ing.

• Life is nothing but a competition to be the criminal rather than the victim.
(B. Russell)

• Life is as tedious as a twice-told tale. (W. Shakespeare)

• Life is a dead-end street. (H. L. Menken)

• Life is too short to learn German. (R. Porson)

Propositions may be combined by logical connectives to form more complicated
statements, such as “If life is a dead-end street, then life is too short to learn
German” or “If it is not the case that life is too short to learn German, then life
is as tedious as a twice told tale”. The truth or falsity of a compound statement
depends solely on that of its parts. Understanding propositional logic is just
understanding that dependence.

In the next section, we will introduce symbols An for propositions, ¬ for nega-
tion, and → for implication. Using A1, . . . , A4 to denote the above propositions,
our two compound sentences would be denoted by (A3 → A4) and ((¬A4)→ A2).

If one masters the elements of propositional logic then the solution to the
following typical logic puzzle becomes clear.

• Two physicists, A and B, and a logician C, are wearing hats, which they
know are either black or white but not all white. A can see the hats of B
and C; B can see the hats of A and C; C is blind. Each is asked in turn if
they know the color of their own hat. The answers are: A:“No.” B: “No.”
C: “Yes.” What color is C’s hat and how does C know?

1.1 The language

Our language for propositional logic consists of (certain) finite sequences of sym-
bols. The allowed symbols form the alphabet of the language. The actual ontology
of these symbols is at this stage irrelevant.
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Definition 1.1 • The logical symbols are the following symbols.

( ) ¬ →

• The propositional symbols are An, for n in N. (N is the set of non-negative
integers; i.e. the set of natural numbers). ut

We frequently use the notation ~A to denote a finite sequence 〈Ai1 , . . . , Ain〉
of (not necessarily distinct) propositional symbols.

Definition 1.2 If ~s = 〈s1, . . . , sn〉 and ~t = 〈t1, . . . , tm〉 are finite sequences, we
let ~s+ ~t denote the finite sequence

~s+ ~t = 〈s1, . . . , sn, t1, . . . , tm〉.

For a sequence ~s, let |~s| denote the length of s. ut

Definition 1.3 The propositional language L0 is the smallest set L of finite
sequences of the above symbols satisfying the following properties.

(1) For each propositional symbol An with n ∈ N, An ∈ L.

(2) For each pair of finite sequences s and t, if s and t belong to L, then

• (¬s) ∈ L
• (s→ t) ∈ L. ut

Remark 1.4 A more precise definition of L0 is that L0 is the smallest set L of
finite sequences of the above symbols satisfying the following properties.

(1) For each propositional symbol An with n ∈ N, 〈An〉 ∈ L.

(2) For each pair of finite sequences s and t, if s and t belong to L, then

• 〈(¬〉+ s+ 〈)〉 ∈ L
• 〈(〉+ s+ 〈→〉+ t+ 〈)〉 ∈ L.

This is of course what we meant by Definition 1.3. ut

For the duration of Chapter 1, we will use propositional formula or just
formula to refer to an element of L0. A formula is typically denoted ϕ or ψ. We
will occasionally also refer to, for example, the propositional formula Ai and in
doing so we mean of course the finite sequence s of length 1 where s = 〈Ai〉.
Strictly speaking this renders the notion “Ai” as potentially ambiguous, but the
context will always make this clear.

The notation ~ϕ = 〈ϕ1, . . . , ϕn〉 and ~ψ = 〈ψ1, . . . , ψn〉 can refer to a finite
sequence of (not necessarily distinct) formulas.

In Definition 1.3, we defined the propositional language L0 as the smallest
set which is closed under the two conditions, Condition (1) and Condition (2).
In the following, we show that L0 is well defined.

Theorem 1.5 L0 is the intersection of all of the sets which satisfy the two
conditions of Definition 1.3.
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Proof. Let L0 be the intersection of all of the sets which satisfy the two conditions
of Definition 1.3. There is at least one such set, since the set of all finite sequences
of symbols does satisfy the two conditions. We claim that L0 is a set which
satisfies those two conditions.

For each n ∈ N, An is an element of every set which satisfies Condition 1.
Consequently, An is an element of the intersection of all such sets, and thus it is
an element of L0.

Now, suppose that s and t belong to L0. Then they belong to every set which
satisfies Conditions 1 and 2. But then, for every such set, we can apply Condition
2 to conclude that (¬s) and (s→ t) also belong to that set. Therefore, (¬s) and
(s→ t) belong to the intersection of all such sets, and thus belong to L0.

Hence, L0 satisfies Conditions 1 and 2. Since it is contained in every set which
also satisfies those conditions, it must the smallest such set. Consequently, L0 is
equal to L0. ut

1.1.1 Readability and subformulas
Definition 1.6 (1) A sequence 〈a1, . . . , ak〉 is an initial segment of another se-

quence 〈b1, . . . , bm〉 if and only if k is less than or equal to m and for all i ≤ k,
ai = bi. In other words, 〈b1, . . . , bm〉 is equal to 〈a1, . . . , ak〉+〈bk+1, . . . , bm〉,
where 〈bk+1, . . . , bm〉 could be the empty sequence.

(2) When m is greater than k, we say that 〈a1, . . . , ak〉 is a proper initial segment
of 〈a1, . . . , ak, bk+1, . . . , bm〉. ut

Lemma 1.7 (Readability for Formulas) Suppose that ϕ is a formula in L0.
Then exactly one of the following conditions applies.

(1) There is an n such that ϕ = 〈An〉.
(2) There is a ψ ∈ L0 such that ϕ = (¬ψ).

(3) There are ψ1 and ψ2 in L0 such that ϕ = (ψ1 → ψ2).

Proof. Consider the subset L of L0 which consists of those formulas which sat-
isfy the above three clauses. By the first clause, if n ∈ N, then 〈An〉 ∈ L. Con-
sequently, L satisfies Condition 1 of Definition 1.3. Secondly, if ψ is in L, then
ψ ∈ L0 and so (¬ψ) ∈ L0. But then (¬ψ) is an element of L0 which satisfies the
second of the above clauses, and hence (¬ψ) ∈ L. Similarly, if ψ1 and ψ2 belong
to L, then so does (ψ1 → ψ2). Thus, L satisfies Condition 2 of Definition 1.3. It
follows that L0 ⊆ L, and so L0 = L.

It remains to show that the three possibilities are mutually exclusive.
Clearly, the first case excludes the other two since both of the formulas in

the latter two cases begin with the symbol (. Now, if ϕ = (¬ψ), then the second
symbol in ϕ is ¬. However, if ϕ = (ψ1 → ψ2), then the second symbol in ϕ is
the first symbol in ψ1, which by the above is either a propositional symbol An
or a left-parenthesis (. Consequently, these two cases are mutually exclusive. ut

We now prove a technical lemma which we will use to prove Unique Read-
ability for Formulas.
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Lemma 1.8 If ϕ ∈ L0, then no proper initial segment of ϕ is an element of
L0.

Proof. We prove Lemma 1.8 by induction on the length of ϕ.
If ϕ has length 1 then the only subsequence to be considered is the empty

sequence, which by Lemma 1.7 is not an element of L0.
Now suppose that ϕ ∈ L0 has length n, n > 1, and Lemma 1.8 holds for all

elements of L0 with length less than n. By Lemma 1.7, since ϕ has length greater
than 1, ϕ has one of two forms: (¬ψ) or (ψ1 → ψ2).

Suppose that ϕ is (¬ψ). For a contradiction, suppose that θ ∈ L0 is a proper
initial segment of (¬ψ). Then the first symbol in θ is (, so θ is not of the form
〈Ai〉, and by Lemma 1.7 the length of θ is greater than one. Thus, the second
symbol in θ is ¬, which by Lemma 1.7 is not the first symbol of any element
of L0, and so θ cannot be of the form (θ1 → θ2). Consequently, there exists
θ1 ∈ L0 such that θ is equal to (¬θ1). But then (¬ψ) has (¬θ1) as a proper
initial segment, and so ψ has θ1 as a proper initial segment, contradiction to the
induction hypothesis.

Finally, suppose that ϕ is (ψ1 → ψ2) and that θ ∈ L0 is a proper initial
segment of ϕ. We can apply Lemma 1.7 and argue as in the previous paragraph
that there are θ1 and θ2 in L0 such that θ = (θ1 → θ2). But then either θ1 is
a proper initial segment of ψ1 (a contradiction), ψ1 is a proper initial segment
of θ1 (a contradiction), or ψ1 = θ1 and θ2 is a proper initial segment of ψ2 (a
contradiction).

In either case, ϕ has no proper initial segment in L0. ut

Theorem 1.9 (Unique Readability for Formulas) Suppose that ϕ is a for-
mula in L0. Then exactly one of the following conditions applies.

(1) There is an n such that ϕ = 〈An〉.
(2) There is a ψ ∈ L0 such that ϕ = (¬ψ).

(3) There are ψ1 and ψ2 in L0 such that ϕ = (ψ1 → ψ2).

Further, in (2), the formula ψ is unique, and similarly in (3), the both the for-
mulas ψ1 and ψ2 are unique.

Proof. By Lemma 1.7, it is enough to check the claim of uniqueness.
First, suppose that ϕ = (¬ψ) and ϕ = (¬θ). Thus, the sequence of symbols

ϕ can be read as 〈(,¬〉 + ψ + 〈)〉 and as 〈(,¬〉 + θ + 〈)〉. The occurrences of ψ
and θ within ϕ have the same length and the same elements, and therefore are
equal.

Finally, suppose that ϕ = (ψ1 → ψ2) and ϕ = (θ1 → θ2). Since both ψ1 and
θ1 belong to L0, by Lemma 1.8 neither can be a proper initial segment of the
other. Since they are initial segments of each other, they must be equal. As in
the case of negation, it follows that ψ2 and θ2 are also equal. ut

By Lemma 1.9, if ϕ is a formula and the length of ϕ is not 1 then ϕ has a
unique decomposition into either (¬ψ) for some formula ψ, or as (ϕ1 → ϕ2) for
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some formulas ϕ1 and ϕ2. These formulas into turn have uniques decompositions,
and so forth.

A natural question is whether all the formulas which arise in the iterated
decomposition of the formula ϕ can easily be identified by simply examning ϕ
itself.

Definition 1.10 Suppose that s = 〈s1, . . . , sn〉 is a finite sequence. A finite
sequence t is a block-subsequence of s if there exist non-negative integers i and j
such that

(1) i+ j ≤ n,

(2) t = 〈si, si+1, . . . , si+j〉. ut

Example 1.11 (1) 〈3〉 is a block-subsequence of 〈1, 2, 3, 4, 5, 6〉.
(2) 〈3, 4, 5〉 is a block-subsequence of 〈1, 2, 3, 4, 5, 6〉.
(3) 〈1, 6〉 is not a block-subsequence of 〈1, 2, 3, 4, 5, 6〉.
(4) If s is a finite sequence and s has length n, then there are at most

n∑
i=1

(n− i) + 1 = n2 + n− (1/2)n(n+ 1) = 1/2(n+ 1)n

block-subsequences of s. ut

Definition 1.12 Suppose that ϕ is a formula. A formula ψ is a subformula of
ϕ if ψ is a block-subsequence of ϕ. ut

The subformulas of ϕ are precisely the formulas which arise in the iterated
decomposition of ϕ. We make this claim precise as Lemma 1.18, the statement
of which involves the notion of a “formula-witness”.

Definition 1.13 Suppose that

~ψ = 〈ψ0, . . . , ψn〉

is a finite sequence of finite sequences. Then ~ψ is a formula-witness if for all
i ≤ n, one of the following hold. following hold.

(1) ψi = 〈Ak〉 for some k ∈ N.

(2) For some j < i, ψi = (¬ψj).
(3) For some j1, j2 < i, ψi = (ψj1 → ψj2). ut

Lemma 1.14 Suppose that

~ψ = 〈ψ0, . . . , ψn〉

is a formula-witness. Then for all i ≤ n, ψi is a formula.
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Proof. By induction on i ≤ n, this is immediate appealing to the the definition
of a formula. ut

Suppose ϕ is a finite sequence and ~ψ = 〈ψ1, . . . , ψn〉 is a formula-witness.

Then we say ~ψ is a formula-witness for ϕ if ϕ = ψn.

Lemma 1.15 Suppose ϕ is a finite sequence. Then the following are equivalent.

(1) ϕ is a formula.

(2) There is a formula-witness for ϕ.

Proof. By Lemma 1.15, (2) implies (1). Thus it suffices to prove that (1) implies
(2).

Note that if

〈α0, . . . , αn〉

is a formula-witness then so is:

〈α0, . . . , αn〉+ 〈(¬αn)〉.

Similarly, if

〈α0, . . . , αn〉

and

〈β0, . . . , βm〉

are each formula-witnesses, then so is

〈α0, . . . , αn〉+ 〈β0, . . . , βm〉.

In particular,

〈α0, . . . , αn〉+ 〈β0, . . . , βm〉+ 〈(αn → βm)〉

is a formula-witness.
Let L∗0 be the set of all finite sequences for which there is a formula-witness

for ϕ. Then by the above, L∗0 satisfies the closure requirements of Definition 1.3
and so by the minimality of the set of formulas, L0 ⊆ L∗0. This proves that (1)
implies (2). ut

Suppose ~s = 〈s0, . . . , sm〉 is a finite sequence. Then a finite sequence ~t is a
final segment of ~s if for some j ≤ m,

~t = 〈sj , . . . , sm〉.

If 0 < j then ~t is a proper final segment of ~s.
We complete the analysis of subformulas in Lemma 1.18. This lemma answers

the natural questions which arise about subformulas and block-subsequences etc.
The proof of Lemma 1.18 requires the following variation of Lemma 1.8. We

leave the proof of this lemma to the exercises.
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Lemma 1.16 Suppose that ϕ is a formula and that σ is a proper final segment
of ϕ. Then σ is not a formula. ut

We also note the following lemma which is easily proved by induction on the
length of formulas. This lemma simply shows that every occurrence of the symbol
→ in a formula ψ, is associated with a subformula of ψ of the form (θ1 → θ2).
By Lemma 1.8 and Lemma 1.16, this subformula is unique.

Lemma 1.17 Suppose that ψ is a formula and that ϕ = s+ 〈→〉+ t. Then there
exist formulas θ1 and θ2 and finite sequences α and β such that

s = α+ 〈(〉+ θ1

and such that

t = θ2 + 〈)〉+ β

Putting everything together we obtain the following two lemmas. The first
lemma shows that the subformulas of ϕ are exactly the formulas which occur
in every formula-witness for ϕ. The proof of the second lemma is left to the
exercises.

Lemma 1.18 Suppose ϕ is a formula and that ψ is a formula. Then the follow-
ing are equivalent.

(1) ψ is a subformula of ϕ.

(2) Suppose 〈ψ1, . . . , ψn〉 is a formula-witness for ϕ. Then ψ = ψk for some k
such that 1 ≤ k ≤ n.

Proof. (2) implies (1) is immediate from the definitions and so it suffices to prove
that (1) implies (2).

Suppose ψ is a subformula of ϕ and let 〈ψ1, . . . , ψn〉 is a formula-witness for
ϕ. Let k ≤ n be least such that ψ is a subformula of ψk. It suffices to show that
ψk = ψ. If ψk has length 1, then necessarily ψ = ψk and so we trivially can
reduce to the following 2 cases.

Case 1: ψk = (¬ψj) for some j < k.

Since ψ is not a subformula of ψj , either ψ is an initial segment of ψk, or ψ
is a final segment of ψk. In either case, by Lemma 1.8 and Lemma 1.16, ψ = ψk.

Case 2: ψk = (ψj1 → ψj2) for some j1, j2 < k.

There are three subcases. Note that if γ is a formula which begins with the
symbol ( then there is a formula α such that 〈(〉 + α is an initial segment of γ.
Similarly if the last symbol of γ is ) then there is a formula α such that α+ 〈)〉
is a final segment of γ. Both claims are easily proved by induction on the length
of γ. Of course, for any formula γ, the first symbol of γ is ( if and only if the last
symbol of γ is ).

Case 2.1: ψ is a block-subsequence of 〈(〉+ ψj1 .
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Since j1 < k, ψ must be an initial segment of 〈(〉+ ψj1 . Further ψ must be a
proper initial segment of 〈(〉+ ψj1 since otherwise ψj1 is a proper final segment
of ψ which contradicts Lemma 1.16.

The first symbol of ψ is ( and so there is a formula α such 〈(〉+α is an initial
segment of ψ. But then α is a proper initial segment of ψj1 which contradicts
Lemma 1.8.

Case 2.2: ψ is a block-subsequence of ψj2 + 〈)〉.
Since j2 < k, ψ must be a proper final initial segment of ψj2 + 〈)〉 (otherwise

ψj2 a proper initial segment of ψ which is impossible). Therefore the last symbol
of ψ is ) and so there is a formula α such that α is a proper final segment of ψj2
which contradicts Lemma 1.16.

Case 2.3: ψ is not a block-subsequence of 〈(〉 + ψj1 , and ψ is not a block-
subsequence of ψj2 + 〈)〉.

Therefore, there are finite sequences s, t such that

• ψk = s+ ψ + t,

• s is an initial segment of 〈(〉+ ψj1 ,

• t is final segment of ψj2 + 〈)〉.

Then by Lemma 1.16.5, there is a formula θ = (θ1 → θ2) such that θ is a
block-subsequence of ψ and such that:

• Either θ1 is a final segment of ψj1 or ψj1 is a final segment of θ1,

• Either θ2 is an initial segment of ψj2 or ψj2 is an initial segment of θ2.

Thus by Lemma 1.8 and Lemma 1.16, θ1 = ψj1 and θ2 = ψj2 . But this implies
that ψ = (ψj1 → ψj2) = ψk. ut

Lemma 1.19 Suppose that ϕ is a formula. Then there exists a formula-witness
〈ψ1, . . . , ψn〉 such that:

(1) ϕ = ψn,

(2) For all i < n, ψi is a subformula of ϕ.

Proof. This lemma is easily proved by induction of the length of ϕ, the details
are left to exercises. ut

1.1.2 Exercises
(1) For which natural numbers n are there elements of L0 of length n?

(2) Prove Lemma 1.16.

(3) Consider the set of symbols ∗ and #. Let L∗ be the smallest set L of se-
quences of these symbols with the following properties.

(a) The length one sequences 〈∗〉 and 〈#〉 belong to L.

(b) If σ and τ belong to L, then so do 〈∗〉+ σ+ 〈#〉 and 〈∗〉+ σ+ τ + 〈#〉.
State Readability for L∗ and determine if it holds.

Hint: Consider **## and ***###
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(4) Consider the set of sequences defined as in Definition 1.3 except that the
first part of the second clause is changed to read, “If ϕ ∈ L is an element of
L then ¬ϕ is in L” in which the parentheses are omitted.

(a) Is this set readable?

(b) Is this set uniquely readable?

(5) Consider the set of sequences defined as in Definition 1.3 except that the
second part of the second clause is changed to read, “If ϕ1 and ϕ2 are
elements of L, then ϕ1 → ϕ2 is an element of L” in which the parentheses
are omitted.

(a) Is this set readable?

(b) Is this set uniquely readable?

Hint: For (a), show that a proper initial segment of ϕ is not a “formula” if
ϕ = (¬ψ), by induction on the length of ϕ.

(6) (Polish Notation) Let P0 be the smallest set of sequences P such that the
following conditions hold.

(a) For each n, 〈An〉 ∈ P .

(b) If ψ1 and ψ2 belong to P , then so do both:
• ¬ψ1 = 〈¬〉+ ψ1.
• →ψ1ψ2 = 〈→〉+ ψ1 + ψ2.

State and prove the unique readability theorem for P0.

Hint: Show that a proper initial segment of an element of P0 is not in P0.

Note that the Polish system of notation does away with parentheses.

(7) Prove Lemma 1.19.

1.2 Truth assignments

We can now describe the semantics for propositional logic.

Definition 1.20 A truth assignment for L0 is a function ν from the set of
propositional symbols {An : n ∈ N} into the set {T, F}. ut

Now, (¬ψ) should have the opposite truth value from that of ψ and the truth
value of (ψ1 → ψ2) should reflect whether, if ψ1 has truth value T , then ψ2 has
truth value T .

Theorem 1.21 Suppose that ν is a truth assignment for L0. Then there is a
unique function ν defined on L0 with the following properties.

(1) For all n, ν(〈An〉) = ν(An).

(2) For all ψ ∈ L0,

ν((¬ψ)) =

{
T, if ν(ψ) = F ;

F, otherwise.
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(3) For all ψ1 and ψ2 in L0,

ν((ψ1 → ψ2)) =

{
F, if ν(ψ1) = T and ν(ψ2) = F ;

T, otherwise.

Proof. We can define ν(ψ) by induction of the length of ψ.

Base step. For each n ∈ N, define ν(〈An〉) = ν(An).

Induction step. Suppose that s ≥ 1, that ν is defined on all sequences from
L0 of length less than or equal to s, and that ϕ is an element of L0 of
length s+ 1.
If ϕ = (¬ψ), we define ν(ϕ) as in (2); if ϕ = (ψ1 → ψ2), we define ν(ϕ)
as in (3).

By Unique Readability for Formulas, Theorem 1.9, ν is well defined.
We finish by proving ν is unique. Suppose that ν̂ : L0 → {T, F} and satisfies

(1), (2), and (3). For the sake of a contradiction, suppose that ν̂ is not equal
to ν. Fix ϕ so that ν̂(ϕ) 6= ν(ϕ) and so that there is no ψ ∈ L0 such that ψ is
strictly shorter than ϕ and ν̂(ψ) 6= ν(ψ).

Since ν̂ satisfies (1), for every n, ν̂(〈An〉) = ν(An). By definition,

ν(〈An〉) = ν(An).

Hence, for every n, ν̂(〈An〉) = ν(〈An〉).
Consequently, the length of ϕ must be greater than 1. By Readability for

Formulas, Lemma 1.7, ϕ is either a negation (¬ψ) or an implication (ψ1 → ψ2).

Case 1 ϕ = (¬ψ) for some formula ψ.

ψ has shorter length than ϕ and so ν(ψ) = ν̂(ψ). But both ν and ν̂ satisfy
(2) and so ν(ϕ) = ν̂(ϕ), this is a contradiction.

Case 2 ϕ = (ψ1 → ψ2), for some formulas ψ1 and ψ2.

Both ψ1 and ψ2 have shorter length than ϕ. Therefore ν(ψ1) = ν̂(ψ1) and
ν(ψ2) = ν̂(ψ2. But both ν and ν̂ satisfy (3) and so ν(ϕ) = ν̂(ϕ), this is a again
contradiction.

Thus in each case, we have a contradiction and so ν = ν̂, and this proves the
theorem. ut

Theorem 1.22 Suppose that ϕ ∈ L0 and that ν and µ are truth assignments
which agree on the propositional symbols which occur in ϕ. Then ν(ϕ) = µ(ϕ).

Proof. Proceed just as in the uniqueness part of the proof of Theorem 1.9. Show
that there cannot be a shortest subformula of ϕ where ν and µ disagree. ut

1.2.1 Satisfiability
Definition 1.23 (1) A truth assignment ν satisfies a formula ϕ if and only if

ν(ϕ) = T . Similarly, ν satisfies a set of formulas Γ if and only if it satisfies
all of the elements of Γ.
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(2) ϕ is a tautology if and only if every truth assignment satisfies ϕ.

(3) ϕ ∈ L0 or Γ ⊂ L0 are satisfiable if and only if there is a truth assignment
which satisfies ϕ or Γ, respectively.

(4) ϕ is a contradiction if and only if there is no truth assignment which satisfies
ϕ. ut

To give an example, consider the formula (¬((¬A1) → A2)) and a truth
assignment ν such that ν(A1) = ν(A2) = F . By Theorem 1.22, the values of ν
on A1 and A2 determine the value of ν on (¬((¬A1) → A2)). In Figure 1.1, we
show the values of ν on (¬((¬A1)→ A2)) and its subformulas.

A1 A2 (¬A1) ((¬A1)→ A2) (¬((¬A1)→ A2))
F F T F T

Fig. 1.1 Extending a truth assignment

We can expand the table to systematically examine all possible truth assign-
ments on (¬((¬A1)→ A2)), as in Figure 1.2.

A1 A2 (¬A1) ((¬A1)→ A2) (¬((¬A1)→ A2))
T T F T F
T F F T F
F T T T F
F F T F T

Fig. 1.2 The truth table for (¬((¬A1) → A2))

Truth tables, such as the one in Figure 1.2, provide a systematic method to
examine all the possible truth assignments for a given formula. Given a formula
ϕ, we generate a truth table for ϕ as follows.

(1) The top row of the table consists of a list ψ1, ψ2, . . . , ψn = ϕ consisting of
the subformulas of ϕ, ordered from left to right as follows.

(a) The subformulas of ϕ of the form 〈Am〉 appear in the list without rep-
etition before any of the other subformulas of ϕ.

(b) For each i ≤ n all of the proper subformulas of ψi appear in the list
ψ1, ψ2, . . . , ψi−1.

(c) The last element of the list is ϕ.

Thus 〈ϕ1, . . . , ϕn〉 is any formula-witness for ϕ such that for all 1 ≤ i ≤ j ≤ n,
ϕi is a subformula of ϕ, length(ϕi) ≤ length(ϕj), and such that if both
length(ϕj) = 1 and i < j, then ϕi 6= ϕj .

(2) Letting k be the number of subformulas of ϕ of the form 〈Am〉, we consider
all of the 2k possible truth assignments for their propositional symbols. We
use a row in the table for each such truth assignment ν, and we fill in the
cell below 〈Am〉 in that row with the value of ν at Am.
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(3) Finally, we work our way across each row and fill in the values of ν at ψi as
determined by the values already filled in for its subformulas.

A1 A2 (A1 → A2) (¬A1) (¬A2) ((¬A2)→ (¬A1))
T T T F F T
T F F F T F
F T T T F T
F F T T T T

A1 A2
((A1 → A2) →

((¬A2)→ (¬A1)))

T T T
T F T
F T T
F F T

Fig. 1.3 The truth table for ((A1 → A2) → ((¬A2) → (¬A1)))

We give another example in Figure 1.3. This time we have chosen the tau-
tology expressing the principle that if A1 implies A2, then the contrapositive
implication from (¬A2) to (¬A1) also holds.

Theorem 1.24 There are algorithms to determine whether a propositional for-
mula ϕ is a tautology, satisfiable, or a contradiction.

Proof. Starting with a formula ϕ, we can systematically generate its truth table.
Then ϕ is a tautology if and only if every entry in the last column of its truth
table is equal to T . It is satisfiable if and only if there is an entry in the last
column of its truth table which is equal to T . It is a contradiction if and only if
every entry in the last column of its truth table is equal to F . ut

Remark 1.25 Roughly speaking, if ϕ has n many symbols, then the analysis of
ϕ by the method of truth tables involves 2n many steps. A question which has
received a considerable amount of attention is whether there is a more efficient
method which when given ϕ determines whether ϕ is satisfiable. For more infor-
mation on this problem, known as the P = NP problem, and even a cash prize,
see the following web site.

http://claymath.org/millennium-problems/p-vs-np-problem ut

1.2.2 Truth functions
Definition 1.26 An n-place truth function is a function whose domain is the
set of sequences of T ’s and F ’s of length n, written {T, F}n and whose range is
contained in {T, F}. ut
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If ϕ is a formula in L0 and the propositional symbols which occur in ϕ
are contained in the set {A0, . . . , An−1}, then we can define the truth function
fϕ derived from ϕ. Given σ ∈ {T, F}n, we let ν be the truth assignment on
{A0, . . . , An−1} such that ν(Ai−1) is equal to the ith element of σ, and we define
fϕ(σ) to be ν(ϕ).

In the next theorem, we show that L0 is as expressive as is possible. By this,
we mean that every truth function is represented by a formula in L0.

Theorem 1.27 Suppose that f : {T, F}n → {T, F} is a truth function. Then
there is a formula ϕ such that fϕ = f .

Proof. We build up to the formula ϕ by a sequence of smaller steps.
For σ ∈ {T, F}n, define θσ,i so that

θσ,i =

{
Ai−1, if σ(i) = T ;

(¬Ai−1), if σ(i) = F .

Given two formulas ψ1 and ψ2, we define the conjunction of ψ1 and ψ2 to
be the formula (¬(ψ1 → (¬ψ2))). As is seen in Figure 1.4, a truth assignment
satisfies the conjunction of ψ1 and ψ2 if and only if it satisfies both ψ1 and ψ2.

ψ1 ψ2 (¬ψ2) (ψ1 → (¬ψ2)) (¬(ψ1 → (¬ψ2)))
T T F F T
T F T T F
F T F T F
F F T T F

Fig. 1.4 The conjunction of ψ1 and ψ2.

Given more than two formulas ψ1, . . . , ψn, we use recursion and define their
conjunction to be the conjunction of ψ1 with the conjunction of ψ2, . . . , ψn. For
example, the conjunction of ψ1, ψ2, and ψ3 is the formula

(¬(ψ1 → (¬(¬(ψ2 → (¬ψ3)))))).

By induction, if ν is a truth assignment, then ν maps the conjunction of
ψ1, . . . , ψn to T if and only if ν maps each of ψ1, . . . , ψn to T .

For σ ∈ {T, F}n, we let ψσ be the conjunction of the formulas θσ,i for i less
than or equal to n. The only truth assignments that satisfy ψσ are those which
assign σ(i) to Ai−1.

Given two formulas ψ1 and ψ2, we define the disjunction of ψ1 and ψ2 to be
the formula ((¬ψ1)→ ψ2). As is seen in Figure 1.2.2, a truth assignment satisfies
the conjunction of ψ1 and ψ2 if and only if it satisfies at least one of ψ1 or ψ2. As
above, when n is greater than two, we define the disjunction of ψ1, . . . , ψn to be
the disjunction of ψ1 with the disjunction of ψ2, . . . , ψn. By another induction,
if ν is a truth assignment, then ν maps the disjunction of ψ1, . . . , ψn to T if and
only if it maps at least one of ψ1, . . . , ψn to T .
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ψ1 ψ2 (¬ψ1) ((¬ψ1)→ ψ2)
T T F T
T F F T
F T T T
F F T F

Fig. 1.5 The disjunction of ψ1 and ψ2.

Now we let ϕf be the disjunction of the set of formulas ψσ for which f(σ) = T .
By construction, if ν is a truth assignment that satisfies ϕf , then there is a σ
such that f(σ) = T and for all i less than or equal to n, ν(Ai−1) is equal to the
ith element of σ. Consequently, f is equal to fϕf

, as required. ut

Remark 1.28 It is not unusual to include symbols ∧ for conjunction, ∨ for
disjunction, and ↔ for “if and only if”. By Theorem 1.27, these and all other
logical connectives can be expressed in the language with only ¬ and →.

Of course, the fewer symbols there are in the language, the fewer the number
of cases there are in proofs by induction, so we decided in favor a small number
of logical symbols. Occasionally, we pay a price for that decision: for example,
with the lengths of the formulas that appeared in the proof of Theorem 1.27. ut

Definition 1.29 Disjunctive normal form is a formula that consists solely of
disjunctions of conjunctions of atomic formulas and their negations, or more
informally, an OR statement of AND statements. By the proof of Theorem 1.27,
every truth function can be realized by a propositional formula in disjunctive
normal form. ut

Remark 1.30 In some applications, it important to find the best possible for-
mula ϕ for a given truth function f . Best possible could mean having the shortest
length or having the fewest logical connectives of a certain type. When n is large,
it is computationally prohibitive to verify for various candidate formulas ϕ that
it represents a given truth function f . Thus finding the optimal ϕ for a specified
f remains an interesting problem. ut

Remark 1.31 The next section concerns the notion of proof. However, we al-
ready have enough definitions and concepts to prove an interesting theorem, the
property of Craig interpolation. The following lemma isolates the key point.

There are a number of different approaches to proving Theorem 1.32. A
second approach which is based on substitution is outlined in Exercise (6) on
page 20. ut

Lemma 1.30.5 Suppose that (ϕ → ψ) is a tautology and that ϕ and ψ share
at least one propositional symbol. Suppose that ν, µ are truth assignments which
agree on the propositional symbols occurring in both ϕ and ψ, and that ν̄(ϕ) = T .
Then µ̄(ψ) = T
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Theorem 1.32 (Craig Interpolation Theorem for Propositional Logic)
Suppose that (ϕ→ ψ) is a tautology and that ϕ and ψ share at least one propo-
sitional symbol. Then there exists a θ, called an interpolant, that contains only
propositional symbols occur in both ϕ and in ψ, and both (ϕ → θ) and (θ → ψ)
are tautologies.

Proof. We first suppose that ϕ is a contradiction. Let Ai be a propositional
symbol which occurs in both ϕ and ψ. Let θ = (Ai → (¬Ai)). Thus θ is a
contradiction as well. Since ϕ is a contradiction, (ϕ → θ) is a tautology, and
(θ → α) is a tautology for any propositional formula α. In particular, (θ → ψ)
is a tautology. This proves the theorem in the case that ϕ is a contradiction.

We now suppose that ϕ is not a contradiction and let A = {An0
, An2

, ..., Ank
}

be the set of propositional letters that appear in both formulas. Let ν0, ν2, ..., νn
be truth assignments that satisfy ϕ such that any other truth assignment that
satisfies ϕ agrees with a νi on A.

We construct the interpolant θ as follows. First, for each i ≤ k, define

αni
=

{
Ani if νj(Ani) = T

(¬Ani) if νj(Ani) = F

Next, for each j ≤ n define

θj =
∧
i≤k

αni

Finally, define

θ =
∨
j≤n

θj

That is, θ is a disjunction of conjunctions of propositional letters in A or
their negations. θ is satisfied if and only if at least one of the the θj ’s is satisfied,
and a θj is satisfied if and only if all its αni are satisfied. By definition, for each
j, νj(ϕ) = T, and θj was constructed to be satisfied by νj . Therefore, for an
arbitrary truth assignment ν, if ν satisfies ϕ, then ν agrees with some νj on A
and so ν satisfies θ. In other words, (ϕ→ θ) is a tautology.

Now suppose towards contradiction that (θ → ψ) is not a tautology. Then
there is some truth assignment µ such that µ(θ) = T but µ(ψ) = F . By choice
of ν1, ..., νn, since µ(θ) = T, there is a j such that µ and νj agree on A and
νj(ϕ) = T . The truth assignment µ can then be transformed into a truth assign-
ment µ∗, defined as:

µ∗ =

{
µ(Ani

) for Ani
in ψ but not in ϕ

νj(Ani
) otherwise

Observe that µ∗(ψ) = µ(ψ) = F since they assign the same truth values to
the symbols which appear in ψ. Similarly, µ∗(ϕ) = T since νj and µ∗ agree on
the truth assignment for the propositional symbols which appear in ϕ but not
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in ψ. However, the existence of the truth assignment, µ∗, contradicts the fact
that (ϕ→ ψ) is a tautology, thus there is no truth assignment µ, and the result
follows. ut

1.2.3 Exercises
(1) Let � (this is “NOR”) be the propositional connective with the truth table

in Figure 1.6. Suppose that f : {T, F}n → {T, F} is a truth function. Show

A B A � B
T T F
T F F
F T F
F F T

Fig. 1.6 The truth table for �

that there is a formula ϕ whose only propositional connective is � such that
fϕ = f .

(2) Using the original language of ¬ and →, exhibit a formula ϕ that contains
propositional letters A0, A1, and A2 such that ν(ϕ) is the truth value ν
assigns to the majority of A0, A1, and A2.

(3) Given two different truth assignments ν1 and ν2, construct an infinite set Γ
such that Γ is satisfied by only ν1 and ν2.

(4) Give an example of a propositional formula ϕ (in the language L0 with only
¬ and →) such that for every truth assignment ν, ν(ϕ) = T if and only if
either ν(A1) = T or both ν(A2) = ν(A3) = F

(5) Given an enumeration of different truth assignments {νi : i ∈ N} is there a
set Γ such that Γ is satisfied by only {νi : i ∈ N}?
Hint: Consider the case where for each number i, νi(Ak) = T if and only if
k ≥ i.

(6) Find a formula ϕ such that the following hold.

(a) The propositional symbol A0 occurs in ϕ, and no other propositional
symbol occurs in ϕ.

(b) ϕ is satisfiable.

(c) If ψ does not contain any propositional symbol Ai with i > 0 then either
(ϕ→ ψ) is a tautology or (ϕ→ (¬ψ)) is a tautology.

(7) Does there exist a ϕ ∈ L0 such that the following conditions hold:

(a) ϕ is satisfiable.

(b) If ψ contains only propositional letters that appear in ϕ, then if ϕ does
not imply ϕ, then ψ implies ϕ.

(8) Show that if (ϕ → ψ) is a tautology and ψ is not a tautology, then either
ϕ is a contradiction or ϕ and ψ have at least one propositional symbol in
common.
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1.2.4 Substitution
Outside of negating a formula or linking two by logical implication, another ac-
tion on propositional formulas is substitution. For example, suppose we have the
formula ϕ = (A0 → A1), and we want to replace the instance of A1 with an
instance of A2. We denote this action by ϕ(A1;A2). We can generalize substitu-
tion to replacing propositional letters with any formula. We state this formally
in the following definition.

Definition 1.33 Suppose that ϕ and ψ1, ..., ψk are formulas, and An1
, ..., Ank

are distinct propositional letters. Then ϕ(An1
, ..., Ank

;ψ1, ..., ψk) denotes the for-
mula obtained by simultaneously, for each i, substituting the formula ψi for each
occurrence of Ani in ϕ. For the sake of (human) readability, we will often just

write ϕ(Ā; ~ψ) and in doing so the convention is that |Ā| = |~ψ|. Here we note
that since the propositional symbols Ai are naturally ordered by Ai1 < Ai2 if
i1 < i2, each finite set Ā of propositional symbols corresponds uniquely to a
finite sequence ~A of propositional symbols. ut

Note that our notion of substitution does not allow one to distinguish dif-
ferent occurrences of Ai; more precisely in defining ϕ(Ai;Aj), we cannot specify
particular occurrences of Ai to replace and also specify occurrences of Ai to
preserve. The following lemma is left to the exercises.

Lemma 1.34 Suppose ϕ is a formula and every propositional symbol occurring
in ϕ is included in {A0, . . . , An}. Let 〈ψ0, . . . , ψn〉 be a sequence of formulas and
let ϕ∗ = ϕ(A0, ..., An;ψ0, ..., ψn). Suppose ν is a truth assignment and let ν∗ be
the truth assignment where

ν∗(Am) =

{
ν(ψi) if m = i and i ≤ n
ν(Am) otherwise

Then ν∗(ϕ) = ν(ϕ∗). ut

1.2.5 Exercises
(1) Show that substitution of propositional symbols with formulas yields a for-

mula.

(2) Prove Lemma 1.34.

Hint: Use induction on the length of ϕ.

(3) Show that substitution on the propositional symbols of a tautology produces
another tautology. Deduce that tautologies and contradictions are invariant
under substitution of propositional symbols.

Hint: Use Lemma 1.34.

(4) Suppose ϕ is satisfiable. Produce a tautology by substitution on the propo-
sitional symbols.

Hint: Use Lemma 1.34.
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(5) Show that if (ϕ → ψ) is a tautology and ψ is not a tautology, then either
ϕ is a contradiction or ϕ and ψ have at least one propositional symbol in
common.

Note: This is the generalization of the Craig Interpretation Theorem to the
case where ϕ and ψ have no propositional symbols in common.

(6) Prove the Craig interpolation theorem by induction on the number of propo-
sitional symbols which occur in ϕ and which do not occur in ψ.

Hint: The base step is when every propositional symbol which occurs in ϕ
also occurs in ψ.

For the inductive step, fix a propositional symbol Ai which occurs in ϕ and
not in ψ and fix a propositional symbol Ak such that Ak occurs in both ϕ and
ψ. Consider two substitutions on Ai in ϕ: one defined using the tautology
(Ak → Ak), and the other defined using the negation (¬(Ak → Ak)) of that
tautology.

1.3 A proof system for L0

Suppose that Γ is a subset of L0 so that Γ is a set of propositional formulas.
We shall define a formal notion of proof. Intuitively a proof from Γ will be a
finite sequence, 〈ϕ1, . . . , ϕn〉, of propositional formulas which satisfies certain
conditions. In order to make the definition precise we need to first define the set
of Logical Axioms.

Definition 1.35 Suppose that ϕ1, ϕ2 and ϕ3 are propositional formulas. Then
each of the following propositional formulas is a logical axiom:
(Group I axioms)

(1) ((ϕ1 → (ϕ2 → ϕ3))→ ((ϕ1 → ϕ2)→ (ϕ1 → ϕ3)))

(2) (ϕ1 → ϕ1)

(3) (ϕ1 → (ϕ2 → ϕ1))

(Group II axioms)

(1) (ϕ1 → ((¬ϕ1)→ ϕ2))

(Group III axioms)

(1) (((¬ϕ1)→ ϕ1)→ ϕ1)

(Group IV axioms)

(1) ((¬ϕ1)→ (ϕ1 → ϕ2))

(2) (ϕ1 → ((¬ϕ2)→ (¬(ϕ1 → ϕ2)))) ut

It is easily verified that each logical axiom is a tautology. Notice also that
the set of all logical axioms is generated from just the 7 logical axioms (where
ϕ1 = A1 and ϕ2 = A2) by substitutions. Thus unlike the case of tautologies, it
is quite feasible to check if a formula is a logical axiom.



A proof system for L0 21

While we could have taken potentially the whole set of tautologies to consti-
tute our axioms, we will see these are robust enough to give our proof system
the property of “completeness”.

Definition 1.36 Suppose that Γ ⊆ L0.

(1) Suppose that

s = 〈ϕ1, . . . , ϕn〉

is a finite sequence of propositional formulas. The finite sequence s is a
Γ-proof if for each i ≤ n at least one of

(a) ϕi ∈ Γ; or

(b) ϕi is a logical axiom; or

(c) there exist j1 < i and j2 < i such that

ϕj2 = (ϕj1 → ϕi).

(2) Γ ` ϕ if and only if there exists a finite sequence

s = 〈ϕ1, . . . , ϕn〉

such that s is a Γ-proof and such that ϕn = ϕ. ut

Notice that if s = 〈ϕ1, . . . , ϕn〉 is a Γ-proof and if t = 〈ψ1, . . . , ψm〉 is a
Γ-proof then so is s+ t = 〈ϕ1, . . . , ϕn, ψ1, . . . , ψm〉.

We shall prove a sequence of simple lemmas about the proof system. For each
lemma we shall note which logical axioms are actually used.

The first lemma, which concerns inference, requires no logical axioms what-
soever.

Lemma 1.37 (Inference) Suppose that Γ ⊆ L0, ϕ is a formula and that ψ is
a formula. Suppose that Γ ` ψ and that Γ ` (ψ → ϕ).

Then Γ ` ϕ.

Proof. Let 〈ϕ1, . . . , ϕn〉 be a Γ-proof of ψ, thus ϕn = ψ. Let 〈ψ1, . . . , ψm〉 be a
Γ-proof of (ψ → ϕ). Then 〈ϕ1, . . . , ϕn, ψ1, . . . , ψm, ϕ〉 is a Γ-proof and Γ ` ϕ. ut

The second lemma is the Soundness Lemma, which ensures proofs indeed
yield valid logical consequences. This also is independent of the choice of logical
axioms, provided that every logical axiom is a tautology.

Lemma 1.38 (Soundness) Suppose that Γ ⊆ L0, ϕ is a formula and that
Γ ` ϕ. Suppose that

ν : {A1, . . . , An, . . .} → {T, F}

is a truth assignment such that ν(ψ) = T for all ψ ∈ Γ.
Then ν(ϕ) = T .
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Proof. Let 〈ϕ1, . . . , ϕn〉 be a Γ-proof of ψ. One proves by induction on i ≤ n
that ν(ϕi) = T . We leave the details as an exercise. ut

The next lemma is the Deduction Lemma. This lemma requires the logical
axioms from Group I.

Lemma 1.39 (Deduction) Suppose that Γ ⊆ L0, ϕ is a formula, ψ is a for-
mula and

Γ ∪ {ϕ} ` ψ.

Then Γ ` (ϕ→ ψ).

Proof. Let

〈ψ1, . . . , ψn〉

be a (Γ ∪ {ϕ})-proof of ψ. We prove by induction on i ≤ n that

Γ ` (ϕ→ ψi).

First we consider the case i = 1. Either ψ1 ∈ Γ∪{ϕ} or ψ1 is a logical axiom
(possibly both). So there are three subcases of this case.

Subcase 1.1: ψ1 ∈ Γ. So we must show that Γ ` (ϕ→ ψ1). However

Γ ` (ψ1 → (ϕ→ ψ1))

since (ψ1 → (ϕ→ ψ1)) is a logical axiom. Further

Γ ` ψ1

since ψ1 ∈ Γ. Therefore by the Inference Lemma 1.37, Γ ` (ϕ→ ψ1).

Subcase 1.2: ψ1 = ϕ. Note that (ϕ→ ϕ) is a logical axiom and so

Γ ` (ϕ→ ϕ).

Subcase 1.3: ψ1 is a logical axiom. This is just like subcase 1.1; (ψ1 → (ϕ→ ψ1))
is a logical axiom and so

Γ ` (ψ1 → (ϕ→ ψ1)).

Since ψ1 is a logical axiom, Γ ` ψ1. Therefore by the inference Lemma,
Γ ` (ϕ→ ψ1).

We now suppose that k ≤ n and assume as an induction hypothesis that for
all i < k,

Γ ` (ϕ→ ψi).

There are two subcases.
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Subcase 2.1: ψk ∈ Γ ∪ {ϕ} or ψk is a logical axiom. But then exactly as in the
case of ψ1, Γ ` (ϕ→ ϕk).

Subcase 2.2: There exist j1 < k and j2 < k such that ψj2 = (ψj1 → ψk).
By the induction hypothesis; Γ ` (ϕ→ ψj1) and Γ ` (ϕ→ ψj2). Now we use

the logical axiom

((ϕ→ (ψj1 → ψk))→ ((ϕ→ ψj1)→ (ϕ→ ψk))).

By the induction hypothesis,

Γ ` (ϕ→ (ψj1 → ψk)),

and so by the Inference Lemma,

Γ ` ((ϕ→ ψj1)→ (ϕ→ ψk)).

Again by the induction hypothesis,

Γ ` (ϕ→ ψj1),

and so by the Inference Lemma one last time,

Γ ` (ϕ→ ψk).

This completes the induction and so Γ ` (ϕ → ψ). Finally we note that only
Group I logical axioms were used. ut

Definition 1.40 Suppose that Γ ⊆ L0.

(1) Γ is inconsistent if for some formula ϕ, Γ ` ϕ and Γ ` (¬ϕ).

(2) Γ is consistent if Γ is not inconsistent. ut

If Γ is an inconsistent set of formulas then Γ ` ψ for every formula ψ. This
is the content of the next lemma the proof of which appeals to the Deduc-
tion Lemma and logical axioms in Group II. Therefore only logical axioms from
Groups I and II are needed.

Lemma 1.41 Suppose that Γ ⊆ L0 and that Γ is inconsistent. Suppose that ψ
is a formula. Then Γ ` ψ.

Proof. Since Γ is inconsistent there exists a formula ϕ such that

Γ ` ϕ

and Γ ` (¬ϕ).
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But

Γ ` (ϕ→ ((¬ϕ)→ ψ))

since (ϕ→ ((¬ϕ)→ ψ)) is a logical axiom. Therefore by the Inference Lemma,

Γ ` ((¬ϕ)→ ψ)

and by the Inference Lemma again,

Γ ` ψ.

This completes the proof. ut

Definition 1.42 Suppose that Γ ⊆ L0 and that Γ is consistent. Then Γ is
maximally consistent if and only if for each formula ψ if Γ ∪ {ψ} is consistent
then ψ ∈ Γ. ut

Lemma 1.43 Suppose that Γ ⊆ L0 and that Γ is consistent. Suppose that ϕ is
a formula.

Then at least one of Γ ∪ {ϕ} or Γ ∪ {(¬ϕ)} is consistent, possibly both.

Proof. Suppose that Γ ∪ {(¬ϕ)} is inconsistent. Therefore, for each formula ψ,

Γ ∪ {(¬ϕ)} ` ψ

and in particular, Γ ∪ {(¬ϕ)} ` ϕ.
Thus by the Deduction Lemma, Γ ` ((¬ϕ) → ϕ). But (((¬ϕ) → ϕ) → ϕ) is

a logical axiom (Group III), and so by the Inference Lemma, Γ ` ϕ.
Now assume toward a contradiction that Γ ∪ {ϕ} is inconsistent. By

Lemma 1.41, for each formula ψ,

Γ ∪ {ϕ} ` ψ.

By the Deduction Lemma, for each formula ψ,

Γ ` (ϕ→ ψ).

But Γ ` ϕ and so by the Inference Lemma, for each formula ψ, Γ ` ψ. Thus Γ is
inconsistent, which is a contradiction. Therefore Γ ∪ {ϕ} is consistent.

So we have proved, assuming the consistency of Γ, that if Γ ∪ {(¬ϕ)} is
inconsistent then Γ ∪ {ϕ} is consistent. ut

Corollary 1.44 Suppose that Γ ⊆ L0 and that Γ is maximally consistent. Sup-
pose that ϕ is a formula.

Then:

(1) Either ϕ ∈ Γ or (¬ϕ) ∈ Γ;

(2) If Γ ` ϕ then ϕ ∈ Γ.
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Proof. We first prove (1). By Lemma 1.43, either Γ ∪ {ϕ} is consistent or
Γ ∪ {(¬ϕ)} is consistent. Therefore since Γ is maximally consistent (1) must
hold.

We finish by proving (2). We are given that Γ ` ϕ. By (1), if ϕ /∈ Γ then
(¬ϕ) ∈ Γ which implies that Γ ` (¬ϕ). But Γ ` ϕ and so this contradicts the
consistency of Γ. ut

We now use the logical axioms in Group IV.

Lemma 1.45 Suppose that Γ ⊆ L0 and that Γ is maximally consistent. Suppose
that ϕ1 and ϕ2 are formulas.

Then (ϕ1 → ϕ2) ∈ Γ if and only if at least one of ϕ1 /∈ Γ or ϕ2 ∈ Γ.

Proof. We first suppose that ϕ1 /∈ Γ. We must show that (ϕ1 → ϕ2) ∈ Γ.
Since ϕ1 /∈ Γ, by Corollary 1.44, (¬ϕ1) ∈ Γ.
Thus Γ ` (¬ϕ1). But

Γ ` ((¬ϕ1)→ (ϕ1 → ϕ2))

since ((¬ϕ1)→ (ϕ1 → ϕ2)) is a logical axiom, and so by the Inference Lemma,

Γ ` (ϕ1 → ϕ2).

Therefore by Corollary 1.44, (ϕ1 → ϕ2) ∈ Γ.
Next we suppose that ϕ2 ∈ Γ. Now

(ϕ2 → (ϕ1 → ϕ2))

is a logical axiom and so Γ ` (ϕ2 → (ϕ1 → ϕ2)). By the Inference Lemma, since
ϕ2 ∈ Γ,

Γ ` (ϕ1 → ϕ2).

Therefore, again by Corollary 1.44, (ϕ1 → ϕ2) ∈ Γ.
To finish, we suppose that ϕ1 ∈ Γ and ϕ2 /∈ Γ. Now we must show that

(ϕ1 → ϕ2) /∈ Γ.
Since ϕ2 /∈ Γ, by Corollary 1.44, (¬ϕ2) ∈ Γ.
Thus Γ ` ϕ1 and Γ ` (¬ϕ2). But

Γ ` (ϕ1 → ((¬ϕ2)→ (¬(ϕ1 → ϕ2)))),

since (ϕ1 → ((¬ϕ2) → (¬(ϕ1 → ϕ2)))) is a logical axiom. Therefore by the
Inference Lemma,

Γ ` ((¬ϕ2)→ (¬(ϕ1 → ϕ2))),

and by the Inference Lemma once again,

Γ ` (¬(ϕ1 → ϕ2)).

Finally by Corollary 1.44, (¬(ϕ1 → ϕ2)) ∈ Γ and so (ϕ1 → ϕ2) /∈ Γ as required.
This completes the proof of the lemma. ut
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Our goal is to show that if Γ is consistent then Γ is satisfiable. We first
consider the special case that Γ is maximally consistent. This case will turn out
to be an easy case for Γ uniquely specifies the truth assignment which witnesses
that Γ is satisfiable.

Lemma 1.46 Suppose that Γ ⊆ L0 and that Γ is maximally consistent.
Then Γ is satisfiable.

Proof. Define a truth assignment ν as follows. For each i ∈ N, let

ν(Ai) =

{
T, if 〈Ai〉 ∈ Γ;

F, if 〈Ai〉 /∈ Γ.

We claim that for each formula ϕ, ν(ϕ) = T if ϕ ∈ Γ and ν(ϕ) = F if ϕ /∈ Γ.
We organize our proof of this claim by induction on the length of ϕ.

The case that ϕ has length 1 is immediate.
Suppose that ϕ has length n > 1 and that as induction hypothesis, for all

formulas ψ if ψ has length less than n then ν(ψ) = T if ψ ∈ Γ and ν(ψ) = F if
ψ /∈ Γ.

There are two cases.

Case 1: ϕ = (¬ψ). Since Γ is maximally consistent, ϕ ∈ Γ if and only if ψ /∈ Γ.
But ν(ϕ) = T if and only if ν(ψ) = F . By the induction hypothesis ν(ψ) = T if
and only if ψ ∈ Γ.

Thus if ϕ ∈ Γ then ν(ϕ) = T and ν(ϕ) = F if ϕ /∈ Γ.

Case 2: ϕ = (ψ1 → ψ2). Since Γ is maximally consistent, ϕ ∈ Γ if and only if
at least one of ψ1 /∈ Γ or ψ2 ∈ Γ. This is by Lemma 1.45.

By the definition of ν, ν(ϕ) = T if and only if either ν(ψ1) = F or ν(ψ2) = T .
Therefore by the induction hypothesis, ν(ϕ) = T if and only if either ψ1 /∈ Γ of
ψ2 ∈ Γ.

Thus, ν(ϕ) = T if and only if ϕ ∈ Γ.
This completes the induction. ut

Theorem 1.47 Suppose that Γ ⊆ L0 and that Γ is consistent. Then there exists
a set Γ∗ ⊂ L0 such that:

(1) Γ ⊆ Γ∗,

(2) Γ∗ is maximally consistent.

Proof. Let (ϕi : i ∈ N) be an enumeration of all of the formulas of L0. For
example, we could enumerate the finitely many length 1 formulas which use
only the propositional symbol A0; then, we could enumerate the finitely many
formulas of length less than or equal to 2 which use no propositional symbols
other than A0 and A1; and in subsequent steps, enumerate the finitely many
formulas of length less than or equal to n which use no propositional symbols
other than A0, . . . , An.
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We construct a sequence of sets of formulas (Γn : m ∈ N) by induction on n.
To begin, let Γ0 equal Γ. Given Γn, let Γn+1 be defined as follows.

Γn+1 =

{
Γn ∪ {ϕn}, if Γn ∪ {ϕn} is consistent;

Γn ∪ {¬ϕn}, otherwise.

We check by induction that each Γn is consistent. Clearly, Γ0 is consistent, since
we are given that Γ is consistent. Assuming that Γn is consistent, we can apply
Lemma 1.43 to conclude that at least one of Γn ∪ {ϕn} or Γn ∪ {¬ϕn} is also
consistent. But then Γn+1 is also consistent.

Now, define Γ∗ so that

Γ∗ = ∪n∈N Γn.

Assume toward a contradiction that Γ∗ is not consistent and fix ϕ ∈ Γ∗. Thus
by Lemma 1.41,

Γ∗ ` (¬ϕ).

Let 〈ψ1, . . . , ψm〉 be a Γ∗-proof of (¬ϕ) and let

Σ = {ψi | i ≤ m and ψi ∈ Γ∗} ∪ {ϕ}.

Thus Σ is a finite subset of Γ∗, Σ ` ϕ, and Σ ` (¬ϕ).
Therefore Σ is also inconsistent. But Γn ⊆ Γn+1 for all n ∈ N and so since Σ

is a finite subset of Γ∗, necessarily

Σ ⊆ Γn

for all sufficiently large n. But thus implies that Γn is inconsistent for all suffi-
ciently large n ∈ N, which is a contradiction. Thus Γ∗ is consistent.

Finally we prove that Γ∗ is maximally consistent. For every formula ϕ, there
is an n such that ϕ is equal to ϕn. By the definition of Γn+1, either ϕn ∈ Γn+1

or (¬ϕn) ∈ Γn+1. Since ϕ = ϕn and Γn+1 ⊆ Γ∗, either ϕ ∈ Γ∗ or (¬ϕ) ∈ Γ∗, as
required for maximality. ut

Theorem 1.48 (Completeness for L0; Version I) Suppose that Γ ⊆ L0 and
that Γ is consistent.

Then Γ is satisfiable.

Proof. By Theorem 1.47 extend Γ to a maximally consistent set, and then apply
Lemma 1.46. ut

1.3.1 Exercises
(1) Determine for each of the following formulas if that formula is a tautology.

(a) (((A1 → A1)→ A2)→ A2)

(b) ((((A1 → A2)→ A2)→ A2)→ A2)
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(2) Let ϕ be a propositional formula and let Γ = {(¬(¬ϕ))}. Find a Γ-proof of
ϕ.

Hint: Use a Group III axiom and a Group IV axiom.

(3) Let ϕ be a propositional formula. Let Γ be the empty set of propositional
formulas. Find a Γ-proof of the tautology ((¬(¬ϕ))→ ϕ).

Hint: Use the proof of the Deduction Lemma together with the previous
exercise.

1.4 Logical implication and compactness
Definition 1.49 Let Γ be a subset of L0 and let ϕ be an element of L0. Then
Γ logically implies ϕ if and only if Γ ∪ {(¬ϕ)} is not satisfiable. ut

For example, {ϕ} logically implies ϕ, and {ϕ1, (ϕ1 → ϕ2)} logically implies
ϕ2.

If Γ is a set a formulas, we write Γ � ϕ to indicate that Γ logically implies ϕ.
We note the following.

• If Γ is empty then Γ � ϕ if and only if ϕ is a tautology.

• If Γ is not empty and if Γ is not satisfiable, then Γ � ϕ for all propositional
formulas ϕ.

We now prove a second version of the Completeness Theorem for L0.

Theorem 1.50 (Completeness for L0; Version II) Suppose that Γ ⊆ L0, ϕ
is a formula and that Γ � ϕ.

Then Γ ` ϕ.

Proof. Since Γ � ϕ, Γ∪{(¬ϕ)} is not satisfiable. Therefore by the Completeness
Theorem, Γ ∪ {(¬ϕ)} is inconsistent and so by Lemma 1.41,

Γ ∪ {(¬ϕ)} ` ϕ.

By Lemma 1.39, the Deduction Lemma,

Γ ` ((¬ϕ)→ ϕ).

But (((¬ϕ) → ϕ) → ϕ) is a logical axiom and so by Lemma 1.37, the Inference
Lemma, Γ ` ϕ. ut

Thus we obtain the following theorem as a special case of Theorem 1.50.
This verifies that indeed all tautologies can be generated from the rather simple
collection of the logical axioms, by a (possibly rather long) series of easy steps.
In particular, for every tautology, there is a “tautology witness” which is easily
verified to be a witness.

Theorem 1.51 Suppose that ϕ is a propositional formula.
Then ϕ is a tautology if and only if ∅ ` ϕ. ut



Logical implication and compactness 29

We now consider two versions of compactness for the L0.

Theorem 1.52 (Compactness for L0; Version I) Suppose that Γ ⊆ L0,
ϕ ∈ L0, and Γ logically implies ϕ. Then there is a finite set Γ0 such that Γ0 ⊆ Γ
and Γ0 logically implies ϕ.

Proof. Since Γ � ϕ, Γ∪{(¬ϕ)} is not satisfiable. Therefore by the Completeness
Theorem, Γ ∪ {(¬ϕ)} is inconsistent. But this implies that there exists a finite
set Γ0 ⊆ Γ such that Γ0 ∪ {(¬ϕ)} is inconsistent. Therefore by Lemma 1.38, the
Soundness Lemma, Γ0 ∪ {(¬ϕ)} is not satisfiable and so Γ0 � ϕ. ut

Definition 1.53 A nonempty subset Γ of L0 is finitely satisfiable if and only if
for every finite subset Γ0 of Γ, there is a truth assignment ν such that for all
ψ ∈ Γ0, ν(ψ) = T . ut

We end this chapter with a second version of the Compactness Theorem.
Note that this theorem doen not involve any formal notion of proof.

Theorem 1.54 (Compactness for L0; Version II) Suppose that Γ ⊆ L0

and Γ is not empty. Then Γ is satisfiable if and only if Γ is finitely satisfiable.

Proof. By the Soundness Lemma, Lemma 1.38, if Γ is finitely satisfiable then Γ
is consistent. Therefore by the Completeness Theorem, if Γ is finitely satisfiable
then Γ is satisfiable. Trivially, if Γ is satisfiable then Γ is finitely satisfiable. ut

1.4.1 Exercises
(1) Suppose that 〈νi : i ∈ N〉 is a sequence of truth assignments. Show that

there is a truth assignment ν such that for all k ∈ N, there exists m ∈ N
such that

ν � {A0, . . . , Ak} = νm � {A0, . . . , Ak}
Hint: Construct ν � {A0, . . . , Ak} by induction on k such that there are
infinitely many m such that ν � {A0, . . . , Ak} = νm � {A0, . . . , Ak}.

(2) Prove the compactness theorem (Version II) without referring to the formal
notion of proof we have defined for L0.

Hint: Use the previous exercise.

(3) For Γ ⊆ L0 and ϕ and ψ in L0, show that Γ∪{ϕ} logically implies ψ if and
only if Γ logically implies (ϕ→ ψ).

The next three exercises refer to the following definitions.

Definition 1.55 Suppose Γ1 and Γ2 are subsets of L0. Then Γ1 is logically
equivalent to Γ2 if and only if, for all ϕ ∈ L0, Γ1 logically implies ϕ if and
only if Γ2 logically implies ϕ. ut

Definition 1.56 Suppose Γ ⊆ L0. Then Γ is independent if it is not logi-
cally equivalent to any of its proper subsets. ut
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(4) Suppose Γ is a finite set of formulas. Show that there is a Γ0 such that
Γ0 ⊆ Γ, Γ and Γ0 are logically equivalent, and such thay Γ0 is independent.

(5) Show that there is an infinite set Γ of formulas such that Γ has no indepen-
dent and logically equivalent subset.

(6) Show that for every set Γ ⊆ L0, there is a ∆ ⊆ L0 such that ∆ is independent
and logically equivalent to Γ.

(7) Show that the set of logical consequences of

{Ai : i 6= 1 and i ∈ N}

is consistent but not maximally consistent. Show that the set of logical
consequences of

{Ai : i ∈ N}

is maximally consistent.

(8) Let ∆ be a set of propositional formulas in L0 such that the symbol ¬ does
not appear in any element of ∆

(a) Give an example of a formula ϕ such that {ϕ} is not logically equivalent
{ψ}, for any formula ψ in ∆.

(b) Show that {Ai : i ∈ N} and ∆ are logically equivalent.

(9) Let ∆ be the set of propositional formulas of the form (θ0 ∧ θ1 ∧ ... ∧ θk)
where θi = Ai or θi = (¬Ai). Show that an arbitrary subset of L0 is logically
equivalent to a set containing only negations of formulas in ∆.
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First order logic—syntax

While propositional logic can conceivably cover a wide range of applications, first
order logic is most commonly used as the language to describe internal workings
and properties of groups, vector spaces, ordered sets, and other mathematical
structures.

Our language consists of (certain) finite sequences of symbols, as described
below.

• The logical symbols are the following.

( ) ¬ → ∀

• =̂ is the equality symbol.

• The variable symbols are xi, for i ∈ N.

• The constant symbols are ci, for i ∈ N.

• The function symbols are Fi, for i ∈ N.

• The predicate symbols are Pi, for i ∈ N.

We fix a function π mapping the set of function and predicate symbols to N
so that for each k ≥ 1, each of the sets

{i ∈ N | π(Fi) = k}

and

{i ∈ N | π(Pi) = k}

is infinite, and such that no symbol is mapped to 0.
For example, we could define π(Fi) = n+ 1, where the nth prime is the least

prime which divides i+ 2. (Here the 0-th prime is 2, and so π(j) = 1 if j is even
etc.) The purpose of the function π is to specify the number of arguments or
arity of each function and predicate symbol.

We will frequently use the following notation.

• ~x denotes a finite sequence of (not necessarily distinct) variables. Similarly,
~c denotes a finite sequence of (not necessarily distinct) constants.

• x̄ denotes a finite set of variables and c̄ denotes a finite set of constants.

We will need to consider the cases where we restrict our language.
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Definition 2.1 An alphabet, typically denoted as A, is a (perhaps infinite, per-
haps empty) subset of the set of all constant, function, and predicate symbols.
These are the nonlogical symbols of our language. ut

Remark 2.2 Given an alphabet A we may want to add more symbols, whether
they be for constants, function, or variables. ut

2.1 Terms
Recall our notation; if ~s = 〈s1, . . . , sn〉 and ~t = 〈t1, . . . , tm〉 are finite sequences
of symbols, then ~s+ ~t denotes the finite sequence 〈s1, . . . , sn, t1, . . . , tm〉.

Definition 2.3 The set of terms, T, is defined as the smallest set of finite se-
quences T satisfying the following properties.

(1) For each i ∈ N, the sequences of length one,

〈xi〉

and

〈ci〉

belong to T .

(2) If Fi is a function symbol, n = π(Fi), and τ1, . . . , τn belong to T , then

〈Fi〉+ 〈(〉+ τ1 + · · ·+ τn + 〈)〉

belongs to T . More briefly, the concatenation Fi(τ1 . . . τn) belongs to T . ut

We will assume familiarity with the methods of the previous chapter and
omit the proof that T is well defined.

Remark 2.4 We shall adopt several notational conventions.

(1) Often we shall say that xi is a term. Of course we are referring to the
sequence of length 1, 〈xi〉.

(2) For the sake of readability, we will often denote a finite sequence of (not
necessarily distinct) terms as ~τ = 〈τ1, . . . , τn〉. Further, let τ̄ = {τn1

, . . .}
denote sets of terms.

(3) More generally we shall indicate terms informally and use

Fi(τ1, . . . , τn)

or

Fi(~τ)

to indicate the term

〈Fi〉+ 〈(〉+ τ1 + · · ·+ τn + 〈)〉 ut



Terms 33

The elements of T are uniquely readable, as is pointed out in the next se-
quence of lemmas.

Lemma 2.5 (Readability for Terms) Suppose τ in T. Then one and only
one of the following conditions holds.

(1) There is an i ∈ N greater than or equal to 1 such that τ is xi or τ is ci.

(2) There is exist i, n ∈ N with n ≥ 1 and there is a finite sequence 〈τ1, . . . , τn〉
in T such that π(Fi) = n and such that

τ = Fi(τ1, . . . , τn).

Proof. As in the proof of Lemma 1.7, we let T be the subset of T whose elements
satisfy one of the above clauses. We observe that T satisfies the closure properties
of Definition 2.3. Consequently, T ⊆ T , as required.

The two conditions are mutually exclusive, as the first symbol in τ determines
which condition holds. ut

Lemma 2.6 If τ ∈ T, then no proper initial segment of τ is an element of T.

Proof. We proceed by induction on the length of τ ∈ T.
If τ is a term of length 1, then the only proper initial segment is the null

sequence, which by Lemma 2.5 is not an element of T.
Suppose that τ has length greater than 1 and assume the lemma for all terms

of length less than that of τ . By Lemma 2.5, τ is of the form Fi(τ1, . . . , τn).
Suppose that σ is a proper initial segment of τ such that σ ∈ T. As above, σ
is not the null sequence, so the first symbol in σ is Fi. By Lemma 2.5, σ must
have the form Fi(σ1, . . . , σn), where each σi belongs to T. But then σ1 and τ1
must be identical, since neither can be a proper initial segment of the other.
It follows by an induction up to n, that for each i, σi is equal to τi. But then
σ = τ , contradicting the choice of σ. Thus, τ has no proper initial segment in T,
as required. ut

Theorem 2.7 (Unique Readability for Terms) Suppose τ ∈ T . Then one
and only one of the following conditions holds.

(1) There is an i ∈ N greater than or equal to 1 such that τ is xi or τ is ci.

(2) There exist i, n ∈ N with n ≥ 1 and a finite sequence of terms 〈τ1, . . . , τn〉
such that π(Fi) = n and such that

τ = Fi(τ1, . . . , τn).

Further, in (2), the function symbol Fi and the finite sequence 〈τ1, . . . , τn〉 are
unique.

Proof. By Lemma 2.5, it will be sufficient to verify the uniqueness of the finite
sequence 〈τ1, . . . , τn〉. This follows as in the proof of Lemma 2.6. Suppose that τ
could be written as Fi(τ1, . . . , τn) and as Fj(σ1, . . . , σm). Then Fi and Fj both
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occur as the first symbol in τ , and hence are equal. Consequently, n = m = π(Fi).
Then τ1 and σ1 must also be equal, as neither can be a proper initial segment of
the other. By induction on i less than or equal to n, for each i, τi is equal to σi,
as required. ut

Example 2.8 If we allow ourselves to talk about the integers with the usual ad-
dition and multiplication, and allow ourselves a variable, a term is a polynomial.
Thus terms generalize the familiar notion of polynomials. ut

2.2 Formulas

Definition 2.9 The set of formulas, L, is the smallest set L of finite sequences
of symbols as above satisfying the following properties.

(1) Atomic Formulas:

(a) If Pi is a predicate symbol, n = π(Pi) is the arity of Pi and τ1, . . . , τn
are terms, then

Pi(τ1, . . . , τn)

is an element of L.

(b) If τ1 and τ2 are terms, then

(τ1 =̂ τ2)

is an element of L.

(2) Inductive Formulas:

(a) If ϕ ∈ L, then

(¬ϕ)

is an element of L

(b) If ϕ1 and ϕ2 are elements of L, then

(ϕ1 → ϕ2)

is an element of L

(c) If ϕ ∈ L and xi is a variable symbol, then

(∀xiϕ)

is an element of L. ut

As in the case of T, we will not repeat the argument to show that L is well
defined.
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2.3 Readability and subformulas
We will give an abbreviated proof that every formula in L is uniquely readable,
as stated in Theorem 2.12. As above, we proceed by proving a readability lemma,
a proper initial segment lemma, and then a uniqueness lemma.

Lemma 2.10 (Readability for Formulas) Suppose that ϕ is a formula.
Then one and only one of the following conditions holds.

(1) There exist i, n ∈ N with n ≥ 1 and a sequence of terms 〈τ1, . . . , τn〉 such
that n = π(Pi) and such that

ϕ = Pi(τ1, . . . , τn).

(2) There are terms τ1 and τ2 such that ϕ = (τ1 =̂ τ2).

(3) There is a formula ψ such that ϕ = (¬ψ).

(4) There are formulas ψ1 and ψ2 such that ϕ = (ψ1 → ψ2).

(5) There is a formula ψ and a variable xi such that ϕ = (∀xiψ).

The proof Lemma 2.10 is analogous to that of Lemma 1.7.

Lemma 2.11 If ϕ ∈ L, then no proper initial segment of ϕ is an element of L.

Proof. We consider the cases of Lemma 2.10.
Suppose that ϕ is of the form Pi(τ1 . . . τn) and ψ is a proper initial segment

of ϕ which also belongs to L. Then the first symbol in ψ is Pi and so ψ must
also be of the form Pi(σ1 . . . σn). But then τ1 must equal σ1, or they would be
a pair of distinct terms for which one is a proper initial segment of the other,
contradicting Lemma 2.6. It follows by induction on i less than or equal to n
that each σi is equal to τi, and hence that ϕ is equal to ψ.

The case when ϕ is an equality between terms can be analyzed similarly,
using Lemma 2.6.

The cases when ϕ is (¬ψ) or (ψ1 → ψ2) are analogous to the same cases in
the propositional case. See Lemma 1.8.

Finally, consider the case when ϕ is (∀xiϕ1). If ψ is an initial segment of ϕ,
then ψ must be of the form (∀xiψ1), as ϕ and ψ must have the same first three
symbols. But then induction applies to ϕ1, and ψ1 must equal ϕ1. It follows that
ϕ is equal to ψ. ut

Theorem 2.12 (Unique Readability for Formulas) Suppose that ϕ is a
formula. Then one and only one of the following conditions holds.

(1) There exist i, n ∈ N with n ≥ 1 and a sequence of terms 〈τ1, . . . , τn〉 such
that n = π(Pi) and such that

ϕ = Pi(τ1, . . . , τn).

(2) There are terms τ1 and τ2 such that ϕ = (τ1 =̂ τ2).
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(3) There is a formula ψ such that ϕ = (¬ψ).

(4) There are formulas ψ1 and ψ2 such that ϕ = (ψ1 → ψ2).

(5) There is a formula ψ and a variable xi such that ϕ = (∀xiψ).

Further, in each of the above cases; the terms, the finite sequence of terms, or
the subformulas which are mentioned in that case, are unique. ut

We leave the proof of Theorem 2.12 to the Exercises.
We define the relation ψ is a subformula of ϕ for formulas in L. We then

verify (just as we did for propositional formulas) that this definition captures
exactly the formulas which appear in the iterated decomposition of ϕ, as given by
Unique Readability for Formulas. Equivalently, this definition captures exactly
the formulas used to construct ϕ.

Definition 2.13 Suppose that ϕ is a formula. A formula ψ is a subformula of
ϕ if ψ is a block-subsequence of ϕ. (See Definition 1.10.) ut

Definition 2.14 Suppose that

~ψ = 〈ψ0, . . . , ψn〉

is a finite sequence of finite sequences. Then ~ψ is a formula-witness if for all
i ≤ n, one of the following hold.

(1) ψi is an atomic formula.

(2) For some j < i, ψi = (¬ψj).
(3) For some j1, j2 < i, ψi = (ψj1 → ψj2).

(4) For some j < i and for some k ∈ N, ψi = (∀xkψj). ut

Just as for the case for propositional formulas:

Lemma 2.15 Suppose that

~ψ = 〈ψ0, . . . , ψn〉

is a formula-witness. Then for all i ≤ n, ψi is a formula.

Proof. By induction on i ≤ n, this is immediate from the Definition 2.9. ut

Suppose ϕ is a finite sequence and ~ψ = 〈ψ1, . . . , ψn〉 is a formula-witness.

Then we say ~ψ is a formula-witness for ϕ if ϕ = ψn. Thus we have the following
lemma.

Lemma 2.16 Suppose ϕ is a finite sequence. Then the following are equivalent.

(1) ϕ is a formula.

(2) There is a formula-witness for ϕ.
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Proof. Let L∗ be the set of all finite sequences for which there is a formula-
witness for ϕ. Then L∗ satisfies the closure requirements of Definition 2.9 and
so by the minimality of the set of formulas, L ⊆ L∗.

Now suppose ϕ ∈ L∗. Let 〈ψ1, . . . , ψn〉 be a formula-witness for ϕ. It follows
easily by induction on i ≤ n that ψi is a formula for all 1 ≤ i ≤ n. Thus L∗ ⊆ L.
This proves the lemma. ut

Suppose ~s = 〈s0, . . . , sm〉 is a finite sequence. Then a finite sequence ~t is a
final segment of ~s if for some j ≤ m,

~t = 〈sj , . . . , sm〉.

If 0 < j then ~t is a proper final segment of ~s.
We complete the analysis of subformulas in Lemma 2.19. We do not actually

need this lemma, but it does answer the natural questions which arise about
subformulas and block-subsequences etc.

The proof of Lemma 2.19 requires the following variations of Lemma 2.6 and
Lemma 2.11. We leave the proofs of these two lemmas to the exercises.

Note that in the case of final segments of formulas, the conclusion refers to
both terms and formulas. The difference (between the case of initial segments
versus final segments) of course is that it is an immediate consequence of Read-
ability for Formulas that an initial segment of a formula is not a term.

Lemma 2.17 Suppose that τ is a term and that σ is a proper final segment of
τ . Then σ is not a term. ut

Lemma 2.18 Suppose that ϕ is a formula and that σ is a proper final segment
of ϕ. Then σ is not a formula and σ is not a term. ut

Putting everything together we obtain the following.

Lemma 2.19 Suppose ϕ is a formula and that ψ is a formula. Then the follow-
ing are equivalent.

(1) ψ is a subformula of ϕ.

(2) Suppose 〈ψ1, . . . , ψn〉 is a formula-witness for ϕ. Then ψ = ψk for some k
where 1 ≤ k ≤ n.

Proof. (2) implies (1) is immediate from the definitions and so it suffices to prove
that (1) implies (2).

Suppose ψ is a subformula of ϕ and let 〈ψ1, . . . , ψn〉 is a formula-witness for
ϕ. Let k ≤ n be least such that ψ is a subformula of ψk. It suffices to show that
ψk = ψ.

Case 1: ψk is an atomic formula.

There are two subcases. First suppose that ψk = Pm(τ1, . . . , τM ). Then since
ψ is a formula, by Readability For Formulas, Lemma 2.10, ψ must be an initial
segment of ψk and so by Lemma 2.11, ψ = ψk.
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Now suppose that ψk = (τ1=̂τ2). Then by Readability for Formulas again,
there must exist terms σ1, σ2 such that ψ = (σ1=̂σ2). Thus either σ1 is a final
segment of τ1 or τ1 is a final segment of σ1. Therefore σ1 = τ1 by Lemma 2.18.

Similarly, either σ2 is an initial segment of τ2 or τ2 is an initial segment of
σ2. Therefore by Lemma 2.11, σ2 = τ2. Thus ψk = ψ.

For the remaining cases we have reduced to the case that ψk is an inductive
formula.

Case 2: ψk = (∀xmψj) for some j < k.

Since ψ is not a subformula of ψj , either ψ is an initial segment of ψk, or ψ is
a final segment of ψk. In either case, by Lemma 2.11 and Lemma 2.18, ψ = ψk.

Case 3: ψk = (¬ψj) for some j < k.

Then again, either ψ is an initial segment of ψk, or ψ is a final segment of
ψk. In either case, by Lemma 2.11 and Lemma 2.18, ψ = ψk.

Case 4: ψk = (ψj1 → ψj2) for some j1, j2 < k.

There are three subcases.

Subcase 4.1: ψ is an initial segment of 〈(〉+ ψj1 .

Note that ψ must be a proper initial segment of 〈(〉+ψj1 , since otherwise ψj1
is a proper final segment of ψ, which is impossible by Lemma 2.18. Therefore
the first symbol of ψ is ( and so ψ is an inductive formula. The first symbol of
ψj1 cannot be ∀ and so either ψ = (¬α) for some formula α, or ψ = (α→ β) for
some formulas α and β. But in either case α is a proper initial segment of ψj1 ,
which is a contradiction.

Case 4.2: ψ is a final segment of ψj2 + 〈)〉.
Note that ψ must be a proper final initial segment of ψj2 +〈)〉 since otherwise

ψj2 a proper initial segment of ψ which is impossible by Lemma 2.11. Therefore
the last symbol of ψ is ). If ψ is an inductive formula then there must be a formula
α such that α is a proper final segment of ψj2 which contradicts Lemma 2.18.
Therefore ψ is an atomic formula. But then there is a term τ such that τ is a
proper final segment of ψj2 which again contradicts Lemma 2.18.

Case 4.3: ψ is not a block-subsequence of 〈(〉 + ψj1 , and ψ is not a block-
subsequence of ψj2 + 〈)〉.

Therefore, there are finite sequences s, t such that

• ψk = s+ ψ + t,

• s is an initial segment of 〈(〉+ ψj1 ,

• t is final segment of ψj2 + 〈)〉.

But then by arguing as in the proof of Lemma 1.16.5, there is a formula
θ = (θ1 → θ2) such that θ is a subformula of ψ and such that:

• Either θ1 is a final segment of ψj1 or ψj1 is a final segment of θ1,

• Either θ2 is an initial segment of ψj2 or ψj2 is an initial segment of θ2.

Thus by Lemma 2.11 and Lemma 2.18, θ1 = ψj1 and θ2 = ψj2 . But this
implies that ψ = (ψj1 → ψj2) = ψk. ut
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2.3.1 Exercises
(1) Prove Theorem 2.12.

(2) Prove Lemma 2.17.

(3) Prove Lemma 2.18.

(4) Consider the set of sequences defined as in Definition 2.9 except that the
last clause is changed to read, “If ϕ ∈ L and xi is a variable symbol, then
∀xiϕ is an element of L” in which the parentheses are omitted.

(a) Is this set readable?

(b) Is this set uniquely readable?

(5) Consider the set of sequences defined as in Definition 2.9 except that the
fourth clause is changed to read, “If ϕ1 and ϕ2 are elements of L, then
ϕ1 → ϕ2 is an element of L” in which the parentheses are omitted.

(a) Is this set readable?

(b) Is this set uniquely readable?

Hint: For (a), show that a proper initial segment of ϕ is not a “formula” if
either ϕ = (∀xkψ) or ϕ = (¬ψ), by induction on the length of ϕ.

2.4 Free variables, bound variables
Suppose that ϕ is a formula and that xi is a variable. Then each occurrence of
∀xi in ϕ defines a unique subformula of ϕ. This is the content of the next lemma.

Lemma 2.20 Suppose that ϕ is a formula, xi is a variable, s and t are finite
sequences, and that

ϕ = s+ 〈(,∀, xi〉+ t.

Then there is a unique formula ψ such that s+ ψ is an initial segment of ϕ.

Proof. Note that the uniqueness of ψ follows by observing that if there were
two such formulas, then one would be a proper initial segment of the other and
contradict Lemma 2.11.

We prove the existence claims of Lemma 2.20 by induction on the length of
ϕ. There are no formulas of length 1, and so the lemma is true of all length
1 formulas on trivial grounds. Now assume the lemma is true of every formula
which is shorter than ϕ. By Readability for Formulas, Lemma 2.10, we can
analyze ϕ by considering the various cases of that lemma.

If ϕ is atomic, then ϕ does not contain an occurrence of 〈(,∀, xi〉, and again
the claim is true on trivial grounds.

If ϕ is (¬θ), then any occurrence of 〈(,∀, xi〉 in ϕ is also one in θ and it follows
from the induction hypothesis that there ψ exists as required.

Similarly, if ϕ is (ψ1 → ψ2) and there is an occurrence of 〈(,∀, xi〉 in ϕ, then
it must be contained completely in ψ1 or in ψ2 (there is no → in 〈(,∀, xi〉) and
so the induction hypothesis yields ψ.
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Finally, if ϕ is (∀xjϕ1), then either the occurrence of 〈(,∀, xi〉 is as an initial
segment of ϕ, s and t are each the empty sequence, and the formula ϕ is the
desired ψ, or the occurrence of 〈(,∀, xi〉 is entirely contained in ϕ1 and the
induction hypothesis again yields ψ. ut

Suppose ϕ is a formula then by Unique Readability for Formulas, Theo-
rem 2.12, every occurrence of 〈∀, xi〉 as a block-subsequence of ϕ must be imme-
diately preceded by an occurrence of the symbol (.

This suggests the following definition.

Definition 2.21 Suppose that ϕ = 〈a1, . . . , an〉 is a formula and xi is a variable.

(1) An occurrence of ∀xi in ϕ is an occurrence of 〈∀, xi〉 in ϕ (as a block-
subsequence).

(2) The scope of a particular occurrence of ∀xi in ϕ is the unique interval [j1, j2]
with the following properties.

(a) [j1 + 1, j1 + 2] is the given occurrence of ∀xi.
(b) 〈aj1 , . . . , aj2〉 is a formula. ut

Example 2.22 (1) The scope of the first occurrence of ∀x1 in the formula

((∀x1(x1=̂x2))→ (∀x1ψ))

is the block-subsequence which contains that occurrence and which gives
the subformula (∀x1(x1=̂x2)).

(2) The scope of the second occurrence of ∀x1 in the formula

((∀x1(x1=̂x2))→ (∀x1ψ))

is the block-subsequence which contains that occurrence and gives the sub-
formula (∀x1ψ). ut

Definition 2.23 Suppose that ϕ is a formula and that xi is a variable which
occurs in ϕ.

(1) An occurrence of xi in ϕ is free if and only if it is not within the scope of
any occurrence of ∀xi in ϕ. Otherwise, the occurrence is bound.

(2) xi is a free variable if and only if there is a free occurrence of xi in ϕ.

(3) xi is a bound variable of ϕ if and only if xi occurs in ϕ and is not a free
variable of ϕ. ut

Example 2.24 Consider the formula

ϕ = ((∀x1(x1=̂x2))→ (∀x2(x2=̂x1)))

(1) The first two occurrences of x1 are bound and the third occurrence of x1 is
free.
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(2) The first occurrence x2 is free and the other two occurrences of x2 are
bound. ut

Definition 2.25 (1) Suppose that τ is a term and

x̄ = {xn0
, . . . , xnk

}

is a finite set of variables where n0 < n1 < · · · < xnk
. We write τ(x̄) to

indicate that all the variables of τ are included in the set {xn0 , . . . , xnk
}.

(2) Suppose that ϕ is a formula and

x̄ = {xn0 , . . . , xnk
}

is a finite set of variables with n0 < n1 < · · · < xnk
. We write ϕ(x̄) to

indicate that all the free variables of ϕ are included in the set {xn0 , . . . , xnk
}.

Another notation we will occasionally use (and this is a standard notation)
is ϕ[x̄], where x̄ is a finite set of variables, to indicate that every free variable
of ϕ is included in the set x̄. ut

Formulas with no free variables are particularly interesting especially when
defining as we shall the notion of satisfiability.

Definition 2.26 A formula ϕ is a sentence if and only if the sentence ϕ has no
free variables. ut

Definition 2.27 A set of sentences is a theory. ut

2.5 Substitution
Definition 2.28 (1) Suppose that τ is a term,

x̄ = {xn0
, . . . , xnk

}

is a finite set of variables with n0 < n1 < · · · < xnk
, and that

~τ = 〈τ0, . . . , τk〉,

sequence of terms ~τ (with |~x| = |~τ |). We write τ(x̄;~τ) to indicate the term
obtained by simultaneously substituting, for each i ≤ k, the term τi for each
occurrence of xni in τ .

(2) Suppose that ϕ is a formula,

x̄ = {xn0 , . . . , xnk
}

is a finite set of variables with n0 < n1 < · · · < xnk
, and that

~τ = 〈τ0, . . . , τk〉,

sequence of terms ~τ (with |x̄| = |~τ |). We write ϕ(x̄;~τ) to indicate the formula
obtained by simultaneously substituting, for each i ≤ k, the term τi for each
free occurrence of xni

in τ .
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We could have chosen to write τ(~x, ~τ) where we require that the finite se-
quence ~x have the special form indicated,

~x = 〈xn0 , . . . , xnk
〉

where the ordering of the variables in the sequence agrees with the natural or-
dering of the variables as given by their indicies. Of course such finite sequences
~x are uniquely specified by simply the finite set x̄ of variables which occur in
~x. Thus using the notation for example, ϕ(x̄;~τ), instead of ϕ(~x;~τ) is just an
arbitrary choice.

We actually have more freedom than our definition indicates. For example,
we may have a formula ϕ(x̄) where

x̄ = {x0, x1}

and wish to only substitute instances of x1 with a term τ .
We indicate this action by writing ϕ(x1; τ) instead of writing

ϕ({x0, x1}; 〈x0, τ〉)

which of course expresses exactly this.

Lemma 2.29 (1) For any term τ(x̄) and sequence of terms ~τ , where |x̄| = |~τ |,
τ(x̄;~τ) is a term.

(2) For any formula ϕ(x̄) and for any sequence of terms ~τ , where |x̄| = |~τ |,
ϕ(x̄;~τ) is a formula.

(3) For any formula ϕ(x̄) and for any sequence of constants ~c , where |x̄| = |~c|,
ϕ(x̄;~c) is a sentence.

Proof. The proof of (1) is by induction of the length of τ . Having proved (1) for
all terms τ and for all sequences of terms ~τ , one proves (2) by indiction on the
length of the formula ϕ.

Finally having proved (2) for all formulas ϕ and for all sequences of terms ~τ ,
(3) follows immediately.

The details are left to the reader since at this stage we have proved many
similar claims by analogous arguments. ut



3

First order logic—semantics

3.1 Formulas and structures

Suppose that A is an alphabet. Thus A is simply a subset (possibly empty) of
the set

{ci, Fi, Pi | i ∈ N}

of all constant, function, and predicate symbols.

Definition 3.1 A finite sequence ϕ is an LA-formula if and only if the following
hold.

(1) ϕ is a formula.

(2) The constant, predicate, and function symbols occurring in ϕ are all in the
alphabet, A. ut

Definition 3.2 An LA-structure (or simply a model) is a pair (M, I) as follows.

(1) M 6= ∅; this set is referred to as the structure’s universe

(2) I, called the interpretation function, is a function with domain A such that
for each i ∈ N the following conditions hold:

(a) If ci ∈ A then I(ci) ∈M ;

(b) if Fi ∈ A then I(Fi) is a function

I(Fi) : Mn →M

where n = π(Fi);

(c) if Pi ∈ A then

I(Pi) ⊆Mn

where n = π(Pi). ut

Often, when A is small, we will opt to represent (M, I) as the interpretation of
A under I. For instance, suppose M = R and A = {c1, c2, F1, F2, P1}. We can
say (M, I) = (R, I(c1), (c2), (F1), (F2), (P1)) = (R, 0, 1,+,×, <), so I interprets
the real numbers as an ordered field.
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Remark 3.3 So far, all we have discussed only symbols that can be written on
paper, or perhaps a chalkboard. The interpretation function assigns meaning to
these symbols; the reader may realize that this is precisely what they have been
doing throughout most of their mathematical career. It is how we recognize the
numerals “5” and “V” as both referring to five, or both “ ·” or “×” as references
to multiplication. ut

Let B be a subset of A and let (M , I) be an LA-structure. We then define
the LB-reduct of (M, I):

Definition 3.4 The LB-reduct of an LA-structure is a pair (M, I �LB) where
M is the same nonempty universe and I �LB is the restriction of the original
interpretation function I to the language LB. ut

Example 3.5 Consider the following structure, (N, 0, 1,+, ·, <), the set of natu-
ral numbers with addition, multiplication, and the less-than order defined on it.
Here, our alphabet consists of two constant symbols, interpreted by elements 0
and 1, two function symbols, interpreted by operations + and ·, and one binary
predicate symbol, interpreted by relation <.

Now consider the subset of the alphabet consisting of just the one predicate
symbol. Then the corresponding reduct of our original structure is the set of
natural numbers with just the less-than order defined. ut

3.2 The satisfaction relation

3.2.1 Interpreting terms
Definition 3.6 Suppose that M = (M, I) is an LA-structure. A function ν is
an M-assignment if ν is a map from {xi : i ∈ N} to M . ut

Thus, anM-assignment is simply a function which associates to each variable
symbol an element of the universe of the structure M.

Readers may already be familiar with this action. For example, if one has the
polynomial x2 + 1, and a ν assignment such that ν(x) = 2, then ν(x2 + 1) = 5

Definition 3.7 Suppose that M = (M, I) is an LA-structure and that ν is an
M-assignment. We would like all terms to refer to elements of M , so we define
a function

ν : {τ : τ is an LA-term} →M

by induction on the length of LA-terms as follows.

Base step. If τ has length 1, then we define ν(τ) by whichever equation applies.

ν(〈xi〉) = ν(xi)

ν(〈ci〉) = I(ci)
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Induction step. For a finite sequence of terms ~τ , then

ν(~τ) = ν(〈τ1, . . . , τn〉) = 〈ν(τ1), . . . , ν(τn)〉

If τ = Fi(~τ), where |~τ | = π(Fi), then

ν(τ) = I(Fi)(ν(~τ)).

By unique readability for terms, ν is well defined.

Definition 3.8 Suppose that M is an LA-structure, τ is an LA-term, ν and µ
are M-assignments, and x̄ = {xn0 , xn2 . . . xnk

} is a finite set of variables.

• Then ν and µ agree on x̄ if and only if for all i ≤ k, ν(xni) = µ(xni). Denote
this as ν|x̄ = µ|x̄.

• Furthermore, ν and µ agree on the variables of τ(~x) if and only if
ν(~x) = µ(~x).

• Similarly, ν and µ agree on the free variables of ϕ(~x) if and only if
ν(~x) = µ(~x).

Lemma 3.9 Consider an LA-structure M = (M, I) and an LA-term with free
variables τ(~x). Suppose that ν and µ are M-assignments such that ν(~x) = µ(~x).
Then µ(τ) = ν(τ)

Proof. We prove Lemma 3.9 by induction on the length of τ . If τ has length 1,
then by Theorem 2.7, unique readability for terms, there is an i such that either
τ is 〈xi〉 and µ(τ) = µ(xi) = ν(xi) = ν(τ) or τ is 〈ci〉 and µ(τ) = I(ci) = ν(τ).
In either case, the lemma is verified. Now, suppose that τ has length greater
than 1 and assume the lemma for all terms which are shorter than τ . Again
by Theorem 2.7, τ has the form Fi(~τ), and we use the inductive hypothesis as
follows.

µ(τ) = µ(Fi(~τ))

= I(Fi)(µ(~τ))

= I(Fi)(ν(~τ)) (by induction)

= ν(Fi(~τ))

= ν(τ)

Thus, µ(τ) = ν(τ) as required. ut

Definition 3.10 Suppose that M = (M, I) is an LA-structure and ν is an
M-assignment. We define the satisfaction relation,

(M, ν) � ϕ

by induction on the length of ϕ as follows.
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Atomic cases. Suppose that ϕ is an atomic formula.

(1) Suppose that ~τ is a sequence of terms, and ϕ = Pi(~τ) where |~τ | = π(Pi).
Then

(M, ν) � ϕ if and only if ν(~τ) ∈ I(Pi).

That is, predicates are satisfied by the elements it contains.

(2) Suppose that ϕ = (σ =̂ τ) where σ and τ are terms. Then

(M, ν) � ϕ if and only if ν(σ) = ν(τ).

That is, a statement of equality is satisfied if and only if two terms are
interpreted as the same element of M.

Inductive cases. Suppose that ϕ is not an atomic formula.

(3) Suppose that ϕ = (¬ψ). Then

(M, ν) � ϕ if and only if (M, ν) 6� ψ.

Here, we use (M, ν) 6� ψ to indicate that it is not the case that
(M, ν) � ψ.

(4) Suppose that ϕ = (ψ1 → ψ2). Then

(M, ν) � ϕ if and only if

either(M, ν) 6� ψ1 or (M, ν) � ψ2.

(5) Suppose that ϕ = (∀xiψ). Then (M, ν) � ϕ if and only if for all
M-assignments µ, if ν and µ agree on the free variables of ϕ, then
(M, µ) � ψ. Since xi is bound in ϕ, the values of these µ’s on xi range
over all of M .

By Theorem 2.12, unique readability for formulas, (M, ν) � ϕ is well defined
for allM-assignments ν and LA-formulas ϕ. We will sometimes say that (M, ν)
satisfies ϕ to indicate (M, ν) � ϕ.

Example 3.11 Say we are talking about the integers with the usual or-
dering, and have constants for all the integers. Refer to this structure as
(Z, 0, 1,−1, 2, . . . , <). While “ < ” is nothing more than a symbol, I(<) is a
subset of Z× Z, a set of ordered pairs (a, b) where (a, b) ∈ I(<) if and only if a
is less than b. Predicates can be interpreted as subsets of the underlying set, or
of the finite Cartesian product of a set, and satisfaction of a predicate is defined
by membership. ut

Recall that if x̄ is a finite set of variables then ϕ(x̄) indicates that ϕ is a
formula such that for all i ∈ N, if xi is a free variable of ϕ then xi is in x̄.

Theorem 3.12 Suppose that M = (M, I) is an LA-structure, ϕ(x̄) is an LA-
formula, and ν and µ are M-assignments such that ν|x̄ = µ|x̄. Then

(M, ν) � ϕ ↔ (M, µ) � ϕ.
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Proof. We proceed by induction on the length of ϕ. We now suppose that the
length of ϕ is n and that the theorem holds for all LA-formulas of length less
than n. To be precise, we can assume the following.

Induction hypothesis. For all ψ(~x), ν1, and µ1, if ψ(~x) is an LA-formula
of length less than the length of ϕ, ν1 and µ1 are M-assignments such that
ν1|x̄ = µ1|x̄ , then (M, ν1) � ψ if and only if (M, µ1) � ψ.

We begin with the case that ϕ is an atomic formula (in which case the in-
duction hypothesis is vacuously true).

Atomic cases. Suppose ϕ is an atomic formula.

There are two further subcases.
Predicate Case: ϕ = Pi(~τ).

Then every variable in ϕ is free. By hypothesis, ν(~τ) = µ(~τ). Thus

(M, ν) � Pi(~τ) ↔ ν(~τ) ∈ I(Pi) ↔ µ(~τ) ∈ I(Pi) ↔ (M, µ) � Pi(~τ);

by definition, Lemma 3.9, and definition, respectively. It follows that

(M, ν) � ϕ ↔ (M, µ) � ϕ.

Equality Case: ϕ = (τ =̂σ), where σ and τ are terms.

Again, every variable in ϕ is free. By Lemma 3.9, ν(τ) = µ(τ) and
ν(σ) = µ(σ). It follows from the definition of satisfaction as above that
(M, ν) � (τ =̂σ) if and only if (M, µ) � (τ =̂σ).

Inductive cases. There are three inductive cases, negations, implications,
and quantifications.

Negation: ϕ = (¬ψ).

Then ϕ and ψ have the same free variables, and so we may apply the induction
hypotheses as follows.

(M, ν) � ϕ ↔ (M, ν) 6� ψ (by definition)

↔ (M, µ) 6� ψ (by induction)

↔ (M, µ) � ϕ. (by definition)

Implication: ϕ = (ψ1 → ψ2).

In this case, the free variables of ϕ are the free variables of ψ1 or ψ2, and by
the induction hypothesis, (M, ν) � ψi if and only if (M, µ) � ψi.

By definition, (M, ν) � ϕ if and only if, either (M, ν) 6� ψ1 or (M, ν) � ψ2,
and similarly for µ. By the induction hypothesis, (M, ν) � ϕ if and only if
(M, µ) � ϕ.

Quantification: ϕ = (∀xiψ).

By assumption, µ|x̄ = ν|x̄. By definition, (M, ν) � ϕ if and only if for all
M-assignments ρ, ρ|x̄ = ν|x̄ implies (M, ρ) � ψ, and similarly for µ. There-
fore (trivially) for all M-assignments ρ, ρ|x̄ = µ|x̄ ↔ ρ|x̄ = ν|x̄. But then,
(M, ν) � ϕ ↔ (M, µ) � ϕ
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This completes the proof of the theorem. ut

Lemma 3.13 If ϕ is a sentence, the satisfaction relation is independent of M-
assignments.

Proof. This follows from from Lemma 3.9 and Theorem 3.12. If ϕ is a sentence,
then satisfiability is determined solely by I, and not any ν, as ϕ has no free
variables. ut

Lemma 3.13 allows for two notational conventions which we shall frequently
use from this point on. Suppose that

M = (M, I)

is an LA-structure and that ϕ is an LA-formula.
First, if ϕ is a sentence then we write either

• M � ϕ.

• (M, I) � ϕ;

to indicate (M, ν) � ϕ for some (equivalently, any) M-assignment ν.
Second, we write

M � ϕ[a0, . . . , an]

to indicate the following.

• The free variables of ϕ are included in the set {xi | i ≤ n}.
• {ai | i ≤ n} ⊆M .

• Suppose ν is an M-assignment such that ν(xi) = ai for all i ≤ n. Then

(M, ν) � ϕ.

That latter differs slightly from our convention that ϕ(xn0
, . . . , xnk

) indicates
that ϕ is a formula with all its free variables included in the set {xni

| i ≤ k}.
The reason of course is that this is unambiguous whereas if, for example, the

only free variable of ϕ is say x5 and a ∈M , then the notation

M � ϕ[a]

is potentially ambiguous; it could indicate

(M, ν) � ϕ

for any (or some) M-assignment ν such that ν(x5) = a, or it could indicate

(M, ν) � ϕ

for any (or some) M-assignment ν such that ν(x0) = a.
But in general these two assertions are very different assertions.
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3.3 Substitution and the satisfaction relation
This section formalizes the relationship between the syntactic action of substitu-
tion with the semantic notion of satisfaction. We shall use the following notation.
Suppose M = (M, I) is an LA-structure and ν is an M-assignment.

Definition 3.14 (1) Suppose that M = (M, I) is an LA-structure, τ = τ(x̄)
is an LA-term, and that

x̄ = {xn0 , . . . , xnk
}.

Suppose ~a = 〈a0, . . . , ak〉 is a sequence of (not necessarily distinct) elements
of M . Then

τ [~a]

indicates ν(τ), where ν is any M-assignment such that ν(xni
) = ai, for

i = 0, . . . , k.

(2) Suppose M = (M, I) is an LA-structure, ϕ = ϕ(x̄) is an LA-formula, and
that

x̄ = {xn0 , . . . , xnk
}.

Suppose ~a = 〈a0, . . . , ak〉 is a sequence of (not necessarily distinct) elements
of M . Then

M � ϕ[~a]

indicates that

(M, ν) � ϕ,

where ν is any M-assignment such that ν(xni
) = ai, for i = 0, . . . , k.

The definitions of τ [~a] and of the relation M � ϕ[~a] given above are well
defined, as by Lemma 3.5 and Theorem 3.7, they depend only on ν|x̄.

Remark 3.15 Strictly speaking, the relation

M � ϕ[~a]

depends on the pair (ϕ, x̄). This differes from writing

M � ϕ[a0, . . . , an]

which by our convention (see page 48) is really

M � ϕ[~a]

where ~a = 〈a0, . . . , an〉 but only in the context of the pair (ϕ, x̄) where

x̄ = {x0, . . . , xn}.

After sufficient experience with these notions, these kind of notational distinc-
tions are usually ignored. But at this introductory stage, that seems unwise. ut
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Example 3.16 We can think of ϕ(x1; τ) as saying that ϕ holds of τ . However,
blind substitution can have unintended results. Consider the following formula
ϕ.

ϕ = ϕ(x1) = (∀x2(x1 =̂x2))

Now, we substitute x2 for x1.

ϕ(x1;x2) = (∀x2(x2 =̂x2))

There is a substantial difference between the two formulas. Every structure sat-
isfies ϕ(x1;x2), but for every structure M and every a ∈ M , M � ϕ[a] if and
only if M = {a}. ut

Definition 3.17 Suppose ϕ is a formula, xi is a free variable of ϕ, and τ is a
term. The term τ is free for xi in ϕ if for each variable xj occurring in τ , no free
occurrence of xi in ϕ is within the scope of an occurrence of ∀xj . ut

The penultimate theorem of this chapter establishes the commutative nature
of evaluating along with substituting.

Theorem 3.18 (Substitution) Let M = (M, I) be an LA-structure and ν be
an M-assignment.

(1) Suppose that τ = τ(x̄) is an LA-term and that

x̄ = {xn0 , . . . , xnk
}.

Suppose ~σ = 〈σ0, . . . , σk〉 is a sequence of (not necessarily distinct) LA-
terms. Then

ν(τ(x̄;~σ)) = τ [~b],

where ~b = 〈ν(σ0) . . . ν(σk)〉.
(2) Suppose that ϕ = ϕ(x̄) is an LA-formula, and that

x̄ = {xn0
, . . . , xnk

}.

Suppose ~σ = 〈σ0, . . . , σk〉 is a sequence of LA-terms, possibly not all distinct,
and that that σi is free for xni for all i ≤ k. Then

(M, ν) � ϕ(x̄;~σ) ↔ M � ϕ[~b],

where ~b = 〈ν(σ0) . . . ν(σk)〉.

Proof. The two parts are proven by induction on the lengths of τ and ϕ, respec-
tively. We leave the proof of the first to the reader and present the proof of the
second.
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So, we assume that (1) holds and prove (2) by induction on the length of the
formula ϕ.

Atomic Case: For every atomic formula ϕ, (2) follows directly from the
definitions and (1).

Inductive Case: There are three cases to consider: negation, implication,
and quantification.

Negation: ϕ = (¬ψ).

The free variables of ϕ are exactly the same as those of ψ, and for each i ≤ k,
σi is free for xni in ψ. Thus,

ϕ(x̄;~σ) = (¬ψ(x̄;~τ)).

By the induction hypothesis,

(M, ν) � ψ(x̄;~σ) ↔ M � ψ[~b].

But then by definition of the satisfaction of a negation,

(M, ν) � ϕ(x̄;~σ) ↔ M � ϕ[~b].

Implication: ϕ = (ψ1 → ψ2).

In this case, the free variables of ϕ are the free variables of ψ1 or ψ2, Further,
ϕ(x̄;~σ) = (ψ1(x̄;~σ) → ψ2(x̄;~σ)). We may apply the induction hypothesis to
obtain the following equivalences.

(M, ν) � ψ1(x̄;~σ) ↔ M � ψ1[~b]

(M, ν) � ψ2(x̄;~σ) ↔ M � ψ2[~b]

By definition, (M, ν) � ϕ(x̄;~σ) ↔ either (M, ν) 6� ψ1(x̄;~σ) or (M, ν) � ψ2(x̄;~σ).

Similarly, M � ϕ[~b] ↔ either M 6� ψ1[~b] or M � ψ2[~b].
Thus, we have the required equivalence:

(M, ν) � ϕ(x̄;~σ) ↔ M � ϕ[~b]

The final case inductive case is quantification.
Quantification: ϕ = (∀xmψ).

We can reduce to the case that xm occurs in x̄ = {xn0 , . . . , xnk
} by just

adding if necessary, xm to the set x̄. The reason of couse is that assumption in
(2) is only that the free variables of ϕ are included in the set x̄, not that every
variable in the set x̄ is a free variable of the formula ϕ.

Further we can further reduce to the case that σi = xm where ni = m in
which case

ϕ(x̄;~σ) = (∀xmψ(x̄;~σ)).

We can do this because xm is not a free variable of ϕ and so this change does
not change either ϕ(x̄;~σ) or whether M � ϕ[~b].
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Note that for all i ≤ k, if ni 6= m then no free occurrence of xni in ψ is within
the scope of any occurrence of ∀xj in ψ for any variable xj which occurs in σi.
This is because the same is true for ϕ by assumption. If ni = m then again (and
now it is trivial since we have set σi = xm) no free occurrence of xni

in ψ within
the scope of any occurrence of ∀xj in ψ for any variable xj which occurs in σi.
Therefore, we can apply the induction hypothesis to ψ(x̄;~σ) and we also have
that:

ϕ(x̄, ~σ) = (∀xmψ(x̄, ~σ).

By the basic theorem on page 46, Theorem 3.12, (M, ν) satisfies ϕ(x̄;~σ) if
and only if Condition A holds.

Condition A. For all M-assignments µ, if µ and ν agree on the free variables
of ϕ(x̄;~σ), then

(M, µ) � ψ(x̄;~σ).

Now, we can apply the inductive hypothesis in the conclusion of Condition A
and see that it is equivalent to Condition B.

Condition B. For all M-assignments µ, if µ and ν agree on the free variables
of ϕ(x̄;~σ), then

M � ψ[~b]

since necessarily ~b = 〈µ(σ0), . . . , µ(σk)〉.

We next show B is equivalent to the following one, Condition C.

Condition C. For allM-assignments ρ, if for each i ≤ k such that xni appears
freely in ϕ, ρ(xni

) = ν(σi), then (M, ρ) � ψ

B→ C : Suppose that ρ is anM-assignment such that for each i ≤ k, if xni

occurs freely in ϕ then ρ(xni) = ν(σi). Let µρ be the M-assignment defined as
follows.

µρ(xj) =

{
ν(xj), if xj occurs freely in ϕ(x̄;~σ);

ρ(xj), otherwise.

Thus µρ and ν agree on the free variables of ϕ(x̄;~σ). Therefore by B,

M � ψ[~b]

since necessarily ~b = 〈µρ(σ0), . . . , µρ(σk)〉. For each i ≤ k, σi is free for xni
in the

formula ϕ. Thus for each i ≤ k, if xni is a free variable of ϕ then every variable
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occurring in σi is a free variable of ϕ(x̄;~σ). Therefore by (1), for each i ≤ k, if
xni is a free variable of ϕ then

µρ(σi) = ν(σi) = ρ(xni).

Therefore since M � ψ[~b],

(M, ρ) � ψ

as required.
C→ B : Suppose that µ is anM-assignment which agrees with ν on the free

variables of ϕ(x̄;~σ). Define ρµ as follows.

ρµ(xj) =

{
µ(σi), if j = ni and xni

occurs freely in ϕ;

µ(xj), otherwise.

By definition of ρµ, for each i ≤ k, if xni
is a free variable of ϕ then

ρµ(xni
) = µ(σni

).

For each i ≤ k, if xni
is a free variable of ϕ then, since σi is free for xni

in ϕ,
every variable of σi is a free variable of ψ(x̄;~σ). Therefore for all i ≤ k, if xni is
a free variable of ϕ then

µ(σi) = ν(σi),

since µ is anM-assignment which agrees with ν on the free variables of ϕ(x̄;~σ),
and hence on all the variables occurring in σi.

Therefore by C, (M, ρµ) � ψ. Finally, for all i ≤ k, if xni
is a free variable of

ϕ or if ni = m, then

µ(σi) = ν(σi);

Thus for all i ≤ k, if xni
is a free variable of ψ then

µ(σi) = ν(σi);

Therefore by Theorem 3.12, necessarily M � ψ[~b], as required.
This finishes the proof that B and C are equivalent.
By Theorem 3.12, and since

~b = 〈ν(σ0) . . . ν(σk)〉,

C is equivalent to M � ϕ[~b]. Therefore, we have the desired equivalence:

(M, ν) � ϕ(x̄;~σ) ↔ M � ϕ[~b]

This completes the final case (and hence the proof). ut
Finally we end this chapter with the theorem that connects the satisfaction

relation with the interpretation of the constants. This theorem shows that by
substituting variables for constants, truth in a structure under an assignment to
variables can be reduced to ignoring the interpretation function of the structure
on the constants. The precise formulation obscures the simple idea.

Theorem 3.19 is an easy consequence of Theorem 3.18.
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Theorem 3.19 LetM = (M, I) be an LA-structure and ν be anM-assignment.
Suppose ϕ is an LA formula and 〈cn1 , . . . , cnk

〉 is the increasing enumeration
(by index) of the constants occurring in ϕ. Let m be large enough so that all the
variables occurring in ϕ are contained in the set {xi | i < m}.

Let ϕ̂ be the LA-formula obtained by substituting xm+i for all occurrences of
cni in ϕ, for all i = 1, . . . , k.

Suppose M = (M, I) is an LA-structure and ν is an M-assignment. Let ν̂
be the M-assignment where

ν̂(xj) =

{
ν(xj), if xj 6= xm+i for any i = 1, . . . , k;

I(cni
)), if xj = xm+i for some i = 1, . . . , k.

Then (M, ν) � ϕ if and only if (M, ν̂) � ϕ̂. ut

Definition 3.20 Suppose that ϕ and ψ are LA-formulas. Then ϕ and ψ are logi-
cally equivalent if and only if f for all LA-structuresM and for allM-assignments
ν,

(M, ν) � ϕ ↔ (M, ν) � ψ ut

We are only concerned with formulas up to logical equivalence.

Lemma 3.21 Suppose that ϕ is an LA-formula. Then there is an LA-formula
ψ such that the following hold.

(1) ϕ and ψ are logically equivalent.

(2) ϕ and ψ have the same free variables.

(3) For each free variable xi of ψ, ψ has no bound occurrences of xi.

Proof. Choose n ∈ N large enough such that all the variables which occur in ϕ
are included in the set {x0, . . . , xn}. Let ψ be the formula where for each i ≤ n,
every bound occurrence of xi in ϕ is replaced by xn+1+i. Then ψ has the required
properties and the details are left to the exercises. ut

Definition 3.22 Suppose that ϕ is an LA-formula. Then ϕ is logically valid if
and only if

(M, ν) � ϕ

for all LA-structures M and all M-assignments ν. ut

Suppose A is an alphabet which contains at least one function symbol, or
which contains a predicate symbol Pi such that π(Pi) > 1. Then there is an LA-
formula ϕ such that ϕ is not logically valid but such that for all LA-structures
M = (M, I), if M is finite then

(M, ν) � ϕ

for allM-assignments ν. The case where A contains a function symbol is in the
exercises below (problem 4).
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This seems to suggest that the problem of determining whether or not an
LA-formula ϕ is logically valid is intrinsically a very hard problem.

3.3.1 Exercises
(1) Let A be an alphabet with one binary relation symbol. More precisely,

suppose A = {Pi} for some i ∈ N such that π(Pi) = 2.
Give an example of an LA-sentence ϕ and LA-structuresM1 andM2 such
that M1 � ϕ and M2 6� ϕ, and such that M1 and M2 have the same
universe.

(2) Do there exist an alphabet A, an LA-structureM, anM-assignment ν, and
an LA-formula ϕ such that (M, ν) � ϕ and (M, ν) � (¬ϕ)? Do there exist
such M and ν such that (M, ν) 6� ϕ and (M, ν) 6� (¬ϕ)?

(3) Suppose that A1, . . . , An are propositional symbols, that θ is a proposi-
tional tautology, and that ϕ1, . . . , ϕn are LA-formulas. Let ψ be the result
of substituting for each i, the formula ϕi for each occurrence of the propo-
sitional symbol Ai in θ. Prove that for every LA-structure M and every
M-assignment ν, (M, ν) � ψ.

(4) Suppose A = {Fi, c0} and π(Fi) = 1.
Give an example of an LA-formula ϕ such that all of the following conditions
hold:

(a) ϕ is a sentence.

(b) There is at least one LA-structure M such that M � ϕ.

(c) For all LA-structures M, if M � ϕ, then the universe of M is infinite.

Hint: Suppose F : M → M is a function and M is finite. Then F is a
surjection iff F is 1-to-1.

(5) Suppose that ∆ is a set of LA-formulas and c0 is a constant symbol which
belongs toA and that does not occur in any formula of ∆∪{ϕ}. Suppose that
∆ ∪ {(¬(∀xk(¬ϕ)))} is satisfiable. Show that ∆ ∪ {ϕ(xk; c0)} is satisfiable.

(6) Prove Lemma 3.21.
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4

The logic of first order structures

4.1 Isomorphisms between structures
In mathematics, there is the notion of two structures, such as groups, topological
spaces, etc., being isomorphic. This chapter explores that notion in full generality
by identifying several notions, including isomorphism, which the perspective of
mathematical logic naturally isolates.

Remarkably this more general perspective leads to new and fundamental
insights to the mathematical properties of even the most classical of structures,
that of the real numbers themselves.

We begin with the fundamental notion of isomorphism for LA-structures.
Notice that if M = (M, I) is an LA-structure, then (trivially) LA is uniquely
specified by the domain of I.

Our focus will be generally in the abstract context of an alphabet A as
opposed to the case where A contains all the constant, function, and predicate
symbols. The reason of course is that the familiar mathematical structures are
almost always naturally an LA-structure, for a finite alphabet A.

Definition 4.1 Suppose that M = (M, I) and N = (N, J) are LA-structures.
A bijection e : M → N defines an isomorphism between M and N if and only
if the following conditions hold.

(1) For each constant symbol ci in the domain of I,

e(I(ci)) = J(ci).

(2) For each function symbol Fi in the domain of I, if n = π(Fi) then for each
〈a1, . . . , an+1〉 ∈Mn+1,

〈I(Fi)(a1, . . . , an) = an+1 ↔ 〈J(Fi)(e(a1), . . . , e(an)) = e(an+1).

(3) For each predicate symbol Pi in the domain of I, for each ~a ∈Mn,

〈a1, . . . , an〉 ∈ I(Pi) ↔ 〈e(a1), . . . , e(an)〉 ∈ J(Pi).

For simplicity, we can denote e(~a) = e〈a1, . . . , an〉 = 〈e(a1), . . . , e(an)〉
We write M∼= N to indicate that M and N are isomorphic. When M is equal
to N , we say that e is an automorphism.
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Remark 4.2 For any structure M, the identity function e : x 7→ x is an ex-
ample, though a trivial one, of an automorphism of M. It follows directly from
Definition 4.1 that the inverse of an isomorphism is also an isomorphism and
that the composition of two isomorphisms is also an isomorphism. ut

Example 4.3 Consider this structure: the field of complex numbers,

C = (C, 0, 1, i,+,×).

Recall multiplication and addition for 2 by 2 matrices:(
a b
c d

)
×m

(
e f
g h

)
=

(
a · e+ b · g a · f + b · h
c · e+ d · g c · f + d · h

)
and (

a b
c d

)
+m

(
e f
g h

)
=

(
a+ e b+ f
c+ g d+ h

)
Here a, b, c, d, e, f, g are real numbers.

A fundamental result in complex analysis is that

C ∼=
({(

a −b
b a

)
: a, b ∈ R

}
,

(
0 0
0 0

)
,

(
1 0
0 1

)(
0 −1
1 0

)
,+m,×m

)
where a + bi 7→

(
a −b
b a

)
and +m and ·m is matrix addition and multiplica-

tion.1 ut

Lemma 4.4 Suppose that e : M → N is an isomorphism of LA-structures
M = (M, I) and N = (N, J). Suppose that ν is an M-assignment. Then the
composition of e and ν, e ◦ ν, is an N -assignment, and for each LA-term τ ,

ν̄(τ) = e ◦ ν(τ)

Proof. As e ◦ ν maps each variable symbol xi to an element of M via ν and then
maps that element of M to an element of N via e, e ◦ ν is a N−assignment.

The proof of the lemma is by induction on the length of the term τ . For the
terms of length 1:

Constants - From the definition of an isomorphism,

e(ν(〈ci〉)) = e(I(ci))

= J(ci) (since e is an isomorphism)

= e ◦ ν(〈ci〉).

Variables - Straight from the definitions,

1Ash, Novinger; Complex Variables Ch.1
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e(ν(〈xi〉)) = e(ν(xi))

= e ◦ ν(xi)

= e ◦ ν(〈xi〉).

We now assume τ has length longer that 1 and that the lemma holds for all
terms σ of length less than the length of τ .

Since |τ | > 1, τ = Fi(~σ) for some function symbol Fi.

e(ν(Fi(~σ))) = e(I(Fi)(ν(~σ)))

= J(Fi)(e(ν(~σ)) (since e is an isomorphism)

= J(Fi)(e ◦ ν(~σ)) (by induction)

= e ◦ ν(Fi(~σ))

ut

Theorem 4.5 Suppose that e : M → N is an isomorphism of LA-structures
M = (M, I) and N = (N, J). Then for each LA-formula ϕ,

(M, ν) � ϕ ↔ (N , e ◦ ν) � ϕ.

Proof. The proof is by induction on the length of formulas for allM-assignments
ν.

We first suppose ϕ is an Atomic Formula.
Predicate Case: Suppose ϕ = Pi(~τ). Then for all M-assignments ν:

(M, ν) � Pi(~τ) ↔
↔ ν(~τ) ∈ I(Pi) (by definition)

↔ e(ν(~τ)) ∈ J(Pi) (since e is an isomorphism)

↔ e ◦ ν(~τ) ∈ J(Pi) (by the observation on terms)

↔ (N , e ◦ ν) � Pi(~τ)

Equality Case: Suppose ϕ = (τ1=̂τ2). We use the fact that an isomorphism
is injective.

(M, ν) � (τ1 =̂ τ2) ↔ ν(τ1) = ν(τ2) (by definition)

↔ e(ν(τ1)) = e(ν(τ2)) (as e is injective)

↔ e ◦ ν(τ1) = e ◦ ν(τ2) (as above)

↔ (N , e ◦ ν) � (τ1 =̂ τ2) (by definition)

Now, we suppose that ϕ is not an Atomic Formula, and that the theorem
holds for all formulas ψ such that |ψ| < |phi|, for allM-assignments µ. Suppose
µ is an M-assignments .
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Negation Case: Straight from the definition,

(M, ν) � (¬ψ) ↔ (M, ν) 6� ψ (by definition)

↔ (N , e ◦ ν) 6� ψ (by induction)

↔ (N , e ◦ ν) � (¬ψ) (by definition)

The analysis of implication is similar.

Implication Case: Straight from the definition,

(M, ν) � (ψ1 → ψ2) ↔ (M, ν) 6� ψ1 or (M, ν) � ψ2 (by definition)

↔ (N , e ◦ ν) 6� ψ1 or (N , e ◦ ν) � ψ2 (by induction)

↔ (N , e ◦ ν) � (ψ1 → ψ2) (by definition)

Quantification Case: Suppose ϕ(~x) = (∀xiψ). By definition,

(M, ν) � (∀xiψ)

if and only if for every M-assignment µ, if ν|x̄ = µ|x̄ then

(M, µ) � ψ.

Since e is surjective, for every N -assignment µ∗ where µ∗|x̄ = e◦µ|x̄, there exists
an M-assignment µ such that µ|x̄ = ν|x̄ and e ◦ µ = µ∗.

By induction, for each such µ and µ∗,

(M, µ) � ψ ↔ (N , µ∗) � ψ.

Thus, if (M, ν) � (∀xiψ), then (N , e ◦ ν) � (∀xiψ). The same argument shows

(M, ν) 6� (∀xiψ) ↔ (M, e ◦ ν) 6� ψ

and this completes the proof. ut

Theorem 4.5 suggests the following definition.

Definition 4.6 Suppose thatM and N are LA-structures. ThenM and N are
elementarily equivalent if and only if for each LA-sentence ϕ

M � ϕ ↔ N � ϕ.

We write M ≡ N to indicate that the structures M and N are elementarily
equivalent. ut

By Theorem 4.5, ifM and N are LA-structures thenM and N are elemen-
tarily equivalent.
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4.1.1 Exercises
(1) Suppose A = {F1} and π(Fi) = 1. Give an example of an infinite LA-

structure M = (M, I) for each of the following properties.

(a) M has no nontrivial automorphisms.

(b) M has a countably infinite set of automorphisms.

(c) For each element a of M there are only finitely many b’s in M such that
there is an automorphism f of M with f(a) = b. However, there are
uncountably many automorphisms of M.

(2) Characterize the collection of automorphisms of the integers Z with the
binary relation <.

(3) Suppose that A is finite and that M is a finite LA-structure. Prove that
there is an LA-sentence ϕ such that for every LA-structure N , if N � ϕ
then N ∼=M.

(4) Suppose that M and N are finite LA-structures. Prove that the following
are equivalent.

(a) M∼= N
(b) M≡ N
Hint: First assume A is also finite.

4.2 Substructures and elementary substructures
Definition 4.7 Suppose that M = (M, I) and N = (N, J) are LA-structures.
M is a substructure of N if and only if M ⊆ N and the following conditions
hold.

(1) If ci is a constant symbol of LA then I(ci) = J(ci).

(2) If Fi is a function symbol of LA with n = π(Fi), then I(Fi) is the restriction
of J(Fi) to Mn.

(3) If Pi is a predicate symbol of LA with n = π(Pi), then I(Pi) is equal to
J(Pi) ∩Mn.

We will write M⊆ N to indicate that M is a substructure of N . Note that we
do not allow ourselves to discard constants, predicates, and functions. The only
subset we take is of the universe. ut

Theorem 4.8 Suppose that M = (M, I) and N = (N, J) are LA-structures
with M ⊆ N . Then the following are equivalent.

(1) M is a substructure of N .

(2) For all atomic LA-formulas, ϕ and for all M-assignments ν,

(M, ν) � ϕ ↔ (N , ν) � ϕ.

Proof. The theorem follows directly from the definitions. Notice the specification
of atomic formulas in statement (2). ut

The equivalence given in Theorem 4.8 suggests the following definition.
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Definition 4.9 Suppose that M and N are LA-structures with M⊆ N . M is
an elementary substructure of N , if and only if for all LA-formulas ϕ and for all
M-assignments ν,

(M, ν) � ϕ ↔ (N , ν) � ϕ.

We writeM� N to indicate thatM is an elementary substructure of N . Notice
the specification of all LA-formulas in the definition. ut

Example 4.10 Consider these LA structures:

• N = (Q, 0, 1,+,×,≤),

• M = (R, 0, 1,+,×,≤).

While Q ⊆ R as subsets and substructures, Q � R. Take this sentence:

ϕ = (∀x0(x0 × x0 6= 1 + 1))

Note that N � ϕ but M 6� ϕ. ut

4.2.1 Exercises
(1) Let A = ∅ and let N be the LA structure whose universe is N, the natural

numbers. Show that for every infinite subset S of N, the LA-structure with
universe S is an elementary substructure of N .

(2) Show that the integers Z is a substructure, but not an elementary substruc-
ture, of Q as described in Example 4.10.

4.3 Definable sets and Tarski’s Criterion
Suppose thatN is an LA-structure. The problem of constructing elementary sub-
structures of N looks difficult because the criterion for success involves truth in
the substructure to be constructed and, in particular, anticipating quantification
over the whole substructure while still in the process of its construction.

Tarski’s Theorem below gives an elegant characterization using definable sets
of when a substructure of N is an elementary substructure.

Definition 4.11 Suppose that M = (M, I) is an LA-structure.

(1) Suppose that X ⊆ M . A set Y ⊆ M is definable in M with param-
eters from X if and only if there are elements b1, . . . , bm of X and an
LA-formula ϕ(x0, . . . , xm) such that Y is the set of all b ∈ M such that
M � ϕ[b, b1, . . . , bm].

(2) A set Y ⊆ M is definable in M without parameters if and only if it is
definable with parameters from ∅. ut

One can naturally generalize and define when sets Y ⊂ Mn+1 are definable
with or without parameters inM. But we shall be mostly interested in the case
where n is 0, as is the case above (identifying M1 with M as usual).
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Definition 4.12 Suppose that M = (M, I) is an LA-structure and n < ω.

(1) Suppose that X ⊆ M . A set Y ⊆ Mn+1 is definable in M with parameters
from X if and only if there are elements b1, . . . , bm of X and an LA-formula
ϕ(x0, . . . , xn, . . . , xm+1) such that Y is the set of all ~a ∈ Mn+1 such that
M � ϕ[a0, . . . , an, b1, . . . , bm].

(2) A set Y ⊆ Mn+1 is definable in M without parameters if and only if it is
definable with parameters from ∅. ut

Example 4.13 Consider the structure of the natural numbers with divisibility.
That is (N, 1, |), where a|b if and only if a divides b. The set of primes, P , is
definable without parameters, as

P = {n ∈ N : (∀x(x|n ↔ ((x = n ∨ x = 1) ∧ n 6= 1)))}

Likewise, taking P a set of parameters. For q ∈ P, the set {n ∈ N : q|n},
which is the set of all natural numbers divisible by q, is definable with parameters
from P. ut

The following lemma gives the more traditional version of the definition when
Y ⊂ M is definable in M with parameters from X. There is the analogous
variation (also more traditional) of defining when Y ⊂Mn+1 is definable in M,
with parameters from X.

Lemma 4.14 Suppose that M = (M, I) is an LA-structure and that X ⊆ M .
Suppose that Y ⊆ M and that for some LA-formula ϕ(xk0 , . . . , xkn) and for
some a1, . . . , an in X, Y is the set of all a ∈ M such that (M, µ) � ϕ for some
M -assignment µ such that

(1) µ(xk0) = a

(2) µ(xki) = ai for all i = 1, . . . , n.

Then Y is definable in M with parameters from X.

Proof. We will leave the proof of Lemma 4.14 to the Exercises. ut

Theorem 4.15 Suppose that M = (M, I) is an LA-structure and that X ⊆M .
Suppose that n ∈ N, Y ⊂Mn+1 is definable in M with parameters from X and
that e : M →M is an automorphism of M.

If for each b ∈ X, e(b) = b, then

Y = {〈e(a0), . . . , e(an)〉 : 〈a0, . . . , an〉 ∈ Y }.

Proof. Let b0, . . . , bm be elements of X and let ϕ = ϕ(x0, . . . , xn+m+2) be an
LA-formula such that for all a0, . . . , an in M ,

〈a0, . . . , an〉 ∈ Y ↔ M � ϕ[a0, . . . , an, b0, . . . , bm].

Recall our notation: ~a = 〈a0, . . . , an〉,~a+~b = 〈a0, . . . , an, b0, . . . , bm〉.
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Suppose that ~a ∈ Y , then we can apply Theorem 4.5 to conclude that
M � ϕ[e(~a + ~b)]. Since X is a set of fixed points by e, M � ϕ[e(~a) + ~b] and

so e(~a) ∈ Y . Conversely, suppose that ~c ∈ Y , that is M � ϕ[~c + ~b]. Since e is
an isomorphism, e is surjective. Let ~a be a sequence of elements in M such that
|~a| = |~c| and e(ai) = ci. Consequently, M � ϕ[e(~a) +~b]. Applying Theorem 4.5

in the other direction, M � ϕ[~a + ~b] and so ~a ∈ Y . Thus, there is a sequence
~a ∈ Y such that ~c = e(~a), as required.

Remark 4.16 Definability within a structure is one of the central concepts
in Mathematical Logic. In the next section, we shall consider the problem of
classifying the definable sets of various specific structures. In many cases, the
analysis requires that careful attention be paid to parameters. ut

Example 4.17 Suppose that A = ∅, so that LA is the trivial language. Suppose
that M is a nonempty set. ThenM = (M, ∅) is an LA-structure. Further any bi-
jection e : M →M defines an isomorphism ofM toM. We can use Theorem 4.5
to prove the following.

(1) Suppose that A ⊂M . Then A is definable in M without parameters if and
only if A = ∅ or A = M .

(2) Suppose that A ⊂ M . Then A is definable in M from parameters if and
only if A is finite or M \A is finite.

To verify the first claim, suppose that ϕ is an LA-formula and x1 is the only
free variable in ϕ. If there is no m in M such that M � ϕ[m], then ϕ defines ∅
in M. Otherwise, suppose that m ∈ M and M � ϕ[m]. If n is another element
of M , then the function e from M to M obtained by transposing m and n is
a bijection from M to M , and therefore an isomorphism from M to M. By
Theorem 4.5, since M � ϕ[m] we also have M � ϕ[e(m)], that is M � ϕ[n].
Consequently, if ϕ defines a nonempty set, then that set is all of M .

We leave the proof of the second claim to the Exercises. ut

Theorem 4.18 (Tarski) Suppose that M = (M, I) and N = (N, J) are LA-
structures, and M is a substructure of N . The following are equivalent.

(1) M� N
(2) M ⊆ N and for each nonempty set A ⊆ N , if A is definable in N with

parameters from M , then A ∩M 6= ∅.

Proof. (1) → (2)
Fix a nonempty set A ⊆ N such that A is definable in N with parameters

from M .
By Lemma 4.14, there exists an LA-formula ϕ(x0, . . . , xn+1) and a finite

sequence
~b = 〈b0, . . . , bn〉

of elements of M such that for all a ∈ N ,
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a ∈ A ↔ N � ϕ[〈a〉+~b].

Since A is not empty, N 6� (∀x0(¬ϕ))[~b]. SinceM is an elementary substructure
of N ,

M 6� (∀x0(¬ϕ))[~b].

Fix b in M so that M � ϕ[〈b〉 +~b]. Since M is an elementary substructure
of N ,

N � ϕ[〈b〉+~b]

and so b is an element of A. Thus A ∩M 6= ∅, as required.
(2) → (1)
We prove by induction on the length of formulas ϕ that for allM-assignments

ν, (M, ν) � ϕ if and only if (N , ν) � ϕ.
The atomic cases follow from Theorem 4.8, and the propositional cases follow

directly from the inductive hypothesis.
Therefore we can reduce to inductive step and further reduce to the case

when ϕ(~x) = (∀xiψ).
Note that since M ⊆ N , every M-assignment is also an N -assignment.
Suppose that ν is an M-assignment and let x̄ be the set of free variables of

(∀xiψ).

Case 1: (N , ν) � (∀xiψ).

Thus for every N -assignment (and, in particular, every M-assignment) µ
where ν|x̄ = µ|x̄, (N , µ) � ψ.

By induction, for these M-assignments,

(N , µ) � ψ ↔ (M, µ) � ψ.

Consequently, for every M-assignment µ where ν|x̄ = µ|x̄,

(M, µ) � ψ.

Thus (M, ν) � (∀xiψ) as required.

Case 2: (N , ν) 6� (∀xiψ).

Thus there is an N -assignment µ such that

(1.1) ν|x̄ = µ|x̄,

(1.2) (N , µ) 6� ψ.

Let x̄ = {xk0 , . . . , xkm} be the set of all of the free variables of (∀xiψ), and
of course x̄ could be the emptyset. Note that xi /∈ x̄.

Let Y be the set of a ∈ N such that there exists an N -assignment ρ such
that

(2.1) ρ(xi) = a,

(2.2) for each i ≤ m, ρ(xki) = µ(xki) = ν(xki),
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(2.3) (N , ρ) � (¬ψ).

Since (N , µ) 6� ψ, necessarily

(N , µ) � (¬ψ).

Thus µ(xi) is an element of Y and so Y is not empty.
By Lemma 4.14, Y is definable in N with parameters from M , and so by (2),

Y ∩M is not empty. Let b ∈ Y ∩M . Therefore if ρ is an M-assignment such
that ρ|x̄ = µ|x̄ and ρ(xi) = b, then (N , ρ) � ¬ψ.

By the induction hypothesis, (M, ρ) � ¬ψ and so

(M, ν) 6� (∀x1ψ).

In summary, we have shown that:

If (N , ν) 6� (∀x1ψ) then (M, ν) 6� (∀x1ψ).

Equivalently, we have shown that:

If (M, ν) � (∀x1ψ) then (N , ν) � (∀x1ψ).

By Case 1:

If (N , ν) � (∀x1ψ) then (M, ν) � (∀x1ψ).

Therefore by Case 1 and Case 2:

(N , ν) � (∀x1ψ) if and only (M, ν) � (∀x1ψ).

This proves (2) implies (1). ut

4.3.1 Exercises
(1) Let N = (N, 0, 1,+,×). Show that if M⊆ N , then M = N .

(2) Suppose A = {Pi} and that π(Pi) = 1,
Let M be the finite LA-structure (M, I) such that M = {a, b, c, d, e} and
I(P ) = {a, b}. In other words, M interprets P as holding of a and b and as
not holding of c, d, or e.

(a) Which subsets of M which are definable in M without parameters?

(b) Which subsets of M are are definable in M with parameters?

(3) Suppose M⊆ N are infinite L∅ structures. Show that M� N
(4) Prove Lemma 4.14.

(5) Prove the second claim of Example 4.17.

(6) Suppose A = {Fi} and that π(Fi) = 1.
Give an example of infinite LA-structure M = (M, I) such that the only
nonempty subset of M which is definable in M without parameters is M .

(7) Suppose A = {Fi} and π(Fi) = 1.
Give an example of infinite LA-structureM = (M, I) such that every finite
subset of M is definable in M without parameters.
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4.4 The Lowenheim-Skolem Theorem

The (Downward) Lowenheim-Skolem Theorem is an important application of
Tarski’s Theorem. However, we need to introduce some new definitions and con-
cepts to fully understand the statement.

4.4.1 Countable Sets
Definition 4.19 A set A is countable if either it is empty or there is a surjective
map from N to A. ut

In particular, every finite set is countable, and every subset of N is countable.
Intuitively, the countable sets are those sets whose size is less than or equal to
the size of N.

Theorem 4.20 Suppose that 〈Ai : i ∈ N〉 is a countable sequence of countable
sets. Then A = ∪{Ai | i ∈ N} is a countable set.

Proof. Clearly we can reduce to the case that each set Ai is nonempty (by
replacing Ai with N for each i such that Ai is empty).

Fix a sequence of functions, so that for each i, fi is a surjection from N to
Ai.

A side remark. Here we must appeal to the Axiom of Choice (AC). AC is
the assertion that if X is a set of nonempty sets, then there is a function F
with domain X such that for each element a in X, F (a) ∈ a. In other words, F
chooses an element from each element of X.

The relevant set X here, is the set a such that for some i ∈ N, a is the set of
all functions from N onto Ai.

Appealing to the Axiom of Choice, for this set X, we easily obtain the desired
sequence 〈fi : i ∈ N〉 of functions.

Returning to our proof, let a be an element of A. Define f : N→ A as follows.

f(n) =

{
fi(j), if n = 2i3j ;

a, otherwise.

f is well defined since every element of N is uniquely factored as a product of
prime numbers. If b is an element of A, then there is an i such that b ∈ Ai and
hence there is a j such that fi(j) = b. But then, f(2i3j) = b. Consequently, f is
a surjection. ut

Even though N is infinite, there are sets whose size is not less than or equal
to the size of N.

Theorem 4.21 (Cantor) The set of real numbers is not countable.

Proof. We show first that the set P(N) of all subsets of N is not countable.
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Suppose that

f : N→ P(N)

Define

A = {k ∈ N | k /∈ f(k)}.

We claim that A is not in the range of f . Suppose toward a contradiction that
f(i) = A. Then i ∈ A if and only if i /∈ A which is a contradiction. This proves
that f is not a surjection.

Thus P(N) is uncountable. Finally we show that set of real numbers is un-
countable by producing a function

g : P(N)→ R

which is one to one. Define g as follows:

g(A) =

{
0, if A = ∅;∑
i∈A 3−i, otherwise.

It follows that for A,B in P(N), if A 6= B then g(A) 6= g(B) and so g is one
to one as required. Thus the range of g is uncountable and so the set of real
numbers is uncountable. ut

Remark 4.22 In fact one can show that that there is a bijection

π : P(N)→ R.

We will not need this. One can argue for the existence of π by first constructing
1-to-1 functions

F : P(N)→ R

and
G : R→ P(N),

and F we already constructed above.
Given the functions F and G, one can then appeal to the Schröder-Bernstein

Theorem to get π.
The Schröder-Bernstein Theorem from Set Theory shows that for any

nonempty sets X and Y , if there exist 1-to-1 functions

F : X → Y

and
G : Y → X,

then there is a bijection π : X → Y . ut
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Definition 4.23 IfM = (M, I) is an LA-structure, then we sayM is countable
to indicate that M is a countable set. ut

The following lemma is left to the exercises. This lemma does not require the
Axiom of Choice.

Lemma 4.24 Suppose that N = (N, J) is an LA-structure and that X ⊆ N is
countable. Let A be the set of all A ⊆ N such that A 6= ∅ and such that A is
definable in N with parameters from X. Then A is countable. ut

The following theorem requires2 the Axiom of Choice.

Theorem 4.25 (Lowenheim-Skolem) Suppose that N = (N, J) is an LA-
structure and that X ⊆ N is countable. Then there exists an elementary sub-
structure (M, I) � N such that M is countable and such that X ⊆M .

Proof. By Tarski’s criterion, it suffices to find a countable set M ⊆ N such that
X ⊆ M and such that for each nonempty set A ⊆ N , if A is definable in the
structure N from parameters in M , then A ∩M 6= ∅.

We build a set M by recursion, specifying at most countably many of the
elements of M during each stage. Define a countable sequence 〈Mk : k ∈ N〉 of
countable subsets of N as follows:

(1.1) M0 = X

(1.2) To define Mk+1:

a) Let 〈Ai : i ∈ N〉 enumerate the nonempty subsets of N which are
definable in N using parameters from Mk. This collection of sets is
countable by Lemma 4.24, since Mk is countable.

b) Let 〈ai : i ∈ N〉 be such that ai ∈ Ai for all i ∈ N. Note that here we
use the Axiom of Choice.

c) Let Mk+1 be Mk ∪ {ai : i ∈ N}.
(1.3) Let M = ∪{Mk : k ∈ N}

We claim:

(2.1) M0 = ∅
(2.2) For each k ∈ N, Mk ⊆Mk+1

(2.3) For each k ∈ N, if A ⊆ N is definable in N with parameters from Mk and
A 6= ∅ then A ∩Mk+1 6= ∅

(2.4) For each k ∈ N, Mk and M are countable.

Claims (2.1)–(2.3) follow by the construction and claim (2.4) follows from
Theorem 4.20.

Suppose that A ⊆ N and A is definable in the structure N from parameters
in M . Then since M = ∪{Mk : k ∈ N}, it follows by (3) that for sufficiently
large k ∈ N, A is definable with parameters from Mk. Therefore, if A 6= ∅, then

2In the context of ZF, this is Set Theory without the Axiom of Choice, the theorem is
equivalent to the Axiom of Dependent Choice (DC).
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M ∩ A 6= ∅. Finally, for each constant symbol ci and function symbol Fi of LA,
J(ci) ∈M and for each ~a ∈Mn where n = π(Fi), J(Fi)(~a) ∈M .

Thus, there exists I such that the structure M = (M, I) is a substructure
of N . By Tarski’s Theorem, M � N and so M is a countable elementary sub-
structure of N . ut

4.4.2 Exercises
(1) Show that Q, the set of rational numbers, is countable.

(2) Show that there is a bijection between P(N) and R.
Hint: See Remark 4.22

(3) Show that ifM = (M, I) is an LA-structure and X is a countable subset of
M , then the collection of all sets A ⊆M such that A is definable inM with
parameters from X is countable. (Hint: Show that there are only countably
many formulas and countably many finite sequences from X.)

(4) Prove Lemma 4.24.

4.5 Dense orders
We more deeply explore a classic example of the Lowenheim-Skolem theorem,
identifying a countable elementary substructure of (R, <). This exploration in-
volves showing by constructing automorphisms how one can in this case easily
determine which sets are definable. This in turn, using the Tarski Criterion, will
show for example that

(Q, <) � (R, <)

where Q is the set of rational numbers.
Suppose LA has only one 2-place predicate symbol. Thus LA-structures are

naturally of the form (M,P ), where M 6= ∅ and P ⊆M ×M .
We consider the LA-structure (R, <), given by the set of real numbers with

the usual order. Suppose that X ⊂ R is finite and non-empty. Define for reals a
and b, a ∼X b if and only if there exists a bijection e : R→ R such that e is an
automorphism of the LA-structure (R, <), such that e(a) = b and such that for
all t ∈ X, e(t) = t.

The relation ∼X is an equivalence relation on R. That is to say that for all
t1, t2, t3 in R the following conditions hold.

(1) t1 ∼X t1; since the identity map x 7→ x is an automorphism.

(2) If t1 ∼X t2 then t2 ∼X t1; since the inverse of an automorphism is an
automorphism.

(3) if t1 ∼X t2 and t2 ∼X t3 then t1 ∼X t3; since the composition of automor-
phisms is an automorphism.

For each t ∈ R let

[t]X = {w ∈ R : w ∼X t}

be the equivalence class of t.
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Definition 4.26 (1) A set I ⊆ R is an interval if for all a, b, c in R, if a ≤ b ≤ c
and {a, c} ⊆ I then b ∈ I.

(2) Suppose I ⊆ R is an interval, I 6= ∅, and I 6= R. Then a real number a is a
lower-endpoint of I if and only if the following hold.

(a) a ≤ r for all r ∈ I,

(b) For all s > a, I ∩ [a, s] 6= ∅.
(3) Suppose I ⊆ R is an interval, I 6= ∅, and I 6= R. Then a real number a is an

upper-endpoint of I if and only if the following hold.

(a) r ≤ a for all r ∈ I,

(b) For all s < a, I ∩ [s, a]] 6= ∅.
(4) Suppose I ⊆ R is an interval, I 6= ∅, and I 6= R. Then a real number a is an

endpoint of I if a is either an upper-endpoint of I, or a lower-endpoint of I.

Lemma 4.27 Suppose that X ⊂ R is finite and non-empty. Then for each
a ∈ R, [a]X is an interval. Further

(1) if a ∈ X then [a]X = {a},
(2) if a /∈ X then [a]X is the maximum interval I ⊆ R such that a ∈ I and

I ∩X = ∅.

Proof. Suppose a ∈ X, then any automorphism of (R,≤) which fixes all of the
elements of X must fix a. But then for all b, if a ∼X b then a = b. In other
words, [a]X = {a}.

Otherwise, let I be the maximum interval such that a ∈ I and I ∩X = ∅. To
show that I is equal to [a]X , let b be an element of I. Let (c, d) be a subinterval
of I such that a, b ∈ (c, d) [c, d] ⊆ I. Without loss of generality, assume a < b.
First, we define an order preserving bijection e0 from [c, d] to itself so that e0

maps a to b.

e0(x) =

{
c+ b−c

a−c (x− c), if x ∈ [c, a];

b+ d−b
d−a (x− a), if x ∈ [a, d].

The function e0 consists of stretching the interval [c, a] to match [c, b] and com-
pressing [a, d] to match [b, d]. Then we extend e0 to an order preserving bijection
of R by mapping every real number not in [c, d] to itself. The resulting function,
e is an automorphism of R which shows that a ∼X b. ut

Note that if I = ∅ , or if I = R, then I is an interval and I has no endpoints.

Theorem 4.28 Suppose that X ⊆ R and that X is non-empty. Suppose that
A ⊆ R, A 6= ∅, and that A 6= R. Then the following are equivalent.

(1) A is definable in (R, <) with parameters from X.

(2) A is a finite union of intervals I such that the endpoints of I belong to X.

Proof. We will take the implication from (2) to (1) as being self-evident, and we
will prove the implication from (1) to (2).
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Suppose that A is definable in (R, <) with parameters from X. Let ϕ be a
formula in the first order language with ≤, let a1, . . . , an be elements of X, and
suppose that for all real numbers b,

b ∈ A ↔ (R, <) � ϕ[b, a1, . . . , an].

We first show that for each b, if b ∈ A then [b]X ⊆ A. So, suppose that b and c
are real numbers, b ∈ A, and b ∼X c. By Lemma 4.27, there is an automorphism
e of (R,≤) such that e maps b to c and e fixes the elements of a1, . . . , an. By
Theorem 4.15, b ∈ A if and only if e(b) ∈ A. Consequently, b ∈ A implies c ∈ A,
as required.

But then, A is a union of ∼{a1,...,an} equivalence classes. Each of these classes
is an interval, and since {a1, . . . , an} is finite, there are only finitely many of them.
Theorem 4.28 follows immediately. ut

By applying Tarski’s Theorem 4.18, we can characterize the elementary sub-
structures of (R, <).

Corollary 4.29 Let R = (R, <). Suppose that M ⊆ R and that M = (M,<M )
is the induced substructure of R. Then the following are equivalent.

(1) M� R.

(2) The following hold.

(a) For all a, b ∈M , if a < b then M ∩ (a, b) 6= ∅.
(b) For all c ∈M , there exist a, b ∈M such that a < c < b.

Proof. The implication from (1) to (2) is immediate since M≡ R.
We now prove the implication from (2) to (1). We will apply Tarski’s Crite-

rion to show that M � R. Let {m1, . . . ,mn} be a finite subset of M , and let
A be a nonempty subset of R which is definable in R using parameters from
{m1, . . . ,mn}. It is sufficient to show that A ∩M is not empty.

By Lemma 4.28, A is a finite union of intervals I inR whose endpoints belong
to {m1, . . . ,mn}. Let I be a nonempty such interval. If I is a singleton {mi},
then mi ∈ (A ∩M). Secondly, there could be mi < mj such every real number
between mi and mj belongs to I. By (2a), if mi and mj are elements of M , there
is an m ∈ M such that mi < m < mj . Then m ∈ (A ∩M) as required. Finally,
I could be an unbounded interval. By (2a), there must be an element of m in I
in this case as well. ut

Another corollary is the following version of Theorem 4.28 but for the struc-
ture (Q, <). Here we refer to intervals of (Q, <), and endpoints of such inter-
vals, in the obvious generalization of Definition 4.26 to the case of (Q, <). Of
course there are non-empty intervals of (Q, <) which are both bounded below
and bounded above, and which do not have endpoints (in Q).

Rephrasing Theorem 4.27 exactly as Theorem 4.30 is formulated, yields a
theorem which is easily verified to be equivalent to Theorem 4.27.
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Theorem 4.30 Suppose that X ⊆ Q and that X is non-empty. Suppose that
A ⊆ Q, A 6= ∅, and that A ⊂ (r, s) for some r < s. Then the following are
equivalent.

(1) A is definable in (Q, <) with parameters from X.

(2) A is a finite union of intervals I such that the lower-endpoint of I and the
upper-endpoint of I both exist and belong to X.

Proof. The implication (2) implies (1) is immediate. We assume (1) and prove
(2). Let ϕ(x0, x1, . . . , xn) be a formula and let q1, . . . , qn be elements of X, such
that A is the set of all q ∈ Q such that

(Q, <) � ϕ[q, q1, . . . , qn]

Let B be the set of all z ∈ R such that

(R, <) � ϕ[z, q1, . . . , qn]

Since (Q, <) � (R, <), necessarily A = B ∩ R. Finally B is a finite union of
intervals I such that the endpoints of I belong to {q1, . . . , qn}. But A ⊂ (r, s)
and so again since (Q, <) � (R, <), necessarily B ⊂ (r, s), where of course here
(r, s) denotes the interval I in (R, <) of all real numbers z such that r < z < s.

Therefore A is a finite union of (bounded) intervals I of (Q, <) with endpoints
belong to {q1, . . . , qn}.

4.6 Arbitrary dense total orders

Suppose that M = (M,<) is a dense total order without endpoints. More pre-
cisely where < is a binary relation such that the following hold.

(1) For all a, b ∈M ; either a < b, b < a, or a = b.

(2) For all a, b, c ∈M ; if a < b and if b < c then a < c.

(3) For all a, b ∈M ; if a < b then b 6< b.

(4) For all a, b ∈; if a < b then there exists c ∈M such that a < c < b.

(5) For all a ∈ M , there exists b ∈ M such that a < b and there exists c ∈ M
such that c < a.

Must M be elementarily equivalent to (Q, <), and can one characterize the
subsets of M which are definable in M?

Our analysis of the definable sets of the structure R made essential use
of the existence of automorphisms. One can construct examples of structures
M = (M,<) which are dense orders without endpoints and with the additional
property that if

e : M →M

is a bijection which defines an automorphism of the structure M then e is the
identity. In fact one can construct M as a substructure of R. Thus one cannot
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hope to use the method of automorphisms to directly analyze the definable sets
of an arbitrary dense order without endpoints, even for substructures of R.

We begin with a characterization due to Cantor of the countable dense total
orders without endpoints.

Theorem 4.31 (Cantor) Suppose that M = (M,<M ) is a countable dense
total order without endpoints. Then M and (Q, <) are isomorphic.

Proof. Let m1,m2, . . . and q1, q2, . . . be respective enumerations of M and Q.
Define a sequence of functions 〈fn : n ∈ N〉 by defining fn by induction on n

as follows such that:

(1.1) fn has finite domain which is a subset of M , and the range of fn is a
subset of Q.

(1.2) The domain of fn is a subset of the domain of fn+1 and fn+1(a) = fn(a)
for all a in the domain of fn.

(1.3) For all a, b in the domain of fn, a <M b if and only if fn(a) < fn(b).

Define f0 to have domain {m1} and f0(m1) = q1.
Having defined fn, we define fn+1 in two steps, first defining f0

n+1 and then
in the second step, defining fn+1 from f0

n+1.
Note (and this is not important at all), if n = 0 then f1 = f0.

Step 1: The definition of f0
n+1.

Let a1, . . . , ak be the domain of fn in increasing order.

(2.1) For all ai, let f0
n+1(ai) = fn(ai). This ensures that f0

n+1 and fn agree on
the domain of fn.

(2.2) Suppose mn+1 is in the domain of fn. Then define f0
n+1 = fn.

Otherwise, ifmn+1 is not in the domain of fn then define f0
n+1(mn+1) = qj

where j is the least integer such that:

a) If mn+1 <M a1, then qj < f0
n+1(a1).

b) If ai <M mn+1 <M ai+1 for some i,
then f0

n+1(ai) < qj < f0
n+1(ai+1).

c) If ak <M mn+1, then f0
n+1(ak) < qj .

This preserves the order and ensures that mn+1 is in the domain of f0
n+1.

Step 2: The definition of fn+1 from f0
n+1

Let b1, . . . , bL be the domain of f0
n+1 in increasing order.

(3.1) For each a in the domain of f0
n+1 define fn+1(a) = f0

n+1(a). This ensures
that fn+1 and f0

n+1 agree on the domain of fn, and so ensures that fn+1

and fn agree on the domain of fn.

(3.2) Suppose qn+1 is in the range of f0
n+1. Then define fn+1 = f0

n+1. Otherwise,
if qn+1 is not in the range of f0

n+1 then qn+1 is in the domain of fn+1 and
fn+1(mj) = qn+1 where j is the least integer such that the following hold.

a) If qn+1 < f0
n+1(b1), then mj <M b1.
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b) If f0
n+1(bi) < qn+1 < f0

n+1(bi+1) for some i, then

bi <M mj <M bi+1.

c) If f0
n+1(bL) < qn+1, then bL <M mj .

This preserves the order and ensures that qn+1 is in the range of fn+1.
We note that since (Q, <) a dense linear order without endpoints, and since

M is a dense linear order without endpoints, the extension of fn to fn+1 exists
as specified.

Let f : Q→M be the function given by the union of the fn; more precisely,
for all n ≥ 1, f(mn) = fn(mn).

We finish by proving

(4.1) f defines an isomorphism of (Q, <) with (M,<).

From the definition, f preserves the order, more precisely for all a, b ∈M , if
a <M b then f(a) < f(b). Further by the definition, for every n ∈ N, mn+1 is
in the domain of fn+1 and qn+1 is in the range of fn+1. This proves (4.1) and
hence the theorem. ut

Remark 4.32 In fact, in the proof of Theorem 4.31, one can simply define
fn+1 = f0

n+1 at every stage, and so simply ignore Step 2, where fn+1 is defined
from f0

n+1. We leave as an amusing exercise showing that the final function f
will still be a surjection.

The construction we give, emphasizes the back-and-forth nature of the con-
struction which we shall use again, in more general context, in the proof of
Theorem 6.13 on page 122 in Chapter 6. ut

Finally we obtain the following version of Theorem 4.30 but for an arbitrary
dense linear order M = (M,<) without endpoints. Here we refer to intervals of
(M,<), and endpoints of such intervals, in the obvious generalization of Defini-
tion 4.26 to the case of (M,<).

As we have noted, there are examples of dense linear orders (M,<) which are
both substructures of (R, <) and for which there are no nontrivial automorphisms
of (M,<). For such structures there is no possible direct analysis of the definable
sets using automorphisms.

Theorem 4.33 Suppose that M = (M,<) is a dense total order without end-
points. Then the following conditions hold.

(1) M≡ (Q, <).

(2) If X ⊆ M and X 6= ∅. Suppose A ⊆ M is definable in the structure M
with parameters from X, and A ⊂ (a, b) for some a < b in M . Then A
is a finite union of intervals I such that the upper-endpoint of I and the
lower-endpoint of I both exist and belong to X.
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Proof. By the Lowenheim-Skolem Theorem there exists an elementary substruc-
ture

(M0, <0) =M0 �M

such that M0 is countable. But then, M0
∼= (Q, <) and so M ≡ (Q, <). This

proves (1).
We now prove (2). In fact (2) follows from (1) (why?) but we shall prove

(2) more directly. Fix X ⊆ M and A ⊆ M such that A is definable in M with
parameters from X. Let ϕ(x0, x2, . . . , xn) be a formula and let a1, . . . , an be
elements of X such that

A = {a ∈M :M � ϕ[a, a1, . . . , an]}.

We prove that A is a union of intervals with endpoints from {a1, . . . , an}.
Assume toward a contradiction that this fails. By Theorem 4.25, Choose

M0 = (M0, I0) so that {a1, . . . , an} ⊆ M0 and so that M0 is a countable ele-
mentary substructure M. Thus, since M0 �M,

A ∩M0 = {a ∈M0 :M0 � ϕ[a, a1, . . . , an]}

and A ∩M0 is not a union of intervals of M0 with endpoints from {a1, . . . , an}.
But M0

∼= (Q, <) and this contradicts Theorem 4.30. ut
Thus we have managed to analyze the definable sets in an arbitrary structure

M = (M,<) which is a dense order without endpoints. The analysis succeeds
by using automorphisms of countable elementary substructures.

The analysis of the definable sets in familiar mathematical structures can be
quite a complicated problem, and one whose resolution involves a deep under-
standing of those structures.

More interestingly, this offers an entirely new mathematical perspective on
these structures. This perspective arguably originates only through the develop-
ment of formal logic.

Theorem 4.34 (Tarski-Seidenberg) LetM be the structure 〈R,+,×, <, 0, 1〉
Suppose A ⊆ R is definable from parameters in M. Then A is a finite union of
intervals. ut

What about expanded structures of the form

〈R,+,×, <, F, 0, 1〉

where a single function F : R→ R is added?

Lemma 4.35 Let M be the structure

〈R,+,×, <, F, 0, 1〉

where F (x) = sinx. Then there is a set A ⊆ R which is definable in M without
parameters such that A is not a finite union of intervals.
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Proof. Let A be the set of all x ∈ R such that sinx = 0. ut

In contrast to the simple counterexample provided by the lemma, there are
the following remarkable theorems which were only proved just over 20 years ago.
The first of these two theorems shows that the case of F (x) = sinx is actually
quite subtle. The second theorem concerns the exponential function and this
expansion has been extensively studied.

Theorem 4.36 (Wilkie:1996) Let M be the structure

〈R,+,×, <, F, 0, 1〉

where F (x) = sin(1/(1 + x2)). Suppose A ⊆ R is definable from parameters in
M. Then A is a finite union of intervals. ut

Theorem 4.37 (Wilkie:1996) Let M be the structure

〈R,+,×, <, F, 0, 1〉

where F (x) = ex. Suppose A ⊆ R is definable from parameters in M. Then A is
a finite union of intervals. ut

4.6.1 Exercises
(1) Suppose A = {ci | i ∈ N} that M is an infinite LA-structure. Show that

there is an LA-structureM1 such thatM andM1 are elementarily equiva-
lent andM1 has an element which is not the interpretation of any constant
symbol.

Hint: This exercise is closely related to the next exercise.

(2) Suppose that A = {Pi} and π(Pi) = 1. Suppose that M = (M, I) and
N = (N, J) are LA-structures such that

(a) I(Pi) and M \ I(Pi) are each infinite.

(b) J(Pi) and N \ J(Pi) are each infinite.

Here M \ I(Pi) denotes the set of all a ∈ M such that a /∈ I(Pi), and
similarly for N \ J(Pi).
Show that M≡ N .

(3) Consider the structure of the real numbers, (R, F,<), augmented with a
function

F : R→ R.

Find a sentence θ such that

(R, F,<) � θ

if and only if F is continuous everywhere.
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(4) Consider the structure of the real numbers, (R, 0, 1,+,×, F,<), augmented
with a function

F : R→ R.

Find a sentence θ such that

(R, 0, 1,+,×, F,<) � θ

if and only if F is differentiable everywhere.

(5) Consider the structure of the real numbers, (R, F,<), augmented with a
function

F : R→ R.

Show that there is no sentence θ such that

(R, F,<) � θ

if and only if F is differentiable everywhere.

Hint: Suppose G : R→ R is a surjection which is an increasing function (i.e.
for all a, b ∈ R, if a < b then G(a) < G(b)). Show that for any sentence θ,

(R, F,<) � θ

if and only if

(R, H,<) � θ,

where H is the function such that for all a ∈ R, H(a) = G−1(F (G(a))).

Extra Hint: Let F be the function F (x) = 2x, and let G be the function
where G(x) = x for x ≤ 1, and G(x) = 2x− 1 for x ≥ 1.

(6) Consider the structure of the real numbers, (R, 0, 1,+,×, <). Let N be the
substructure of (R, 0, 1,+,×, <) given by the set of all r ∈ R such that the
set A = {r} is definable in (R, 0, 1,+,×, <) without parameters.
Show that N � (R, 0, 1,+,×, <).

Hint: Use Tarski’s Criterion together with the Tarski-Seidenberg Theorem,
Theorem 4.34.

(7) Consider the structure of the real numbers, (R, 0, 1,+,×, <). Show that
there are two countable structures M1 and M2 with the following proper-
ties.

• M1 � (R, 0, 1,+,×, <) and M2 � (R, 0, 1,+,×, <).

• M1 and M2 are not isomorphic.

Hint: Use the previous exercise and the Lowenheim-Skolem Theorem, The-
orem 4.25.
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The Gödel Completeness Theorem

5.1 The notion of proof

We shall now return to the general case of the language L. Our goal is to prove
the Gödel Completeness Theorem and this requires first defining the notion of
proof. We begin with the notion of logical validity which we have already defined
in Section 3.3 when we were analyzing substitution in LA-formulas.

Definition 5.1 An L-formula ϕ is valid if it is satisfied in every structure. That
is, for all M and all ν, (M, ν) � ϕ. We also say that ϕ is a validity.

An L-formula ϕ is satisfiable if it is satisfied in some structure. That is, there
exists an M and ν such that (M, ν) � ϕ.

An L-formula ϕ is contradiction if it is not satisfied in any structure. That
is, there is no M and ν where (M, ν) � ϕ. ut

Given a specific L-sentence θ, the problem of verifying that θ is a validity
looks apriori quite complicated since there are examples of sentences θ which are
true in every finite structure but which are not valid. Such sentences θ exist in
LA even if A just contains either a function symbol, or a predicate symbol of
arity 2 (contains Pi for some i, such that π(Pi) = 2)

This is a significant change from the case of propositional formulas ϕ where
one need only check all the truth assignments just restricted to the propositional
symbols occurring in ϕ (an analog of just checking all finite structures).

Thus trying to characterize the set of all validities, which is evidently a fas-
cinating set, looks quite difficult. In this chapter, we will give a syntactic char-
acterization of this set, describing it in terms of pure logic. We will show that
an L-formula is valid if and only if it is provable. This is precisely the Gödel
Completeness Theorem for the language L.

The formal notion of proof involves specifying the logical axioms. Every log-
ical axiom is valid, and there will be a straightforward algorithm to determine
whether any given L-formula is a logical axiom. This is just as was the case for
the propositional language L0.

Some of the logical axioms involve the deduction of instances of a formula ϕ
from the hypothesis (∀xiϕ). Others involve deducing that τ1 has the property
asserted by ϕ from the hypothesis that (τ1 =̂ τ2) and τ2 has that property.
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We shall initially just define and analyze the formal notion of poof for our
entire language L, this is the language LA where the alphabet A contains all the
constant, function, and predicate symbols. The generalization to the case of LA
for an arbitrary alphabet A will follow rather easily, and our route for this leads
naturally to the Craig Interpolation Theorem for the language L.

Definition 5.2 The set of logical axioms, denoted ∆, is the smallest set ∆ of
L-formulas such that the following hold.

(1) (Instances of Propositional Tautologies) Suppose that ϕ1, ϕ2 and ϕ3 are
L-formulas. Then each of the following L-formulas is in ∆.:
(Group I axioms)

(a) ((ϕ1 → (ϕ2 → ϕ3))→ ((ϕ1 → ϕ2)→ (ϕ1 → ϕ3)))

(b) (ϕ1 → ϕ1)

(c) (ϕ1 → (ϕ2 → ϕ1))

(Group II axioms)

(a) (ϕ1 → ((¬ϕ1)→ ϕ2))

(Group III axioms)

(a) (((¬ϕ1)→ ϕ1)→ ϕ1)

(Group IV axioms)

(a) ((¬ϕ1)→ (ϕ1 → ϕ2))

(b) (ϕ1 → ((¬ϕ2)→ (¬(ϕ1 → ϕ2))))

(2) Suppose that ϕ is an L-formula, τ is a term, and that τ is free for xi in ϕ.
Then

((∀xiϕ)→ ϕ(xi; τ)) ∈ ∆.

(3) Suppose that ϕ1 and ϕ2 are L-formulas. Then

((∀xi(ϕ1 → ϕ2))→ ((∀xiϕ1)→ (∀xiϕ2))) ∈ ∆.

(4) Suppose that ϕ is an L-formula and that xi is not a free variable of ϕ. Then

(ϕ→ (∀xiϕ)) ∈ ∆.

(5) For every variable xi, (xi =̂xi) ∈ ∆.

(6) Suppose that ϕ1 and ϕ2 are L-formulas and that xj is free for xi in ϕ1 and
in ϕ2.

If ϕ2(xi;xj) = ϕ1(xi;xj),

then ((xi =̂xj)→ (ϕ1 → ϕ2)) ∈ ∆.

(7) Suppose that ϕ ∈ ∆. Then (∀xiϕ) ∈ ∆. ut

Definition 5.3 Suppose that Γ is a set of L-formulas. A finite sequence
〈ϕ0, . . . , ϕn〉 is a Γ-proof, or a Γ-deduction, if the following hold.
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(1) ϕ0 ∈ Γ ∪∆,

(2) For each i ≤ n, one of the following hold.

(a) ϕi ∈ Γ ∪∆.

(b) There exist i0 < i and i1 < i such that ϕi1 is equal to (ϕi0 → ϕi). This
rule of inference is called modus ponens.

Suppose ϕ is an L-formula. Then

Γ ` ϕ

or Γ proves ϕ, if and only if there exists a Γ-proof, 〈ϕ1, . . . , ϕn〉, with ϕn = ϕ. ut

Definition 5.4 Suppose ϕ is an L-formula. Then ϕ is provable if and only if
∆ ` ϕ. ut

Note that an L-formula ϕ is provable if and only if {∅} ` ϕ.

5.2 Deduction and generalization theorems

We will now prove several basic results regarding the formal notion of proof.

Theorem 5.5 (Deduction) Suppose that Γ is a set of L-formulas and that ϕ1

and ϕ2 are L-formulas. Then

Γ ∪ {ϕ1} ` ϕ2 if and only if Γ ` (ϕ1 → ϕ2).

Proof. We first verify the implication from right to left. Suppose that

〈θ1, . . . , θn+1〉

is a Γ-proof of (ϕ1 → ϕ2).
In particular, θn+1 is equal to (ϕ1 → ϕ2). Then 〈θ1, . . . , θn, (ϕ1 → ϕ2), ϕ1, ϕ2〉

is a Γ-proof of ϕ2 from Γ, as required.
For the implication from left to right, we proceed exactly as in the proof of

Lemma 1.39, which is the Deduction Lemma for propositional logic. Note that
we easily have inference; the analog of the Inference Lemma, Lemma 1.37, for L.

Let

〈θ1, . . . , θn〉

be a (Γ ∪ {ϕ1})-proof of ϕ2. We prove by induction on i ≤ n that

Γ ` (ϕ1 → θi).

First we consider the case i = 1. Either θ1 ∈ Γ∪{ϕ1} or θ1 is a logical axiom
(possibly both). So there are three subcases of this case.
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Subcase 1.1: θ1 ∈ Γ. So we must show that Γ ` (ϕ1 → θ1). However

Γ ` (θ1 → (ϕ1 → θ1))

since (θ1 → (ϕ1 → θ1)) is a logical axiom. Further

Γ ` θ1

since θ1 ∈ Γ. Therefore by inference, Γ ` (ϕ1 → θ1).

Subcase 1.2: θ1 = ϕ1. Note that (ϕ1 → ϕ1) is a logical axiom and so

Γ ` (ϕ1 → ϕ1).

Subcase 1.3: θ1 is a logical axiom. This is just like subcase 1.1; (θ1 → (ϕ1 → θ1))
is a logical axiom and so

Γ ` (θ1 → (ϕ1 → θ1)).

Since θ1 is a logical axiom, Γ ` θ1. Therefore by inference, Γ ` (ϕ1 → θ1).
We now suppose that k ≤ n and assume as an induction hypothesis that for

all i < k,

Γ ` (ϕ1 → θi).

There are two subcases.

Subcase 2.1: θk ∈ Γ∪ {ϕ1} or θk is a logical axiom. But then exactly as in the
case of θ1, Γ ` (ϕ1 → θk).

Subcase 2.2: There exist j1 < k and j2 < k such that θj2 = (θj1 → θk).
By the induction hypothesis; Γ ` (ϕ1 → θj1) and Γ ` (ϕ1 → θj2). Now we

use the logical axiom

((ϕ1 → (θj1 → θk))→ ((ϕ1 → θj1)→ (ϕ1 → θk))).

By the induction hypothesis,

Γ ` (ϕ1 → (θj1 → θk)),

and so by inference,

Γ ` ((ϕ1 → θj1)→ (ϕ1 → θk)).

Again by the induction hypothesis,

Γ ` (ϕ1 → θj1),

and so by inference one last time,

Γ ` (ϕ1 → θk).

This completes the induction and so Γ ` (ϕ1 → ϕ2). Finally we note that only
Group I logical axioms were used. ut
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Theorem 5.6 (Generalization) Suppose that Γ is a set of L-formulas, that ϕ
is an L-formula, and that Γ ` ϕ. Suppose that xi is a variable not free in any
formula in Γ. Then Γ ` (∀xiϕ).

Proof. Let 〈θ1, . . . , θn〉 be a Γ-proof of ϕ. We prove by induction on j ≤ n that
Γ ` (∀xiθj).

First, suppose j = 1. Then either θ1 is in ∆ or θ1 is in Γ.
If θ1 ∈ ∆ then by Cause 7 in Definition 5.2, (∀xiθ1) ∈ ∆ and so trivially

Γ ` (∀xiθ1). If θ1 ∈ Γ then by Clause 4 in Definition 5.2, (θ1 → (∀xiθ1)) is
an element of ∆. Thus 〈θ1, (θ1 → (∀xiθ1)), (∀xiθ1)〉 is a Γ-proof of (∀xiθ1), as
required.

Now suppose j = k + 1 and Γ ` (∀xiθm) for all m ≤ k.
If θk+1 is in ∆, or if θk+1 is in Γ, then exactly as above in the case where

j = 1, Γ ` (∀xiθk+1).
Finally suppose there are m1,m2 < k + 1 and θm2

= (θm1
→ θk+1). By

induction hypothesis, Γ proves (∀xiθm1) and Γ proves (∀xi(θm1 → θk+1)).
By Clause 3 of Definition 5.2,

((∀xi(θm1 → θk+1))→ ((∀xiθm1)→ (∀xiθk+1)))

is an element of ∆.
Therefore by inference (twice), it follows that Γ ` (∀xiθk+1), as required. ut
The next theorem requires two lemmas, and for the second lemma, as well as

for the theorem, we need to extend our notation and definitions on substitution,
for example Definition 2.28 and Definition 3.17, from the case of substituting
terms for variables to the case of substituting terms for constants. First we recall
from Definition 2.28 the basic notation which we repeat here.

Definition 5.7 Suppose that ϕ(~x) is an L-formula.

(1) Suppose that xi is a free variable of ϕ.

(a) Suppose τ is a term. Then the term τ is substitutable for xi if and only
if every variable xj of τ is free for xi in ϕ.

(b) If τ is substitutable for xi in ϕ, then ϕ(xi; τ) denotes the L-formula
obtained by substituting τ for each free occurrence of xi in ϕ.

(2) Suppose that ~x = 〈xk0 , . . . , xkn〉 is a sequence of variables with k0 < · · · < kn
and ~tau = 〈τ0, . . . , τn〉 is a sequence of terms. Then ~τ is substitutable for ~x
if for each i ≤ n, if xki is a free variable of ϕ then τi is substitutable for xki
in ϕ.

(3) If ~τ is substitutable for ~x in ϕ then ϕ(~x;~τ) denotes the L-formula obtained
by substituting τi for each free occurrence of xki in ϕ, for all i ≤ n. ut

We extend the notion of substitutability to case of substituting terms for
constants.

Suppose ϕ is a formula and ci is a constant. Then a variable xk is free for ci
in ϕ if no occurrence of ci in ϕ is within the scope of an occurrence of ∀xk in ϕ.
This is defined exactly as for occurrences of variables, Definition 3.17.
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Definition 5.8 Suppose that ϕ(~x) is an L-formula.

(1) Suppose that ci is a constant.

(a) Suppose τ is a term. Then the term τ is substitutable for ci if and only
if every variable xj of τ is free for ci in ϕ.

(b) If τ is substitutable for ci in ϕ, then ϕ(ci; τ) denotes the L-formula
obtained by substituting τ for each occurrence of ci in ϕ.

(2) Suppose ~c = 〈ck0 , . . . , ckn〉 is a sequence of constants and ~τ = 〈τ0, . . . , τn〉
is a sequence of terms. Then ~τ is substitutable for ~c if for each i ≤ n, τi is
substitutable for cki in ϕ.

(3) If ~τ is substitutable for ~c in ϕ then ϕ(~c;~τ) denotes the L-formula obtained
by substituting τi for each free occurrence of cki in ϕ, for all i ≤ n. ut

Lemma 5.9 Suppose that ϕ is an L-formula, xi is free for xj in ϕ, and xi does
not occur freely in (∀xjϕ). Then

∅ ` ((∀xjϕ)→ (∀xiϕ(xj ;xi)))

Proof. Since xi is free for xj in ϕ, we may apply Clause 2 of Definition 5.2 to
conclude that ((∀xjϕ)→ ϕ(xj ;xi)) is an element of ∆. By the Deduction Theo-
rem 5.5, {(∀xjϕ)} ` ϕ(xj ;xi). Since xi does not occur freely in (∀xjϕ), we can ap-
ply the Generalization Theorem 5.6 to conclude that {(∀xjϕ)} ` (∀xiϕ(xj ;xi)).
By the Deduction Theorem again, ∅ ` ((∀xjϕ)→ (∀xiϕ(xj ;xi))), as required.ut

Lemma 5.10 Suppose that Γ is a set of L-formulas and that the constant symbol
ci does not occur in any formula of Γ. Suppose that 〈θ1, . . . , θm〉 is a Γ-proof
and that the variable xj does not occur in any of the formulas θ1, . . . , θm. Then
〈θ1(ci;xj), . . . , θm(ci;xj)〉 is a Γ-proof.

Proof. Note, if ci does not occur in ϕ, then ϕ(ci;xj) = ϕ. By assumption ci does
not occur in any formula of Γ, so for each ϕ ∈ Γ, ϕ(ci;xj) = ϕ.

It can be verified by inspection of Definition 5.2 that if ϕ is a logical axiom
and xj does not occur in ϕ, then ϕ(ci;xj) is a logical axiom.

Finally, if ϕ1 and ϕ2 are L-formulas then

(ϕ1 → ϕ2)(ci;xj) = (ϕ1(ci;xj)→ ϕ2(ci;xj)).

It follows by induction on n ≤ m, that 〈θ1(ci;xj), . . . , θn(ci;xj)〉 is a proof
from Γ. ut

Theorem 5.11 (Constants) Suppose that Γ is a set of L-formulas, that ϕ is
an L-formula, and that Γ ` ϕ. Suppose that ci is a constant and that ci does not
occur in any formula of Γ. Let xj be a variable which is substitutable for ci in
ϕ and which does not occur freely in ϕ. Then

Γ ` (∀xjϕ(ci;xj)).
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Proof. Let 〈θ0, . . . , θn〉 be a Γ-proof of ϕ and let xk be a variable such that xk
does not appear in any of the formulas θ1, . . . , θn.

Let Γ0 be {θ1, . . . , θn} ∩ Γ. By Lemma 5.10,

(1.1) 〈θ1(ci;xk), . . . , θn(ci;xk)〉 is a Γ0-proof,

and so Γ0 ` ϕ(ci;xk).
Therefore by the Generalization Theorem, Γ0 ` (∀xkϕ(ci;xk)). Since xj is

substitutable for ci in ϕ and does not occur freely in ϕ, xj is substitutable for
xk and does not occur freely in (∀xkϕ(ci;xk)). Thus by Lemma 5.9,

∅ `
((
∀xkϕ(ci;xk)

)
→
(
∀xjϕ(ci;xk)(xk;xj)

))
.

Of course, ϕ(ci;xk)(xk;xj) is equal to ϕ(ci;xj) and so

∅ `
((
∀xkϕ(ci;xk)

)
→
(
∀xjϕ(ci;xj)

))
.

Finally,

Γ0 ` (∀xkϕ(ci;xk)) and

Γ0 `
((
∀xkϕ(ci;xk)

)
→
(
∀xjϕ(ci;xj)

))
and so Γ0 ` (∀xjϕ(ci;xj)). But Γ0 ⊆ Γ, and so trivially, Γ ` (∀xjϕ(ci;xj)). ut

5.3 Soundness
Now that we have a defined a notion of proof, we will define two important
properties, one syntactic and one semantic, of a set of formulas Γ that will be at
the center of this chapter’s results.

Definition 5.12 Suppose that Γ is a set of L-formulas.

(1) Γ is consistent if and only if for every ϕ, if Γ ` ϕ, then Γ 6` (¬ϕ).

(2) Γ is satisfiable if and only if there exists a structureM and anM-assignment
ν such that (M, ν) � Γ. ut

Examining the definitions and results up to this point about first-order logic,
it is natural to ask whether there is a connection between the provability and
validity of a statement. If there is a statement that is satisfied by a mathematical
structure, we know that we cannot prove its negation. Conversely, if there is
a proof of a statement in that structure, then that structure must make that
statement true.

The important connection between provability and validity is established in
the Gödel Completeness Theorem, stated below. Our main goal is to prove this
theorem.

Theorem 5.13 (Gödel Completeness) Suppose Γ is a set of L-formulas.
Then Γ is consistent if and only if Γ is satisfiable. ut
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The implication from satisfiability to consistency can be expressed heuristi-
cally: if (M, ν) satisfies Γ, then (M, ν) satisfies all of the deductive consequences
of Γ. We check this implication in the following theorem.

Theorem 5.14 (Soundness) Suppose that Γ is a set of L-formulas, that ϕ is
an L-formula, and that Γ ` ϕ. Suppose that M is a structure and that ν is an
M-assignment such that (M, ν) � Γ. Then (M, ν) � ϕ.

Proof. We show by induction on n that if 〈ϕ1, . . . , ϕn〉 is a deduction from Γ,
then for each i less than or equal to n,M � ϕi. We assume that the claim holds
for every i less than n, and we check that it holds for n.

If ϕn ∈ Γ, then since (M, ν) � Γ, (M, ν) � ϕn.
If there are i and j less than n such that ϕj is equal to (ϕi → ϕn), then by

induction (M, ν) � ϕi and (M, ν) � (ϕi → ϕn). By the definition of satisfaction
(M, ν) � ϕn.

It remains to consider the case in which ϕn ∈ ∆. For this, we must consider
each of the clauses (1)–(7) in Definition 5.2.

Clause (1). ϕn is a Group I, Group II, Group III, or a Group IV axiom.
Then (M, ν) � ϕn by the definition of satisfaction for the logical connectives.

(See Exercise 3 on page 55.)

Clause (2). ϕn = ((∀xiϕ)→ ϕ(xi; τ)) has the form

((∀xiϕ)→ ϕ(xi; τ)),

where τ is substitutable for xi in ϕ.
If (M, ν) 6� (∀xiϕ), then trivially (M, ν) � ϕn. Therefore we can reduce to

the case that (M, ν) � (∀xiϕ).
Then for every M-assignment µ which agrees with ν on the free variables

of (∀xiϕ), (M, µ) � ϕ. In particular, if µ agrees with ν on all of the variables
except for xj and µ(xj) = ν(τ), then (M, µ) � ϕ. By the Substitution Theorem,
Theorem 3.18,

(M, ν) � ϕ(xi; τ),

and so (M, ν) � ϕn.

Clause (3). ϕn has the form

((∀xi(ψ1 → ψ2))→ ((∀xiψ1)→ (∀xiψ2))).

If (M, ν) 6� (∀xi(ψ1 → ψ2)) or if (M, ν) 6� (∀xiψ1), then (M, ν) � ϕn.
Therefore we can reduce to the case that

(1.1) (M, ν) 6� (∀xi(ψ1 → ψ2))

(1.2) (M, ν) � (∀xiψ1).

Therefore, for everyM-assignment µ which agrees with ν on the free variables
of (∀xi(ψ1 → ψ2)):

(2.1) (M, µ) � (ψ1 → ψ2)
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(2.2) (M, µ) � ψ1.

Consequently, for every such µ, (M, µ) � ψ2. Since every free variable of (∀xiψ2)
is also free in (∀xi(ψ1 → ψ2)), for every M-assignment µ which agrees with ν
on the free variables of (∀xiψ2), (M, µ) � ψ2. It follows that (M, ν) � (∀xiψ2),
and hence that (M, ν) � ϕn.

Clause (4). ϕn has the form

(ψ → (∀xiψ))

where xi is not free in ψ. If (M, ν) 6� ψ, then (M, ν) � ϕn.
Therefore we can reduce to the case that (M, ν) � ψ. Then by Theorem 3.12,

for every M-assignment µ, if ν and µ agree on the free variables of ψ, then
(M, µ) � ψ.

Since xi is not free in ψ, the variables which occur freely ψ also occur freely in
(∀xiψ). Thus, if ν and µ agree on the free variables of (∀xiψ), then (M, µ) � ψ.
It follows that (M, ν) � (∀xiψ).

Clause (5). ϕn has the form (xi =̂xi). Then it is immediate that (M, ν) � ϕn.

Clause (6). ϕn has the form

((xi =̂xj)→ (ψ1 → ψ2)),

where ψ1 and ψ2 are L-formulas such that

(3.1) xj is substitutable for xi in ψ1

(3.2) xj is substitutable for xi in ψ2

(3.3) ψ2(xi;xj) = ψ1(xi;xj).

If (M, ν) 6� (xi =̂xj) or (M, ν) 6� ψ1, then (M, ν) � ϕn. Thus, we can reduce to
the case that (M, ν) � (xi =̂xj) and (M, ν) � ψ1.

Since (M, ν) � (xi =̂xj) and since ν(xi) = ν(〈xj〉), we can apply the Substi-
tution Theorem, Theorem 3.18, to the L-formula obtained by substituting the
term 〈xj〉 for the variable xi in ψ1. Thus, (M, ν) � ψ1(xi;xj).

Since ψ2(xi;xj) = ψ1(xi;xj), necessarily (M, ν) � ψ2(xi;xj). Again noting
that ν(xi) = ν(〈xj〉), we can apply Theorem 3.18 once more and conclude from
(M, ν) � ψ2(xi;xj) that (M, ν) � ψ2. Consequently, (M, ν) � ϕn.

Clause (7). ϕn has the form (∀xiψ), where ψ ∈ ∆. By induction (since ψ has
shorter length that ϕn), for every M-assignment µ, (M, µ) � ψ. Consequently,
(M, ν) � (∀xiψ), as required. ut

Corollary 5.15 Suppose that Γ is a set of L-formulas. If Γ is satisfiable, then
Γ is consistent.

Proof. Let Γ be a set of L-formulas that is satisfiable, that is, there is a (M, ν)
such that (M, ν) � Γ. Suppose, towards contradiction, that Γ is inconsistent.
Then there is a formula ϕ such that Γ ` ϕ and Γ ` (¬ϕ). By Theorem
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5.12, (M, ν) also satisfies all logical consequences of Γ. So, (M, ν) � ϕ and
(M, ν) � (¬ϕ). By the definition of satisfaction for negation, we have that
(M, ν) 6� ϕ. But we have that (M, ν) � ϕ, so we have our contradiction.
Therefore, Γ is consistent. ut

The above corollary proves half of the completeness theorem. The other di-
rection, consistency implies satisfiability, requires more machinery.

Definition 5.16 Suppose that Γ is a consistent set of L-formulas. Γ is maximally
consistent if and only if for any L-formula ϕ, either ϕ ∈ Γ or Γ ∪ {ϕ} is not
consistent. ut

Lemma 5.17 Suppose that Γ is an maximally consistent set of L-formulas.
Then for each L-formula ϕ, either ϕ ∈ Γ or (¬ϕ) ∈ Γ.

Proof. Suppose that (¬ϕ) does not belong to Γ. By the maximality of Γ,
Γ ∪ {(¬ϕ)} is inconsistent.

By the exercise at the end of the previous section, for any L-formula θ,

Γ ∪ {(¬ϕ)} ` θ.

Consequently, letting θ be (¬(x1 =̂x1)), Γ ∪ {(¬ϕ)} ` (¬(x1 =̂x1)). By the De-
duction Theorem 5.5,

Γ ` ((¬ϕ)→ (¬(x1 =̂x1))).

Applying Clause (1) in the definition of ∆,

Γ ` (((¬ϕ)→ (¬(x1 =̂x1)))→ ((x1 =̂x1)→ ϕ)).

Two applications of inference (modus ponens) yield Γ ` ϕ. Now, since Γ ` ϕ, any
deduction from Γ ∪ {ϕ} can be converted into a deduction from Γ by replacing
each instance of ϕ with a deduction of ϕ from Γ. Thus, for each θ, if Γ∪{ϕ} ` θ
then Γ ` θ. Since Γ is consistent, Γ ∪ {ϕ} is also consistent.

Finally, since no proper superset of Γ is consistent, ϕ ∈ Γ, as required. ut

5.3.1 Exercises
(1) Show that for every pair of L-formulas ϕ and ψ, {ϕ, (¬ϕ)} ` ψ.

(2) Suppose that Γ ∪ {(¬ϕ)} is not consistent. Show that Γ ` ϕ. (This is a
technical formulation of the legitimacy of proofs by contradiction.)

(3) Suppose that M is an L-structure and ν is an M-assignment. Let

Γ = {ϕ : (M, ν) � ϕ}.

Show that Γ is maximally consistent.
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5.4 A substitution on constants
Our proof that if Γ is consistent then Γ is satisfiable will require that there are
infinitely many constants ci which do not occur in any formula of Γ. We now
verify that one can easily reduce to this case.

Suppose that
ρ : {ci : i ∈ N} → {ci : i ∈ N}

is a function which is 1-to-1.
For each formula ϕ of L let ϕρ be the L-formula obtained where for each

constant ci which occurs in ϕ, every occurrence of ci in ϕ is replaced by the
constant ρ(ci).

If Γ is a set of L-formulas then Γρ denotes the set

{ϕρ | ϕ ∈ Γ}.

Thus Γρ is also set of L-formulas.
With these definitions we have the following lemmas.

Lemma 5.18 Suppose that

ρ : {ci : i ∈ N} → {ci : i ∈ N}

is a function which is 1-to-1. For all formulas ϕ,ψ of L, for all variables xi:

(1) (∀xiϕ)ρ = (∀xiϕρ).

(2) (¬ϕ)ρ = (¬ϕρ).
(3) (ϕ→ ψ)ρ = (ϕρ → ψρ). ut

Lemma 5.19 Suppose that

ρ : {ci : i ∈ N} → {ci : i ∈ N}

is a function which is 1-to-1. Suppose Γ is a set of formulas of L and ϕ is a
formula of L. Suppose that Γ ` ϕ. Then Γρ ` ϕρ.

Proof. Note that if ϕ ∈ ∆ then ϕρ ∈ ∆. Thus if 〈ϕ0, . . . , ϕn〉 is a Γ-proof then
by Lemma 5.18(3), it follows easily that

〈(ϕ0)ρ, . . . , (ϕn)ρ〉

is a Γρ-proof. ut

Lemma 5.20 Suppose that

ρ : {ci : i ∈ N} → {ci : i ∈ N}

is a function which is 1-to-1. Suppose Γ is a set of formulas of L and ϕ is a
formula of L. Suppose that Γρ ` ϕρ. Then Γ ` ϕ.
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Proof. The problem is that ρ may not be a surjection and so we cannot use
Lemma 5.19 with ρ replaced by its inverse.

However since proofs are finite, we can reduce to the case that Γ is finite. Let
C be the set of constants which occur in some formula of

Γ ∪ {ϕ}.

We have that
ρ : {ci : i ∈ N} → {ci : i ∈ N}

is 1-to-1. Therefore since C is finite, there is a 1-to-1

e : {ci : i ∈ N} → {ci : i ∈ N}

such that for all ci ∈ C, e(ρ(ci)) = ci.
For all ψ ∈ Γ,

(ψρ)e = ψ

and so (Γρ)
e

= Γ. Similarly, (ϕρ)e = ϕ. Here of course for each formula ψ and
each set of formulas Σ, ψe and Σe are defined as above but with ρ = e.

Therefore by replacing ρ with e, replacing Γ with Γρ, and replacing ϕ with
ϕρ; by Lemma 5.19, it follows that Γ ` ϕ. ut

Combining Lemma 5.19 and Lemma 5.20, we obtain the following equiva-
lence.

Lemma 5.21 Suppose that

ρ : {ci : i ∈ N} → {ci : i ∈ N}

is a function which is 1-to-1. Suppose Γ is a set of formulas of L and ϕ is a
formula of L. Then the following are equivalent.

(1) Γ ` ϕ.

(2) Γρ ` ϕρ. ut

Finally we note the following lemma.

Lemma 5.22 Suppose that

ρ : {ci : i ∈ N} → {ci : i ∈ N}

is a function which is 1-to-1. Suppose Γ is a set of formulas of L and that Γρ is
satisfiable. Then Γ is satisfiable.

Proof. Let M = (M, I) be the L-structure, and let ν be an M-assignment such
that

(M, ν) � Γρ.

Let Mρ = (M, Iρ) be the L-structure obtained from M and ρ, where for all
i ∈ N,
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(1.1) Iρ(Fi) = I(Fi) and Iρ(Pi) = I(Pi).

(1.2) Iρ(ci) = I(ρ(ci)).

Then by Lemma 5.18, and by Theorem 3.19 on page 54, which connected the
satisfaction relation with the interpretation of constants, (Mρ, ν) � Γ. ut

Remark 5.23 We are headed toward proving the Gödel Completeness Theorem
and by Soundness, we have reduced proving this theorem to just proving that if
Γ is a consistent set of L-formulas, then Γ is satisfiable.

The key point is that by Lemma 5.21 and by Lemma 5.22, it suffices to
restrict to the special case that there are infinitely many constants ci such that
ci does not occur in any formula of Γ.

This is precisely the special case for which we will prove that if Γ is consistent
then Γ is satisfiable. ut

5.5 The Henkin property

Now we show that if a set of L-formulas Γ is consistent, then there exists a model
which satisfies all formulas in Γ. In order to prove this direction of the complete-
ness theorem, we will build a model using the formulas in a given consistent set
Γ.

In this section, we will cover two key ideas that will help us construct the
needed model.

Definition 5.24 We use the notation (∃xiϕ) to represent the L-formula
(¬(∀xi(¬ϕ))). ut

By inspection of Definition 3.10, (M, ν) � (∃xiϕ) the following lemma is
immediate.

Lemma 5.25 Suppose ϕ is an L-formula, xi is a variable,M is an L-structure,
and that ν is an M-assignment. Then the following are equivalent.

(1) (M, ν) � (∃xiϕ).

(2) There is an M-assignment µ such that

(a) µ(xk) = ν(xk) for all k ∈ N such that k 6= i,

(b) (M, µ) � ϕ. ut

Definition 5.26 A set of L-formulas Γ has the Henkin Property if and only if
for each L-formula ϕ and for each variable xi, if (∃xiϕ) ∈ Γ then there exists a
constant cj such that ϕ(xi; cj) ∈ Γ. ut

The following application of Tarski’s Theorem motivates the definition of the
Henkin property. This theorem also shows that if Γ is a set of L-formulas which
is both maximally consistent and has the Henkin property, then Γ is uniquely
determined by the set Σ ⊂ Γ of all the sentences in Γ.
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Theorem 5.27 Suppose that M = (M, I) is an L-structure and ν is an M-
assignment such that

{ν(xi) : i ∈ N} ⊆ {I(ci) : i ∈ N}.

Let Γ = {ϕ : (M, ν) � ϕ} and let Σ be the set of all sentences θ such thatM � θ.
Then the following are equivalent.

(1) Γ has the Henkin property.

(2) Σ has the Henkin property.

(3) There exists an elementary substructure (M0, I0) �M such that

M0 = {I(ci) : i ∈ N}.

Proof. (1) trivially implies (2). Therefore it suffices that (2) implies (3) and that
(3) implies (1).

We first assume (2) and prove (3). To prove (3) it suffices to show that M0

satisfies Tarski’s Criterion.
Let m1, . . . ,mn be elements of M0 and suppose that A ⊆ M is definable in

M from these elements as follows.

a ∈ A ↔ M � ϕ[a,m1, . . . ,mn]

We must show that A ∩M0 is not empty.
Since each element of M0 is in the range of I applied to the set of constant

symbols, we fix ~c = 〈ci1 , . . . , cin〉 so that for each j ≤ n, I(cij ) = mj . By the
Substitution Theorem, Theorem 3.18, for all a ∈M ,

a ∈ A ↔ M � ϕ(~x;~c)[a].

Since A is not empty,

(M, ν) � (∃x0ϕ(~x;~c)).

Then (∃x0ϕ(~x;~c)) is an element of Σ, and so by the Henkin property, there is a
ci0 such that

ϕ(~x;~c)(x0; ci0) ∈ Σ.

Note that

ϕ(~x;~c)(x0; ci0) = ϕ(x0, . . . , xn; ci0 , . . . , cin).

Consequently,

M � ϕ(x0, . . . , xn; ci0 , ci1 , . . . , cin),

and so

M � ϕ[I(ci0), I(ci1), . . . , I(cin)].

By the above, each I(cij ) is equal to mj , so

M � ϕ[I(ci0),m1, . . . ,mn].

I(ci0) is the desired element of M0 ∩A.
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We now assume (3) and prove (1). LetM0 = (M0, I0). Fix (∃xiϕ) ∈ Γ. Thus
by the definition of Γ,

(M, ν) � (∃xiϕ),

Since M0 �M and since ν is an M0-assignment,

(M0, ν) � (∃xiϕ),

By Lemma 5.25, there exists an M0-assignment µ such that

(1.1) (M0, µ) � ϕ,

(1.2) µ(xk) = ν(xk) for all k ∈ N such that k 6= i.

Fix a constant cm such that I0(cm) = I(cm) = µ(xi). The constant cm exists
because µ is an M0-assignment.

Again since M0 �M, and since µ is an M-assignment,

(M, µ) � ϕ

By Substitution Theorem, Theorem 3.18, and since µ(xi) = I(cm),

(M, µ) � ϕ(xi; cm).

Finally xi is not a free variable of ϕ(xi, cm) and µ(xk) = ν(xk) for all k ∈ N such
that k 6= i. Therefore by Theorem 3.12,

(M, ν) � ϕ(xi; cm)

and so ϕ(xi; cm) ∈ Γ. ut

This is a another variation of the previous theorem. The proof uses the fol-
lowing lemma which is left to the exercises. For each L-formula ϕ, let Aϕ be the
alphabet consisting of the predicate symbols, function symbols, and constant
symbols occurring in ϕ.

Lemma 5.28 Suppose M = (M, I) and N = (N, J) are L-structures such that
M = N . Suppose ν is an M-assignment and that ϕ is an L-formula such that

I � Aϕ = J � Aϕ.

Then (M, ν) � ϕ if and only if (N , ν) � ϕ. ut

Theorem 5.29 Suppose Γ is a set of L-formulas such that Γ is satisfiable and
such that there are infinitely many constants ci such that ci does not occur in any
formula of Γ. Then there is an L-structure M = (M, I) and an M-assignment
ν such that the following hold.

(1) (M, ν) � Γ.

(2) M = {I(ci) | i ∈ N}.
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Proof. Since Γ is satisfiable, there exists an L-structure M = (M, I) and an
M-assignment ν such that

(M, ν) � Γ.

By the Lowenheim-Skolem Theorem, we can assume that M is countable. Let C
be the set of contants ci such that ci does not occur in any formula of Γ. Since
M is countable and since C is infinite, there exists a surjection

e : C →M.

Define an interpretation map J as follows. For each function symbol Fi,
J(Fi) = I(Fi), for each predicate symbol Pi, J(Pi) = I(Pi), and for each
constant symbol ci

J(ci) =

{
I(ci), if ci /∈ C;
e(ci), if ci ∈ C.

Thus N = (M,J) is an L-structure, ν is an N -assignment, and by Lemma 5.28

(N , ν) � Γ.

Further M = {I(ci) | i ∈ N}. This proves the theorem. ut

Theorem 5.27 and Theorem 5.29 show that if Γ is a set of L-formulas such
that Γ is satisfiable and such that there are infinitely many constants ci such that
ci does not occur in any formula of Γ, then there exists a set Σ of L-formulas
such that

(1) Γ ⊆ Σ.

(2) Σ is satisfiable and Σ has the Henkin property.

(3) Σ is maximally consistent.

One can naturally define when a set Γ of LA has the Henkin Property when-
ever A is an alphabet which contains all the constant symbols.

Definition 5.30 Suppose A is an alphabet which contains all the constant sym-
bols. A set of LA-formulas Γ has the Henkin Property if and only if for each
LA-formula ϕ and for each variable xi, if (∃xiϕ) ∈ Γ then there exists a constant
cj such that ϕ(xi; cj) ∈ Γ. ut

5.5.1 Exercises
(1) Suppose that Γ is a maximally consistent set of L-formulas. Define the

relation ∼Γ between terms by τ1 ∼Γ τ2 if and only if (τ1 =̂ τ2) ∈ Γ.

Show that ∼Γ is an equivalence relation. More precisely, show that relation
∼Γ is reflexive, symmetric, and transitive.

(2) Let A = {ci : i ∈ N}. Give an example of a consistent theory T1 in the
language LA such that every model of T1 is infinite.
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(3) Let A = {ci : i ∈ N}. Give an example of a consistent theory T2 in the
language LA such that every model of T1 is finite.

(4) Suppose M = (M, I) is an L-structure and that

TM = {ϕ : ϕ is a sentence of L and M � ϕ}

Suppose that M is infinite. Can TM have a finite model?

(5) Prove Lemma 5.28.

Hint: Suppose ϕ is an L-formula. Show by induction on the length of ϕ that
for all M-assignments ν,

(M, ν) � ϕ

if and only

(N , ν) � ϕ

Note: Lemma 5.28 is the version of Theorem 1.22 for the language L.

(6) Let A = {ci : i ∈ N}. Suppose M = (M, I) is an LA-structure.
Which sets X ⊆M are definable in M without parameters and why?

Hint: Use Lemma 5.28 (and Theorem 4.5).

(7) Let A = {ci : i ∈ N}. Give an example of an LA-structure M such that

TM = {ϕ : ϕ is a sentence of LA and M � ϕ}

does not have the Henkin property.

Hint: Use Exercise 6.

(8) Let A = {ci : i ∈ N}. Suppose M = (M, I) is an LA-structure and that
{I(ci) : i ∈ N} is infinite.
Show that

TM = {ϕ : ϕ is a sentence of LA and M � ϕ}

has the Henkin property.

Hint: Use Exercise 6.
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5.6 The Gödel Completeness Theorem

We now carry out the proof of the last half of the Gödel Completeness Theorem:
if a set of L-formulas Γ is consistent, then it is satisfiable. We will do this in two
parts.

First, we will show that we can extend any consistent set Γ to a consistent set
Σ with the Henkin property, assuming that there are infinitely many constants,
ci, which do not occur in any formula of Γ. Then second, we will show that any
such set, Σ, is satisfiable.

This will trivially suffice because any model which satisfies Σ, necessarily
satisfies Γ, since Γ ⊆ Σ.

Theorem 5.31 Suppose that Γ is a consistent set of L-formulas and that there
are infinitely many constants, ci, which do not occur in any formula of Γ. Then
there is a set of formulas Σ such that

(1) Γ ⊆ Σ,

(2) Σ is maximally consistent,

(3) Σ has the Henkin property.

Proof. Let 〈cni
: i ∈ N〉 enumerate the constants which do not occur in any

formula of Γ. Let 〈ϕi : i ∈ N〉 be an enumeration of all L-formulas which satisfies

(1.1) for each formula ϕ there exist distinct positive integers i0 and i1 such that
ϕ = ϕi0 = ϕi1 ,

(1.2) no constant in the set, {cnk
: k ≥ i}, occurs in ϕi.

Define by induction on i ∈ N an increasing sequence 〈Σi : i ∈ N〉 of sets of
formulas as follows.

(2.1) Σ0 = Γ.

(2.2) a) If ϕi /∈ Σi and if Σi ∪ {ϕi} is consistent, then Σi+1 = Σi ∪ {ϕi}.
b) If ϕi ∈ Σi and if ϕi is an existential formula ϕi = (∃xjψ), then

Σi+1 = Σi ∪ {ϕ(xj ; cni
)}.

c) Otherwise, Σi+1 = Σi.

We prove by indiction on i that for each i, the following properties hold.

(3.1) Γ ⊆ Σi.

(3.2) Σi ⊆ Σi+1.

(3.3) Σi is consistent.

(3.4) No constant in the set, {cnk
: k ≥ i}, occurs in any formula of Σi.

(3.5) ϕi ∈ Σi+1 or Σi ∪ {ϕi} is not consistent.

All these claims are immediate by induction except possibly (3.3). The only
subtle part is to show that if Σi is consistent then Σi+1 is consistent when it is
defined by means of case 2(b). We give the argument for this case below.

Suppose that (3.1)–(3.5) hold for i and that Σi+1 = Σi ∪ {ψ(xj ; cnj
)} as

specified in case 2(b). Suppose for a contradiction that Σi+1 is not consistent.
Then Σi ∪ {ψ(xj ; cni)} ` (¬(x1 =̂x1)), as every formula can be derived from an
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inconsistent set. By the Deduction Theorem, Σi ` (ψ(xj ; cni) → (¬(x1 =̂x1)))
and so Σi ` (¬ψ(xj ; cni)). By the Theorem on Constants, Theorem 5.11,
Σi ` (∀xj(¬ψ(x;cni

)))(cni
;xj). Making the substitution, Σi ` (∀xj(¬ψ)). But

since case 2(b) applied, (∃xjψ) ∈ Σi and so (¬(∀xj(¬ψ))) ∈ Σi.
Thus, Σi is not consistent, contrary to assumption. Therefore Σi+1 is consis-

tent, as required. This proves (3.3).
Let Σ = ∪{Σi : i ∈ N}. By (3.1)–(3.4), Γ ⊆ Σ and Σ is consistent. Further,

since every L-formula appears in the list 〈ϕi : i ∈ N〉, by (3.3) and (3.5), Σ is
maximally consistent.

Finally, we verify that Σ has the Henkin property. Suppose that (∃xjψ) ∈ Σ.
By our choice of the enumeration 〈ϕi : i ∈ N〉, there exist i0 < i1 such that
ϕi0 = ϕi1 = (∃xjψ). Since (∃xjψ) ∈ Σ, Σi0 ∪ {(∃xjψ)} is consistent. By case
2(a) in the definition of Σi+1 from Σi, (∃xjψ) ∈ Σi0+1 ⊆ Σi1 . Thus, case 2(b)
applies in the definition of Σi1+1, and so ψ(xj ; cni1

) ∈ Σi1+1, as required to verify
the Henkin property. ut

We prove as Theorem 5.33, that if Γ is a set of L-formulas which is both
maximally consistent and has the Henkin property, then Γ is satisfiable. The
following lemma will be useful for that proof, and it is this lemma which verifies
we have enough logical axioms involving =̂ .

Lemma 5.32 Suppose that ϕ is an L-formula with no quantifiers and that
~τ = 〈τ0, . . . , τn〉 and ~σ = 〈σ0, . . . , σn〉 are sequences of terms. Then for any
sequence of (distinct) variables ~x = 〈xm0

, . . . , xmn
〉,

{(τi =̂σi) : i ≤ n} ∪ {ϕ(~x;~τ)} ` ϕ(~x;~σ).

Proof. We prove Lemma 5.32 by induction on n. Suppose that it holds for all
L-formulas with no quantifiers and for all sequences ~τ and ~σ of length m such
that m ≤ n.

Suppose that 〈τ0, . . . , τn〉 and 〈σ0, . . . , σn〉 are sequences of terms, ϕ is an
L-formula with no quantifiers, and 〈xm0

, . . . , xmn
〉 is a sequence of variables.

Since we are substituting terms for all of the occurrences of xmj
in ϕ, and

this is for all j ≤ n; we may assume that none of these variables occur in any of
the terms τi or σi, for any i ≤ n.

Let ~τ = 〈τi : i < n〉, ~σ = 〈σi : i < n〉, and let ~x = 〈xmi : i < n〉. By the
induction hypothesis for any quantifier free formula ψ:

{(τi =̂σi) : i < n} ∪ {ψ(~x;~τ)} ` ψ(~x;~σ)

Therefore sine ϕ is quantifier free, by the Deduction Theorem,

{(τi =̂σi) : i < n} ` (ϕ(~x;~τ)→ ϕ(~x;~σ))

Since xmn does not appear in any of the formulas (τi =̂σi) where i < n,

{(τi =̂σi) : i < n} `
(
∀xmn

(
ϕ(~x;~τ)→ ϕ(~x;~σ)

))



98 The Gödel Completeness Theorem

Then Clause (2) applies and so

{(τi =̂σi) : i < n} `
(
ϕ(~x;~τ)(xmm

;σn)→ ϕ(~x;~σ)(xmn
;σn)

)
where here and below we use the notation, ϕ(~x;~σ)(xmn

;σn) to denote the formula
ψ(xmn

;σn), where ψ = ϕ(~x;~σ), etc.
Using the fact that none of the variables xmi

, for i ≤ n, appear in any of the
terms τ0, . . . , τn and σ0, . . . , σn, we obtain from the above:

{(τi =̂σi) : i < n} `
(
ϕ(~x, xmn ;~τ , σn)→ ϕ(~x, xmn ;~σ, σn)

)
Let xk be a variable which does not appear in any of the τi’s or σi’s and does

not appear in ϕ. By Clause (6) in Definition 5.2, and since(
ϕ(~x;~τ)

)
(xmn

;xk) =
(
ϕ(~x;~τ)(xmn

;xk)
)

(xmn
;xk),

we have:

∅ `
(

(xmn
=̂xk)→

(
ϕ(~x;~τ)→ ϕ(~x;~τ)(xmn ;xk)

))
.

By Clause (7) and then Clause (2) in the definition of the logical axioms,

∅ `
(

(xmn
=̂xk)→

(
ϕ(~x;~τ)→ ϕ(~x;~τ)(xmn ;xk)

))
(xmn

, xk; τn, σn)

Making the substitution indicated by (xmn
, xk; τn, σn):

∅ `
(

(τn =̂σn)→
(
ϕ(~x, xmn

;~τ , τn)→ ϕ(~x, xmn
;~τ , σn)

))
By the Deduction Theorem,

{(τn =̂σn)} ` (ϕ(~x, xmn ;~τ , τn)→ ϕ(~x, xmn ;~τ , σn)).

and so

{(τn =̂σn)} ∪ {ϕ(~x, xmn
;~τ , τn)} ` ϕ(~x, xmn

;~τ , σn)

But then since we have shown above that

{(τi =̂σi) : i < n} `
(
ϕ(~x;~τ)(xmm

;σn)→ ϕ(~x;~σ)(xmn
;σn)

)
it follows that

{(τi =̂σi) : i ≤ n} ∪ {ϕ(~x, xmn
;~τ , τn)} ` ϕ(~x, xmn

;~σ, σn)

as required. ut

Theorem 5.33 Suppose that Γ is a maximally consistent set of L-formulas with
the Henkin property. Then Γ is satisfiable.

Proof. Our proof is divided into two parts. First we must define a modelM and
an assignment ν for that model. Then we must verify that (M, ν) satisfies Γ.
The modelM is called the Henkin model for Γ and it is uniquely determined up
to isomorphism by Γ. Similarly ν is uniquely determined by Γ, given M.
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Defining M and ν. Define a relation ∼Γ on the set of all constant symbols
by ci ∼Γ cj if and only if (ci =̂ cj) ∈ Γ. As was stated in first problem of the
exercises on page 94, ∼Γ is an equivalence relation on the set of all constant
symbols. More precisely, for all i, j, and k;

(1.1) ci ∼Γ ci,

(1.2) if ci ∼Γ cj then cj ∼Γ ci,

(1.3) if ci ∼Γ cj and cj ∼Γ ck then ci ∼Γ ck.

For each i ∈ N, let

[ci]Γ = {cj : j ∈ N and ci ∼Γ cj}.

[ci]Γ is the equivalence class of ci under the equivalence relation ∼Γ. This set of
equivalence classes is the universe of our model. Let

M = {[ci]Γ : i ∈ N}.

We now define our M-assignment ν. For each variable xi, choose j so that
(xi =̂ cj) ∈ Γ and let ν(xi) = [cj ]Γ.

To see that ν is well defined, we must show that for each xi there is at least
one cj such that (xi =̂ cj) ∈ Γ. Further, we must show that for any two constant
symbols cj1 and cj2 , if (xi =̂ cj1) ∈ Γ and (xi =̂ cj2) ∈ Γ then cj1 ∼Γ cj2 .

For the first of these claims, consider the formula (∃xi+1(xi =̂xi+1)). If it is
not an element of Γ, then by Lemma 5.17 (∀xi+1(¬(xi =̂xi+1))) is an element of
Γ. But then xi is substitutable for xi+1 in (¬(xi =̂xi+1)), and so Γ ` (¬(xi =̂xi)).
But (xi =̂xi) ∈ ∆ and so Γ ` (xi =̂xi). Thus, Γ is not consistent, contrary to
assumption. Thus, (∃xi+1(xi =̂xi+1)) ∈ Γ. Since Γ has the Henkin property,
there exists a constant cj such that (xi =̂ cj) ∈ Γ. Thus, for each xi, there is a cj
as required by the definition of ν.

The second claim follows from Lemma 5.32. Thus, ν is well defined.
We next define the interpretation map I.

(2.1) Suppose ci is a constant.

I(ci) = [ci]Γ.

(2.2) Suppose that Pi is a predicate symbol and that n = π(Pi). Then

I(Pi) = {〈[ck1 ]Γ, . . . , [ckn ]Γ〉 ∈Mn : Pi(ck1 , . . . , ckn) ∈ Γ}.

(2.3) Suppose that Fi is a function symbol and that n = π(Fi). Then

I(Fi)([ck1 ]Γ, . . . , [ckn ]Γ) = [ckn+1
]Γ

if and only if(
Fi(ck1 , . . . , ckn) =̂ ckn+1

)
∈ Γ.
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The proofs that I(Pi) and I(Fi) are well defined are analogous to the proof
that ν is well defined.

Claim 5.34 For any term τ , ν(τ) = [ci]Γ if and only if (τ =̂ ci) ∈ Γ.

Proof. We prove Claim 5.34 by induction on the length of τ . If τ has length 1 then
for some k ∈ N, τ = 〈xk〉 or τ = 〈ck〉. If τ = 〈xk〉 then ν(τ) = ν(xk) and the claim
follows by the fact that ν is well defined. If τ = 〈ck〉 then ν(τ) = I(ck) = [ck]Γ
and the claim follows from the definition of ∼Γ.

Now suppose that τ has length n > 1 and that:

Induction Hypothesis: If σ is a term of length less than n, then for all
constants ck, ν(σ) = [ck]Γ if and only if (σ =̂ ck) ∈ Γ.

Since τ has length > 1, there is a sequence of terms ~σ = 〈σ1, . . . , σm〉 and a
function symbol Fi such that τ = Fi(~σ), where |~σ| = π(Fi). By the definition of
ν,

ν(τ) = I(Fi)(ν(~τ)).

Let 〈cj1 , . . . , cjm〉 be a sequence of constants such that ν(τk) = [cjk ]Γ for all
k = 1, . . . ,m. Thus,

ν(τ) = I(Fi)
(
[cj1 ]Γ, . . . , [cjm ]Γ

)
.

By the definition of I(Fi), for each constant symbol cs,

I(Fi)
(
[cj1 ]Γ, . . . , [cjm ]Γ

)
= [cs]Γ

if and only if(
Fi(cj1 , . . . , cjm) =̂ cs

)
∈ Γ.

Consequently, ν(τ) = [cs]Γ if and only if (Fi(cj1 , . . . , cjm) =̂ cs) ∈ Γ.
By the induction hypothesis, (τk =̂ cjk) is an element of Γ, for all k = 1, . . . ,m.

Therefore, by Lemma 5.32, and letting ~c = 〈cj1 , . . . , cjm〉,

(Fi(~τ) =̂Fi(~c)) ∈ Γ.

We can conclude that

(Fi(~c) =̂ cs) ∈ Γ if and only if (τ =̂ cs) ∈ Γ.

Consequently, ν(τ) = [cs]Γ if and only if (τ =̂ cs) ∈ Γ. This completes the
inductive step, and this finishes the proof Claim 5.34.



The Gödel Completeness Theorem 101

Verifying that (M, ν) satisfies Γ. We now prove that for each formula ϕ,
ϕ ∈ Γ if and only if (M, ν) � ϕ.

We first reduce to the case in which ϕ is a sentence. Suppose that ϕ is a
formula, xi is a variable and that ν(xi) = [cj ]Γ. Suppose that xk is a variable
not occurring in ϕ. Thus, ((xi =̂xk)→ (ϕ→ ϕ(xi;xk))) is a logical axiom, and
by application of Clause (7) and then Clause (2),

∅ ` ((xi =̂ cj)→ (ϕ→ ϕ(xi; cj))),

since ϕ(xi;xk)(xk; cj) = ϕ(xi; cj). It follows that if ν(xi) = [cj ]Γ, then
Γ ` (ϕ→ ϕ(xi; cj)). In a similar way, if ν(xi) = [cj ]Γ, then Γ ` (ϕ(xi; cj)→ ϕ):
use the above argument for (¬ϕ) and then apply Clause (1). Consequently,
Γ ` (ϕ ↔ ϕ(xi; cj)) and so (ϕ ↔ ϕ(xi; cj)) ∈ Γ.

Let n be large enough so that all the free variables of ϕ belong to {x0, . . . , xn}.
For each k ≤ n let mk be such that ν(xk) = cmk

. By the above analysis, if
~x = 〈x0. . . . , xn〉 and ~c = 〈ck0 , . . . , ckn〉 then ϕ(~x;~c)) is a sentence and

(ϕ ↔ ϕ(~x;~c)) ∈ Γ.

Thus, for each formula ϕ there exists a sentence ϕ∗ such that (ϕ ↔ ϕ∗) ∈ Γ.

Claim 5.35 For every sentence ϕ, ϕ ∈ Γ if and only if M � ϕ.

Proof. We proceed by induction on the length of ϕ and this is the only time we
will prove something about sentences (as opposed to something about formulas)
by induction on length.

We first suppose that ϕ is a sentence and that ϕ is an atomic formula. There
are two subcases.

First, ϕ could be of the form (τ1 =̂ τ2), where τ1 and τ2 are terms. Let
ci1 be a constant such that ν(τ1) = [ci1 ]Γ and let ci2 be a constant such
that ν(τ2) = [ci2 ]Γ. By Claim 5.34, (τ1 =̂ ci1) and (τ2 =̂ ci2) are elements of
Γ. Lemma 5.32 applies, and so (τ1 =̂ τ2) ∈ Γ if and only if (ci1 =̂ ci2) is an
element of Γ. Further (ci1 =̂ ci2) is an element of Γ if and only if [ci1 ]Γ = [ci2 ]Γ.
Consequently, (τ1 =̂ τ2) ∈ Γ if and only if M � (τ1 =̂ τ2), as required.

The second subcase is that ϕ = Pi(~τ). Let n = π(Pi). By definition,

(M, ν) � ϕ if and only if ν(~τ) ∈ I(Pi).

For each k = 1, . . . , n, let cjk be a constant such that ν(τk) = [cjk ]Γ. Thus,

ν(~τ) ∈ I(Pi) if and only if 〈[cj1 ]Γ, . . . , [cjn ]Γ〉 ∈ I(Pi).

By the definition of I(Pi),

〈[cj1 ]Γ, . . . , [cjn ]Γ〉 ∈ I(Pi) if and only if Pi(cj1 , . . . , cjn) ∈ Γ.

By Claim 5.34, (τk =̂ cjk) ∈ Γ for each k = 1, . . . , n and so we can apply
Lemma 5.32 to conclude that
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Pi(cj1 , . . . , cjn) ∈ Γ if and only if Pi(~τ) ∈ Γ.

Thus,M � ϕ if and only if ϕ ∈ Γ. This finishes the case in which ϕ is an atomic
formula.

We now suppose that the length of ϕ is N , ϕ is not an atomic formula and
that the following condition holds.

Induction Hypothesis: Suppose that ψ is a sentence of length less than N .
Then M � ψ if and only if ψ ∈ Γ.

There are three subcases.

Negation. Suppose that ϕ = (¬ψ). Since ϕ is a sentence, so is ψ. Consequently,
the induction hypothesis applies, and so M � ψ if and only if ψ ∈ Γ. Therefore
M � (¬ψ) if and only if M 6� ψ, if and only if ψ 6∈ Γ, if and only if (¬ψ) ∈ Γ
(since Γ is maximally consistent).

Implication. Suppose that ϕ = (ψ1 → ψ2). Again, the induction hypothesis
applies and we obtain both: M � ψ1 if and only if ψ1 ∈ Γ and M � ψ2 if and
only if ψ2 ∈ Γ. By definition, M � ϕ if and only if either M 6� ψ1 or M � ψ2.
Since Γ is maximally consistent, ϕ ∈ Γ if and only if either (¬ψ1) ∈ Γ or ψ2 ∈ Γ.
Thus, M � ϕ if and only if ϕ ∈ Γ.

Quantification. Suppose that ϕ = (∀xiψ). By the Henkin property,

(∃xi(¬ψ)) ∈ Γ

if and only if for some constant cj ,

(¬ψ)(xi; cj) ∈ Γ.

By a straightforward deduction, (∀xiψ) ∈ Γ if and only if (∃xi(¬ψ)) 6∈ Γ, if
and only if for every constant cj , (¬ψ)(xi; cj) /∈ Γ. But (¬ψ)(xi; cj) is equal to
(¬ψ(xi; cj)), and so (∀xiψ) ∈ Γ if and only if for every constant cj , ψ(xi; cj) ∈ Γ.

By definition, M � ϕ if and only if for all M-assignments µ, (M, µ) � ψ.
(Since ϕ is a sentence, every M-assignment agrees with every other one on the
free variables of ϕ.)

Suppose that µ is an M-assignment. Let cj be a constant such that
µ(xi) = [cj ]Γ. Then, since xi is the only free variable of ψ and since I(cj) = µ(xi),
it follows that (M, µ) � ψ if and only if M � ψ(xi; cj). Thus, the condition:

For all M-assignments µ, (M, µ) � ψ

is equivalent to the condition:

For all constants cj , M � ψ(xi; cj).

By the induction hypothesis, for each constant cj , M � ψ(xi; cj) if and only
if ψ(xi; cj) ∈ Γ.

Thus, ϕ ∈ Γ if and only if for each constant cj , ψ(xi; cj) ∈ Γ, if and only if
for each constant cj , M � ψ(xi; cj), if and only if M � ϕ.

This completes the final case, which proves Claim 5.35.
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Finally by Claim 5.35, Γ is satisfiable. ut
Now, we finally restate the completeness theorem and provide its proof.

Theorem 5.36 (Gödel Completeness Theorem) For any set of L-formulas
Γ, the following conditions are equivalent.

(1) Γ is consistent.

(2) Γ is satisfiable.

Proof. By the Soundness Theorem, Theorem 5.14, if Γ is satisfiable then it is
consistent. Therefore we have only to show that if Γ is consistent then Γ is
satisfiable.

By Lemma 5.21 and Lemma 5.22, we can reduce to the case that there are
infinitely many constants which do not occur in any formula of Γ. But then
by Theorem 5.31, Γ can be extended to a maximally consistent set Σ with the
Henkin property and by Theorem 5.33, Σ is satisfiable. This trivially implies
that Γ is satisfiable since Γ ⊆ Σ. ut

The Gödel Completeness Theorem is often succinctly reformulated as follows
where Γ � ϕ is used to express the condition that Γ ∪ {(¬ϕ)} is not satisfiable.

Theorem 5.37 For any set of L-formulas Γ and any L-formula ϕ,

Γ � ϕ if and only if Γ ` ϕ. ut

Corollary 5.38 An L-formula is valid if and only if it is provable.

Proof. From Theorem 5.37, take Γ to be ∆ and refer to Definition 5.4 ut

5.7 The Craig Interpolation Theorem
The Completeness Theorem states that if ϕ is satisfied whenever Γ is satisfied
then there is a proof of ϕ from Γ. In this section, we generalize the Completeness
Theorem to the restricted languages LA.

Of course one can fairly easily convince oneself that the proof of the Complete-
ness Theorem can be adapted to the languages LA (at least for those alphabets
A with infinitely many constant symbols). In fact, for the cases where A has no
function symbols, the proof is easier since all terms are then trivial (and one can
deduce the Gödel Completeness Theorem for L from that for LA).

We shall take a slightly different approach for it will reveal some additional
interesting features of our formal notion of proof, this approach culminates with
the statement and proof of the Craig Interpretation Theorem for the language
L. This completes a journey which began with the version of this theorem that
we proved for the propositional language L0.

Definition 5.39 Suppose that Γ is a set of LA-formulas and that ϕ is an LA-
formula. Then Γ `LA ϕ if and only if there exists a proof 〈ϕ1, . . . , ϕn〉 of ϕ from
Γ such that for each i ≤ n, ϕi is an LA-formula. ut
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Eliminating predicate symbols. Suppose that ϕ is a formula and that Pi is
a predicate symbol. Let [ϕ]Pi denote the formula defined as follows by induction
on the length of ϕ:

(1) If ϕ is an atomic formula, then

[ϕ]Pi =

{
(τ1 =̂ τ1), if ϕ = Pi(τ1 . . . τn), where n = π(Pi);

ϕ, otherwise.

(2) [(¬ψ)]Pi
= (¬[ψ]Pi

).

(3) [(ψ1 → ψ2)]Pi = ([ψ1]Pi → [ψ2]Pi).

(4) [(∀xiψ)]Pi
= (∀xi[ψ]Pi

).

Thus [ϕ]Pi is obtained from ϕ by replacing every instance of Pi by a trivial
formula.

Lemma 5.40 (Predicates) Suppose that Γ is a set of formulas and that Pi
is a predicate symbol which does not occur in any formula of Γ. Suppose that
〈ψ1, . . . , ψm〉 is a proof from Γ. Then 〈[ψ1]Pi

, . . . , [ψm]Pi
〉 is a proof from Γ.

Proof. Note that if Pi does not occur in ϕ, then [ϕ]Pi = ϕ. Thus, for each ϕ ∈ Γ,
[ϕ]Pi

= ϕ.
By inspection of Definition 5.2, if ϕ is a logical axiom then [ϕ]Pi

is a logical
axiom.

Finally, if ϕ1 and ϕ2 are formulas then

[(ϕ1 → ϕ2)]Pi
= ([ϕ1]Pi

→ [ϕ2]Pi
).

It follows by induction on n ≤ m, that 〈[ψ1]Pi
, . . . , [ψn]Pi

〉 is a proof from
Γ. ut

Eliminating function symbols. Suppose that τ is a term and that Fi is a
function symbol. Let [τ ]Fi denote the term defined by induction on the length
of τ as follows.

(1) [xj ]Fi = xj , [cj ]Fi = cj ;

(2) Suppose τ = Fj(τ1 . . . τm), where m = π(Fj). Then

[τ ]Fi =

{
Fj([τ1]Fi

, . . . , [τm]Fi
), if Fi 6= Fj ;

[τ1]Fi
, otherwise.

Let [ϕ]Fi
denote the formula defined as follows by induction on the length of

ϕ.

(1) If ϕ is an atomic formula and ϕ = (τ1 =̂ τ2), then [ϕ]Fi
= ([τ1]Fi

=̂ [τ2]Fi
).

(2) If ϕ is an atomic formula and ϕ = Pj(τ1 . . . τn), where n = π(Pj), then
[ϕ]Fi

= Pj([τ1]Fi
, . . . , [τn]Fi

).

(3) [(¬ψ)]Fi
= (¬[ψ]Fi

).
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(4) [ψ1 → ψ2]Fi = ([ψ1]Fi → [ψ2]Fi).

(5) [(∀xiψ)]Fi
= (∀xi[ψ]Fi

).

Thus [ϕ]Fi is obtained from ϕ by replacing those terms which express appli-
cation of Fi by simpler terms which do not refer to Fi. Thus in essence, we are
in effect trivializing Fi.

Lemma 5.41 (Functions) Suppose that Γ is a set of formulas and that Fi
is a function symbol which does not occur in any formula of Γ. Suppose that
〈ψ1, . . . , ψm〉 is a proof from Γ. Then 〈[ψ1]Fi , . . . , [ψm]Fi〉 is a proof from Γ.

Proof. The proof is quite similar to that of the Lemma on Predicates, Lemma 5.40.
Note that if Fi does not occur in ϕ then [ϕ]Fi = ϕ. Thus for each

ϕ ∈ Γ, [ϕ]Fi
= ϕ. By inspection of Definition 5.2, if ϕ is a logical ax-

iom then [ϕ]Fi
is a logical axiom. Finally, if ϕ1 and ϕ2 are formulas, then

[(ϕ1 → ϕ2)]Fi
= ([ϕ1]Fi

→ [ϕ2]Fi
).

It follows by induction on n ≤ m, that 〈[ψ1]Fi , . . . , [ψn]Fi〉 is a proof from
Γ. ut

As a corollary we obtain the following theorem which confirms that the po-
tentially two different notions of proof for LA are the same.

This of course would have to be the case by the Gödel Completeness Theorem
for LA, which is Theorem 5.43 below.

The key point which underlies of all of this, is that logical implication, this
is the relation that Γ � ϕ, is obviously necessarily the same where Γ ∪ {ϕ} is a
set of LA-formulas, whether it is defined as we have defined it or specialized to
the language LA.

Theorem 5.42 Suppose that Γ is a set of LA-formulas and that ϕ is an LA-
formula. Then

Γ ` ϕ if and only if Γ `LA ϕ.

Proof. The implication from right to left is immediate, so we have only to prove
that if Γ ` ϕ then Γ `LA ϕ. Let 〈ψ1, . . . , ψm〉 be a proof from Γ of ϕ.

Let 〈Ak : k ≤ n〉 be an increasing sequences of sets such that for all k < n,

(1.1) Ak is an alphabet.

(1.2) Ak+1\Ak contains at most one element,

(1.3) A0 = A,

(1.4) For each j ≤ m, ψj is an LAn
-formula.

Thus by condition (1.4), Γ `LAn
ϕ. We prove:

Claim: For each k < n, if Γ `LAk+1
ϕ then Γ `LAk

ϕ.

We prove the claim by just proving directly (and not by induction) that the
conclusion of the claim holds for each k < n. Fix k < n. The claim (for k)
follows from Lemma 5.10 if ALAk+1

\ALAk
contains only a constant symbol; it
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follows from Lemma 5.40 if ALAk+1
\ALAk

contains only a predicate symbol; and

it follows from Lemma 5.41 if ALAk+1
\ALAk

contains only a predicate symbol.

This proves the claim.
Thus (by reverse induction), Γ `LA ϕ, since A0 = A. ut

Theorem 5.43 (Gödel Completeness Theorem for LA) Suppose that Γ is
a set of LA-formulas and that ϕ is an LA-formula. Then

Γ `LA ϕ if and only if Γ � ϕ.

Proof. By Theorem 5.37, Γ � ϕ if and only if Γ ` ϕ. By Theorem 5.42, Γ ` ϕ if
and only if Γ `LA ϕ. Thus, Γ � ϕ if and only if Γ `LA ϕ, as required. ut

The three lemmas on Functions, Predicates, and Constants (these are
Lemma 5.41, Lemma 5.40, and Lemma 5.10 ) can be generalized and combined
into a single theorem, the Craig Interpolation Theorem.

For the proof of the Craig Interpolation Theorem it is convenient to use the
following definitions. Recall that a theory is a set of sentences, see page 41.

Definition 5.44 Suppose A is an alphabet, Γ ⊂ LA is a theory, and Γ is con-
sistent. Then Γ is LA-maximally consistent if for all sentences ϕ ∈ LA, either
ϕ ∈ Γ or (¬ϕ) ∈ Γ. ut

Definition 5.45 Suppose A is an alphabet and Γ ⊂ LA. Suppose that C is a
nonempty set of constants and that C ⊆ A. Then Γ has the C-Henkin property
if for each formula (∃xkϕ) ∈ Γ there exists cm ∈ C such that ϕ(xk; cm) ∈ Γ. ut

The following variations on Generalization (Theorem 5.6) will also be useful.

Lemma 5.46 Suppose Γ ⊂ LA is a set of sentences, ϕ is a sentence, θ is a
formula, and

Γ ` (ϕ→ θ).

Suppose xk is a variable. Then

Γ ` (ϕ→ (∀xkθ)).

Proof. Thus Γ ∪ {ϕ} ` θ. Every formula in Γ ∪ {ϕ} is a sentence and so by
Generalization, Γ ∪ {ϕ} ` (∀xkθ). Finally by Deduction,

Γ ` (ϕ→ (∀xkθ)). ut

Lemma 5.47 Suppose Γ ⊂ LA is a set of sentences, ϕ is a sentence, θ is a
formula, and

Γ ` (θ → ϕ).

Suppose xk is a variable. Then

Γ ` ((∀xkθ)→ ϕ)
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Proof. Since every formula in Γ is a sentence, by Generalization

Γ ` (∀xk(θ → ϕ)).

But both

(1.1) ((∀xk(θ → ϕ))→ ((∀xkθ)→ (∀xkϕ)))

(1.2) ((∀xkϕ)→ ϕ

are logical axioms. Thus by Inference (twice),

Γ ` ((∀xkθ)→ ϕ) ut

The following lemma, which is left to the exercises, motivates the key strategy
in the proof of Theorem 5.49

Lemma 5.48 Suppose that T1 and T2 are theories of LA such that T1 ∪ T2 has
no models. Then there is a sentence θ such that T1 ` θ and such that T2 ` (¬θ).ut

Suppose that Σ is a theory. Let AΣ be the set of constant symbols, predicate
symbols and function symbols which occur in some sentence of Σ. Thus AΣ is
the minimum alphabet (under set inclusion), A, such that each sentence of Σ is
in the language of LA.

Theorem 5.49 (Craig Interpolation Theorem: Version I) Suppose Γ is a
set of sentences, ϕ1 and ϕ2 are sentences, and that

Γ ` (ϕ1 → ϕ2).

Let
A∗ =

(
A{ϕ1} ∩ A{ϕ2}

)
∪ AΓ

Then there is a sentence ψ, called the interpolant, such that the following hold.

(1) ψ is a sentence in the language LA∗ .
(2) Γ ` (ϕ1 → ψ).

(3) Γ ` (ψ → ϕ2).

Proof. We assume toward a contradiction that there is no interpolant ψ with the
properties (1)-(3). By Lemma 5.21 and by Lemma 5.22, we can reduce to the
case that there is an infinite set C of constants cm such that cm does not occur
in AΓ ∪ A{ϕ1} ∪ A{ϕ2}.

Let
A
′

∗ =
(
A{ϕ1} ∩ A{ϕ2}

)
∪ AΓ ∪ C

We will prove the Craig Interpolation Theorem using a method similar to
how we proved the completeness theorem, but instead of using the consistency
of a set of formulas as a guide on how to build our extensions, we use the notion
of inseparability instead. This we define below.

Suppose T and U are theories in LA′∗ . Then:
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(1.1) Suppose that θ ∈ LA′∗ and θ is a sentence. Then θ separates T and U if

and only if T ` θ and U ` (¬θ).
(1.2) T and U are inseparable if and only if there is no sentence in the language

of LA′∗ which separates them.

We prove that there is a model M such that

(2.1) M � Γ,

(2.2) M � (ϕ1 ∧ (¬ϕ2)).

This by the Soundness Theorem will contradict that

Γ ` (ϕ1 → ϕ2).

We first prove:

(3.1) Γ ∪ {ϕ1} is consistent.

(3.2) Γ ∪ {(¬ϕ2)} is consistent.

Assume Γ ∪ {ϕ1} is not consistent. Choose ψ ∈ LA∗ such that ψ is a contra-
diction. Thus Γ ∪ {ϕ1} ` ψ and so by the Deduction Theorem,

Γ ` (ϕ1 → ψ).

Since ψ is a contradiction, necessarily

Γ ` (ψ → ϕ2)

and this contradicts there is no interpolant ψ with the properties (1)-(3).
Similarly, assume Γ ∪ {(¬ϕ2)} is not consistent. Then Γ ` ϕ2. But

Γ ` (ϕ1 → ϕ2) and so necessarily Γ ` ϕ1. Choose ψ ∈ LA∗ such that such
that Γ ` ψ. Then Γ ` (ϕ1 → ψ) and Γ ` (ψ → ϕ2). This again contradicts there
is no interpolant ψ with the properties (1)-(3).

Recall that A{ϕ1} is the set of all the nonlogical symbols which occur in ϕ1;

similarly for A{ϕ2}. Further A∗ = (A{ϕ1} ∩ A{ϕ2}) ∪ AΓ and A′∗ = A∗ ∪ C. Let

• A1

′
= A{ϕ1} ∪ AΓ ∪ C and L′1 = LA′1

• A2

′
= A{ϕ2} ∪ AΓ ∪ C and L′2 = LA′2

• L′∗ = LA′∗ .
First we prove:

(4.1) The theories {ϕ1} ∪ Γ and {(¬ϕ2)} ∪ Γ are inseparable.

Assume toward a contradiction that they are separable. Then there exists a
sentence θ ∈ LA′∗ such that Γ ∪ {ϕ1} ` θ and Γ ∪ {(¬ϕ2)} ` (¬θ). Thus by the
Deduction Theorem, we get that

Γ ` (ϕ1 → θ) and Γ ` ((¬ϕ2)→ ¬θ)

which implies that

Γ ` (ϕ1 → θ) and Γ ` (θ → ϕ2).

If θ contains no constants from C then θ ∈ LA∗ and this contradicts our assump-
tion that no interpolant exists. Let cn1

, . . . , cnk
be the constants of C which occur
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in θ and let xm1 , . . . , xmk
be distinct variables which do not occur in ϕ1, ϕ2, or

θ. Let

θ∗ = θ(cn1
, . . . , cnk

;xm1
, . . . , xmk

)

be the formula obtained from θ by substituting xmi
for each occurrence of cni

,
for each i = 1, . . . , k. Each variable xmi is free for cni in θ (since it does not
occur in in θ).

Since no cm ∈ C occurs in any formula of Γ and since every formula of Γ is a
sentence:

Γ ` (ϕ1 → θ∗) and Γ ` (θ∗ → ϕ2).

Now let

θ∗∗ = (∀xm1
. . . (∀xmk

θ∗) . . . ).

Since every formula in Γ∪ {ϕ1, ϕ2} is a sentence, it follows by repeated applica-
tions of Lemma 5.46 and Lemma 5.47 that:

Γ ` (ϕ1 → θ∗∗) and Γ ` (θ∗∗ → ϕ2).

But θ∗∗ ∈ LA∗ and θ∗∗ is a sentence. This again contradicts our assumption that
no interpolant exists.

This proves (4.1).
Both L′1 and L′2 are countable languages, and so we can enumerate their

sentences:

σ0, σ1, σ2, . . .

δ0, δ1, δ2, . . .

where for each i, the σi’s and the δi’s are in the languages L′1 and L′2, respectively.
We now inductively construct two increasing sequences of theories via the

following steps:

(5.1) T0 = {ϕ1} ∪ Γ

(5.2) U0 = {(¬ϕ2)} ∪ Γ

(5.3) If Ti ∪ {σi} and Ui are inseparable, then σi ∈ Ti+1.

(5.4) If Ti+1 and Ui ∪ {δi} are inseparable, then δi ∈ Ui+1.

(5.5) If σi = (∃xkσ) and σi ∈ Ti+1, then σ(xk; cm) ∈ Ti+1 for some cm ∈ C
such that cm does not occur in σi and such that cm does not occur in any
formula of Ti.

(5.6) If δi = (∃xkδ) and δi ∈ Ui+1, then δ(xk; cm) ∈ Ui+1 for some cm ∈ C
that such cm does not occur in δi and such that cm does not occur in any
formula of Ui.

We then define the two sets:

Tω =
⋃
i<ω Ti and Uω =

⋃
i<ω Ui
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We have proved that {ϕ1} ∪ Γ and {(¬ϕ2)} ∪ Γ are inseparable. Further by
(5.3) and (5.4), inseparability is preserved at each step of our construction. Thus
by induction it follows easily that Tω and Uω are inseparable theories.

Note that by (5.5) and (5.6), Tω and Uω each have the C-Henkin property.
We claim that Tω and Uω are both consistent sets of sentences. To see this

assume toward a contradiction that Tω is inconsistent. Fix θ ∈ LA∗ such that
(¬θ) ∈ Uω. Then

Uω ` (¬θ)

and since Tω is inconsistent, Tω ` θ. Thus there exists a sentence which separates
Tω and Uω, contradicting their inseparability. Similarly, if Uω is inconsistent then
there exists a sentence which separates Tω and Uω, again contradicting their
inseparability.

We continue by proving a series of claims.

Claim 1: Tω is L′1-maximally consistent.

Proof of Claim 1: Suppose that Tω is not L′1-maximally consistent, then there
is some σ ∈ L′1 such that σ 6∈ Tω but Tω ∪ {σ} is consistent. Then for some
n < ω, Tn ∪ {σ} and Un are separable, so there exists a sentence θ1 ∈ LA∗ such
that Tn ∪ {σ} ` θ1 and Un ` (¬θ1).

Furthermore, since σ 6∈ Tω, Tω ∪ {(¬σ)} is also consistent. Then for some
m < ω, Tm ∪ {(¬σ)} and Um are separable, so there exists a sentence θ2 ∈ LA∗
such that Tm ∪ {(¬σ)} ` θ2 and Um ` (¬θ2).

We then get that

(6.1) Tω ` (θ1 ∨ θ2) (since Tn ∪ {σ} ` θ1 and Tm ∪ {(¬σ)} ` θ2)

(6.2) Uω ` ( (¬θ1) ∧ (¬θ2) ) (since Un ` (¬θ1) and Um ` (¬θ2).

But ( (¬θ1)∧ (¬θ2) ) is equivalent to (¬(θ1∨ θ2)), and so we have a contradiction
since Tω and Uω are inseparable.

This proves Claim 1 and the same argument proves:

Claim 2: Uω is L′2-maximally consistent.

Both Claim 1 and Claim 2 would hold if we defined separability by requiring
the witness sentence θ actually be in LA where

A =
(
A{ϕ1} ∩ A{ϕ2}

)
∪ C.

It is for the next claim that we need to use the definition we have given where
the sentence θ is only required to be in LA′∗ .

Claim 3: Tω ∩ Uω is L′∗-maximally consistent.

Proof of Claim 3: Suppose not, then there is some sentence σ ∈ L′∗ such that
σ 6∈ Tω ∩ Uω and such that (Tω ∩ Uω) ∪ {σ} is consistent.

First we consider the case where σ ∈ Tω but σ 6∈ Uω. The case where σ is
instead in Uω instead of Tω is symmetric. Since Uω is L′2-maximally consistent,
then (¬σ) ∈ Uω. But then we have that Tω ` σ and Uω ` (¬σ), contradicting
their inseparability.
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Finally suppose that σ 6∈ Tω and σ 6∈ Uω. Since both theories are maximally
consistent, we have that (¬σ) ∈ Tω and (¬σ) ∈ Uω. Thus (¬σ) ∈ Tω ∩ Uω.
But then this implies that (Tω ∩ Uω) ∪ {σ} is inconsistent, which contradicts
our assumption that (Tω ∩ Uω) ∪ {σ} is consistent. Thus, Tω ∩ Uω must be a
L′∗-maximally consistent.

Claim 4: There exists a model M of Tω ∪ Uω.

Proof of Claim 4: Let M1 = (M1, I1) be the Henkin model of Tω and let
M2 = (M2, I2) be the Henkin model of Uω. Thus since both Tω and Uω have
the C-Henkin property:

(7.1) M1 = {I1(cm) | cm ∈ C}.
(7.2) M2 = {I2(cm) | cm ∈ C}.

Now we come to the key point. Since Tω ∩ Uω is L′∗-maximally consistent, we
can reduce to the case that

(8.1) M1 = M2 = {I1(cm) | cm ∈ C} = {I2(cm) | cm ∈ C}.
(8.2) For all cm ∈ C, I1(cm) = I2(cm).

Thus we can “merge” the models M1 and M2 into a single model M = (M, I)
which is an LA-structure where

A = A{ϕ1} ∪ A{ϕ1} ∪ AΓ ∪ C

by simply defining

(9.1) M = M1 = M2,

(9.2) I = I1 ∪ I2.

Thus:
M � Tω ∪ Uω,

and this proves Claim 4.
Finally:

(10.1) Γ ∪ {ϕ1} ⊆ Tω,

(10.2) Γ ∪ {(¬ϕ2)} ⊆ Uω,

and so by Claim 4, necessarily Γ∪{ϕ1}∪{(¬ϕ2)} is satisfiable. This contradicts
that Γ ` (ϕ1 → ϕ2). ut

The following variation of the Craig Interpolation Theorem is an immediate
special case of Theorem 5.49.

Theorem 5.50 (Craig Interpolation Theorem: Version II) Suppose that
ϕ1 and ϕ2 are sentences and that

∅ ` (ϕ1 → ϕ2).

Let
A∗ = A{ϕ1} ∩ A{ϕ2}.

Then there is a sentence ψ, called the interpolant, such that the following hold.
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(1) ψ is a formula in the language LA∗ .
(2) ∅ ` (ϕ1 → ψ).

(3) ∅ ` (ψ → ϕ2). ut

5.7.1 Exercises
(1) Prove Lemma 5.48.

(2) Consider the construction of the theories Tω and Uω as in the proof
for the Craig Interpolation Theorem (Version I). Show that the reducts
(see Definition 3.4 on page 44) of their Henkin models to the alphabet,
(A{ϕ1} ∩ A{ϕ2}) ∪ AΓ, are isomorphic.

5.8 The Compactness Theorem

In the previous section, we established the result that a given formula ϕ is valid
if and only if it is provable. That is, every validity has a proof. Gödel’s Complete-
ness Theorem also has another very important consequence: the Compactness
Theorem.

Compactness is used throughout model theory as a method to construct
models for certain theories.

Theorem 5.51 (The Compactness Theorem) Suppose that Γ is a set of
formulas and that for every finite subset Γ0 of Γ, Γ0 is satisfiable. Then Γ is
satisfiable.

Proof. By contrapositive, suppose that Γ is not satisfiable. Then, by the Com-
pleteness Theorem, Γ is not consistent, and so it proves any formula. Let
〈ψ1, . . . , ψn〉 be a deduction from Γ such that ψn is equal to (¬(x1 =̂x1)). Let
Γ0 be Γ ∩ {ψ1, . . . , ψn}. Note that Γ0 is a finite subset of Γ. Then 〈ψ1, . . . , ψn〉
is a deduction from Γ0 of (¬(x1 =̂x1)). By the Soundness Theorem, Γ0 is not
satisfiable since (¬(x1 =̂x1)) is not satisfied by any model.

This contradicts our assumption that every finite subset of Γ is satisfiable,
and the theorem follows. ut

5.9 Applications of the Compactness Theorem

5.9.1 Satisfiability in finite structures
Suppose that Γ is a theory. Recall that an immediate corollary of the Lowenheim-
Skolem Theorem is that if Γ is satisfiable, then there is an M such that the
universe of M is countable and M � Γ.

But now, we consider the problem of determining whether Γ has an infinite
model or whether Γ has only infinite models. We can prove two relevant results
using compactness. For this we restrict to the case of L, but everything applies
to the case of LA where A is an alphabet.
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Theorem 5.52 Suppose that Γ is a theory such that for every n ∈ N, there is
anM such that (M, ν) � Γ and the universe ofM has at least n elements. Then
there is an M such that the universe of M is infinite and M � Γ.

Proof. Consider the set of formulas ∆ defined as follows:

∆ = Γ ∪ {(¬(xi =̂xj)) : i and j are distinct natural numbers}

Suppose that ∆0 is a finite subset of ∆, and let n be the size of ∆0. By assump-
tion, choose M so that M � Γ and so that the universe of M has at least 2n
elements.

Γ is a theory, so no variable occurs freely in any element of Γ. The elements
of ∆0 \ Γ are formulas of the form (¬(xi =̂xj)). Each of these has at most two
freely occurring variables. So, there are at most 2n variables which occur freely
in ∆0. Choose an M-assignment ν such that for any pair of distinct variables
which occur freely in ∆0, ν assigns these variables to distinct element of the
universe of M. Since M � Γ, we get that (M, ν) � ∆0 ∩ Γ. By the choice of ν,
(M, ν) � ∆0 \ Γ. Thus, (M, ν) � ∆0.

Since ∆0 was an arbitrary finite subset of ∆, every finite subset of ∆ is satisfi-
able. By the Compactness Theorem, ∆ is satisfiable. Suppose that (M∗, ν∗) � ∆,
and hence M∗ � Γ. Then for all i 6= j, ν(xi) 6= ν(xj) and so the universe of M∗
is infinite. ut

Theorem 5.53 Suppose that ϕ is an L-sentence such that for every L-structure
M, if the universe ofM is infinite, thenM � ϕ. Then there is an n such that for
every L-structure M, if the universe of M has at least n elements, then M � ϕ.

Proof. For the sake of a contradiction, suppose that for every n there is an
M such that the universe of M has at least n elements and M � (¬ϕ). By
Theorem 5.52, there is an L-structureM∗ such thatM∗ has an infinite universe
andM∗ � (¬ϕ). The existence ofM∗ contradicts our assumption on ϕ, proving
the theorem. ut

5.9.2 Wellordered sets
Definition 5.54 Suppose that < is a total ordering of a set X. Then < is a
wellorder of X if and only if there is no infinite sequence 〈an : n ∈ N〉 such that
for each n, an+1 < an. ut

Example 5.55 (N, <) is a wellorder and (Q, <) is not a wellorder. ut

Fix an alphabet A0 = {Pi} such that π(Pi) = 2. Thus if < is a total ordering
on a set X, then (X,<) defines an LA0-structure M = (M, I) where M = X
and I(Pi) = <. With this notation, we have the following theorem.
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Theorem 5.56 Suppose that Γ is a theory in the language LA0 such that there
is an infinite set X and a total ordering < on X such that

(X,<) � Γ.

Then there is an infinite set X̂ and a total ordering <̂ on X̂ such that

(1) (X̂, <̂) � Γ.

(2) <̂ is not a wellorder of X̂.

Proof. Let ΓTOTAL be the finite set of sentences of LA0
which axiomatize the

properties of a total order. Let ∆ be the following set of formulas.

∆ = Γ ∪ {xj<xi : i < j in N} ∪ ΓTOTAL

Letting M0 = (X,<), since X is infinite, for any finite set ∆0 ⊂ ∆, there exists
an M0-assignment ν0 such that

(M0, ν0) � ∆0.

Thus by the Compactness Theorem, ∆ is satisfiable. Suppose that

(M, ν) � ∆.

Then M is a total order which satisfies Γ and which is not a wellorder. ut

5.9.3 Exercises
(1) Suppose that T is a theory of LA and that there is an LA-structure
N = (N, J) such that

• N � T
• N is infinite.

Show that there is an LA-structure M = (M, I) and an element a of M
such that

(a) M � T
(b) a is not definable in M without parameters.

(2) Suppose thatM is an infinite L-structure. Show that there is an L-structure
M1 such that M and M1 are elementarily equivalent and M1 has an ele-
ment which is not the interpretation of any constant symbol.

(3) Suppose that T is a theory of LA.
Define T to be finitely axiomatizable if and only if there is a finite theory
Γ ⊂ LA such that for all M, M � Γ if and only if M � T .

Suppose that T is not satisfiable. Show that T Is finitely axiomatizable.

(4) Suppose A = {Pi} is an alphabet with just one symbol Pi and π(Pi) = 2.
Let M = (M, I) be the LA-structure where

• M = R
• I(Pi) = {(a, b) | a < b}.
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Let TM = {ϕ | ϕ is an LA-sentence and M � ϕ}.
Show that TM is finitely axiomatizable.

Hint: Use the results of Section 4.5 and Section 4.6.

(5) Suppose that T1 and T2 are sets of sentences of LA such that for every
LA-structure M, M � T1 if and only if M 6� T2.
Show that T1 and T2 are finitely axiomatizable.

Hint: Note that if a theory T is not finitely axiomatizable, and if T is satis-
fiable, then for each finite set Σ ⊆ T , there must exist a modelM � Σ such
that M 6� T .
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6

Advanced Topics

6.1 Types

When we consider various mathematical structures, we can ask questions regard-
ing the connection between their properties and the formulas we can write down
to express them.

Given a particular structure, we could ask if the theory of a that structure is
finitely axiomatizable (see Exercise (3) on page 114). A classic counterexample
is a field with characteristic zero.

We can establish such results and much more, using types. In general, the
analysis of types helps one understand the limits of first order languages.

Definition 6.1 Suppose n ∈ N. An (n + 1)-type of the language LA is a set Γ
of LA-formulas such that

(1) Γ is consistent,

(2) (maximality) Suppose ϕ = ϕ(x0, . . . , xn) is an LA-formula such that every
free variable of ϕ is includes in {x0, . . . , xn}. Then either ϕ ∈ Γ or (¬ϕ) ∈ Γ,

(3) Every variable which occurs freely in an element of Γ belongs to the set
{x0, . . . , xn}. ut

We write Γ(x0, . . . , xn) to indicate that Γ is an (n+ 1)-type.

Example 6.2 If M = (M, I) is an LA-structure and m0, . . . ,mn are elements
of M , then

Γ(x0, . . . , xn) = {ϕ(x0, . . . , xn) ∈ LA :M � ϕ[m0, . . . ,mn]}

is an (n+ 1)-type, called the type of (m0, . . . ,mn) in M. ut

Definition 6.3 SupposeM is an LA-structure. If Γ = Γ(x0, . . . , xn) is the type
of some (m0, . . . ,mn) inM, then we say thatM realizes Γ. Otherwise,M omits
Γ. ut

Similarly, we can speak of M’s realizing or omitting a set of formulas even
when that set is not a type, that is when that set is not maximally consistent.
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Theorem 6.4 Let T be a theory of LA, n ∈ N, and that Γ ⊆ LA is an (n+ 1)-
type extending T . The following are equivalent.

(1) There is an LA-structure M such that M � T and M realizes Γ.

(2) For every finite subset Γ0 of Γ, there is an LA-structureM such thatM � T
and M realizes Γ0.

(3) The set

T ∪

{
(∃x0∃x1 . . . ∃xn(ϕ1 ∧ · · · ∧ ϕk)) :

k ∈ N and

ϕ1, . . . , ϕk ∈ Γ

}

is consistent.

Proof.

(1) =⇒ (2):

Clearly, (1) implies (2). Any model of T which realizes Γ also realizes every
finite subset of Γ.

(2) =⇒ (3):

Suppose that ϕ1, . . . , ϕk are elements of Γ. By (2), let M = (M, I) be a
model which realizes {ϕ1, . . . , ϕk}. Thus, we may fix m0, . . . ,mn in M so that
for all i ≤ k, M � ϕi[m0, . . . ,mn]. So, if ν is an assignment such that for all
i ≤ n, ν(xi) = mi, then

(M, ν) � (ϕ1 ∧ · · · ∧ ϕk).

Consequently, M � (∃x0∃x1 . . . ∃xn(ϕ1 ∧ · · · ∧ ϕk)). If k > k1, then

(∃x0∃x1 . . . ∃xn(ϕ1 ∧ · · · ∧ ϕk))

implies (∃x0∃x1 . . . ∃xn(ϕ1 ∧ · · · ∧ ϕk1). Claim (3) follows.

(3) =⇒ (1):

By the Completeness Theorem 5.13, there are M and ν such that

(M, ν) � T ∪ Γ.

Letting mi denote ν(xi), we can rewrite this condition by saying that for each
ϕ ∈ Γ, M � ϕ[m0, . . . ,mn]. Thus, M realizes Γ, as required. ut

Definition 6.5 A theory T of LA is LA-complete if and only if for every sentence
ϕ ∈ LA, either ϕ ∈ T or (¬ϕ) ∈ T . ut

Note that a consistent theory T ⊂ LA is LA-complete if and only if T is
LA-maximally consistent, as defined in Definition 5.44.
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Definition 6.6 Suppose that T is an LA-complete theory in the language LA
and that Γ is an (n + 1)-type in the language LA extending T . Γ is a principal
type if and only if there is a formula ϕ in Γ such that for all ψ(x0, . . . , xn),

ψ ∈ Γ⇔ T ∪ {ϕ} ` ψ.

Lemma 6.7 Suppose that T is an LA-complete consistent theory, and suppose
that Γ = Γ(x0, . . . , xn) is an (n + 1)-type of LA which contains T . If T has a
model which omits Γ, then Γ is not a principal type.

Proof. For the sake of a contradiction, suppose that T does not locally omit
Γ. Then there is a ψ(x0, . . . , xn) such that for all ϕ ∈ Γ, T ` (ψ → ϕ) and
such that T ∪ ψ is consistent. Since T is consistent, it must be the case that
(∀x0 . . . ∀xn(¬ψ)) 6∈ T . Since T is complete, (¬(∀x1 . . . ∀xn(¬ψ))) ∈ T . In other
words, (∃x0 . . . ∃xnψ) ∈ T . Now suppose that M = (M, I) is given so that
M � T . Since M satisfies (∃x0 . . . ∃xnψ), we may fix m0, . . . ,mn in M so that
M satisfies ψ[m0, . . . ,mn]. As every element of Γ can be deduced from ψ, it
follows that for every ϕ ∈ Γ, M � ϕ[m0, . . . ,mn]. So, M realizes Γ. Since
M was arbitrary, there is no model of T which omits Γ. This contradicts our
assumption on T , and the lemma follows. ut

Theorem 6.8 (Omitting Types) Suppose that T ⊂ LA is an LA-complete
consistent theory. Suppose that n ∈ N and that Γ = Γ(x0, . . . , xn) is an (n+ 1)-
type of LA which contains T and which is not a principal type.

Then T has a model which omits Γ.

Proof. To keep our notation simple, assume that Γ = Γ(x0) is a 1-type.
As in the proof of the Gödel Completeness Theorem (Theorem 5.13) and the

proof of the Craig Interpolation Theorem (Theorem 5.49), by Lemma 5.21 and
by Lemma 5.22, we can reduce to the case that there is an infinite set of constant
symbols which do not appear in A. Let {cik : k ∈ N} be this set and let

A∗ = A ∪ {cik | k ∈ N}.

We proceed as in the proof of the Completeness Theorem to construct a
maximally consistent set T∞ of LA∗ -formulas such that T ⊂ T∞, T∞ has the
Henkin property, and such that model given by T∞ has the required properties.

Let ϕ0, ϕ1, ϕ2, . . . be an enumeration of all LA∗ -formulas, presented so that
for each k, cik does not appear in ϕ0, ϕ1, . . . , ϕk. We construct a sequence of sets

T = T0 ⊆ T1 ⊆ T2 ⊆ . . .

so that the following properties hold.

(1.1) For each k, Tk+1 is a finite consistent extension of T .

(1.2) For each k, ϕk ∈ Tk+1 or (¬ϕk) ∈ Tk+1.

(1.3) For each k, if ϕk ∈ Tk and ϕk is of the form (∃xjψ), then ψ(xj ; cik) ∈ Tk+1.

Let T0 = {ϕ0}. Given Tk, construct Tk+1 by extending Tk in three steps as
follows.
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A. First, if Tk ∪ {ϕk} is consistent, then add ϕk to Tk. Otherwise, add (¬ϕk)
to Tk. Call the result T ak+1.

B. If ϕk is of the form (∃xjψ) and ϕk ∈ T ak+1, then add ψ(xj ; cik) to T ak+1. Call

the result T bk+1.

Steps A and B are essentially identical with the steps that we took in the
proof of Theorem 5.31. The only change here, is that now we are working with
the language LA∗ instead of the entire language L.

By the argument given there, if Tk is consistent then so is T bk+1. Further, in
each of these steps we add at most one formula to Tk. Consequently, if Tk is a
finite extension of T , then so is T bk+1.

C. Let T bk+1 be T ∪ {ψ1, . . . , ψr}. Fix n0 ∈ N such that n0 > k and such that
all the variables which occur in any of the formulas, ψ1, . . . , ψr, are included in
the set {x0, . . . , xn0

}.
For each ψm where m ∈ {1, . . . , r}, let

ψ̂m = ψm(x0, . . . , xk;xn0+1, . . . , xn0+k+1).

Thus x0, . . . , xk do not occur in any of the formulas in {ψ̂1, . . . , ψ̂r}, and moreover

the variables which do occur in one of the formulas in {ψ̂1, . . . , ψ̂r}, are included
in xk+1, . . . , xn0+k+1.

Consider the formula θ(x0):

• ∃x1 . . . ∃xk∃xk+1 . . . ∃xn0+k+1(ψ̂1 ∧ · · · ∧ ψ̂r)[ci0 . . . , cik , ;xk . . . , x0]).

Note that x0 is the only variable which might occur freely in θ and that θ ∈ LA.
In particular, θ contains none of the constants from {ci0 , . . . , cik}. The actual
order of substitutions used to define θ(x0) is not important except x0 must be
substituted for cik .

Since Γ is not a principal type (and since Γ contains T ), there is a formula
σ ∈ Γ such that

T ∪ {θ} 6` σ.

Thus, T ∪ {θ} ∪ {(¬σ)} is consistent. We add (¬σ(x0; cik)) to T bk+1 and let Tk+1

be the result, finishing the definition of Tk+1.
The consistency of Tk+1 follows from Theorem 5.11, the theorem on constants,

and the fact that x0 was substituted for cik in defining θ(x0).
Let T∞ be the union of the Tk. T∞ is complete, consistent, and has the Henkin

property. Thus, the structure built from constants using T∞ satisfies T∞.
Every element of this model is the interpretation of some constant symbol

cn ∈ A∗. If cn ∈ A, then since Γ is a not a principal type, there is an element σ
of Γ such that (¬σ)[x0; cn] is an element of T and hence of T∞.

If cn /∈ A, then for some k, cn is equal to cik and we ensured the existence of
such a σ during the third step in the definition of Tk+1 of the construction.

Thus, the structure built from constants using T∞ omits the type Γ, as
required. ut
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6.1.1 ω-categorical theories
We consider a very interesting collection of theories. These are the LA-complete
consistent theories T in the language LA which have only one countable model
up to isomorphism.

Lemma 6.9 Suppose that T is an LA-complete, consistent, theory. Suppose that
n ∈ N. Then the following conditions are equivalent.

(1) There are only finitely many (n+ 1)-types which contain T .

(2) Every (n+ 1)-type containing T is principal.

Proof. We first show that if there are infinitely many principal (n + 1)-types
which contain T , then there is a non-principal (n+ 1)-type which contains T .

Let 〈Γk : k ∈ N〉 enumerate all principal (n + 1)-types which contain T . For
each k ∈ N let ϕk(x0, . . . , xn) be a formula in Γk such that

Γk = {ψ(x0, . . . , xn) | T ` (ϕk → ψ)}.

Thus for each k ∈ N, if i 6= k then (¬ϕk) ∈ Γi.
Let

Σ = T ∪ {(¬ϕk) | k ∈ N}.

Suppose S ⊂ Σ is finite. Then S ⊂ Γi for all sufficiently large i ∈ N. Therefore Σ
is consistent. Let Γ be an (n+ 1)-type which contains Σ. Then Γ 6= Γk for each
k ∈ N and so Γ is not a principal type.

Thus if if there are infinitely many principal (n+ 1)-types which contain T ,
then there is a non-principal (n+ 1)-type which contains T .

Finally suppose there are only finitely many (n+ 1)-types which contain T .
We prove that every (n+ 1)-type which contains T is principal.

Let 〈Γ1, . . . ,Γk〉 enumerate all the (n + 1)-types which contain T . For each
i, j ≤ k, if i 6= j let ϕji (x0, . . . , xn) ∈ Γi be such that ϕji /∈ Γj ; and if i = j let ϕii
be the formula (x0 =̂x0) (i. e. a formula in Γi).

For each i ≤ k let

ϕi = (ϕ1
i ∧ · · · ∧ ϕki )

It follows that for each i ≤ k, ϕi ∈ Γi and for each j 6= i, (¬ϕi) ∈ Γj .
Fix i ≤ k. We claim that

Γi = {ϕ(x0, . . . , xn) | T ` (ϕi → ϕ)}.

Suppose not. Then there is a formula ϕ ∈ Γi such that T ∪ {(¬(ϕi → ϕ))} is
consistent. Let Γ be an (n+ 1)-type which contains T ∪ {(¬(ϕi → ϕ))}. Since

` (¬(ϕi → ϕ))→ (¬ϕ),

necessarily, (¬ϕ) ∈ Γ. Similarly ϕi ∈ Γ since,

` (¬(ϕi → ϕ))→ ϕi.

This is a contradiction. Since ϕi ∈ Γ, Γ 6= Γj for all j ≤ k with j 6= i. So Γ = Γi.
But (¬ϕ) ∈ Γ and ϕ ∈ Γi.
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Thus for each i ≤ k,

Γi = {ϕ(x0, . . . , xn) | T ` (ϕi → ϕ)},

and so every (n+ 1)-type which contains T is principal. ut

Definition 6.10 Suppose that T is an LA-complete, consistent, theory. T is
ω-categorical if and only if any two countable models of T are isomorphic. ut

Example 6.11 Let A = {Pi} where π(Pi) = 2. Let T be the set of all LA-
sentences ϕ such that

(Q, <) � ϕ.

Then by Cantor’s theorem, Theorem 4.31, T is ω-categorical. ut

Lemma 6.12 Suppose that T is an LA-complete, consistent, theory. Suppose
n ∈ N and that there is a non-principal (n+ 1)-type which contains T .

Then T is not ω-categorical.

Proof. Let Γ be a non-principal (n + 1)-type which contains T . By the Com-
pleteness Theorem, there is a countable structure M such that

M � T,

and such that M realizes Γ.
By the Omitting Types Theorem, Theorem 6.8, there is a countable structure

N such that

N � T

and such that N omits Γ. Clearly M and N are not isomorphic. Thus T is not
ω-categorical. ut

Theorem 6.13 (Ryll-Nardzewski) Suppose that T is an LA-complete, con-
sistent, theory. The following conditions are equivalent.

(1) T is ω-categorical.

(2) For all n ∈ N, there are finitely many (n+ 1)-types.

(3) For every type Γ extending T , Γ is principal.

Proof. By Lemma 6.9 and Lemma 6.12, if T is ω-categorical then both (2) and
(3) must hold.

We now suppose that (3) holds and prove that T is ω-categorical.
Let M1 = (M1, I1) and M2 = (M2, I2) be countable models of T . We prove

M1
∼=M2. For this we build an isomorphism f betweenM1 andM2 by a back-

and-forth construction reminiscent of the proof that any two countable dense
linear orders without endpoints are isomorphic, see Theorem 4.31.
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Let a0, a1, . . . and b0, b1, . . . be enumerations of M1 and M2, respectively. We
define f : M1 →M2 by defining f on a finite set

{ai1 , . . . , aik}

which includes an in its domain and which includes bn in its range, by induction
on n.

We first prove the following claim.

Claim: Suppose ai0 , . . . , aik and bj0 , . . . , bjk are given such that Γ1 = Γ2 where

• Γ1 is the type (ai0 , . . . , aik) realizes in M1,

• Γ2 is the type (bj0 , . . . , bjk) realizes in M2.

Then

(1) For any a ∈ M1, there exists b ∈ M2 such that (ai0 , . . . , aik , a) realizes
the same type in M1 as (bj0 , . . . , bjk , b) does in M2.

(2) For any b ∈ M2, there exists a ∈ M1 such that (ai0 , . . . , aik , a) realizes
the same type in M1 as (bj0 , . . . , bjk , b) does in M2.

Proof. Let

(1.1) Γ be the type of (ai0 , . . . , aik) in M1

(1.2) Γ+ be the type of (ai0 , . . . , aik , a) in M1.

By assumption, every type extending T is principal. Fix

ψ(x0, . . . , xk+1) ∈ Γ+

such that every element of Γ+ is a consequence of T ∪ {ψ}. Then

M1 � (∃xk+1ψ)[ai1 , . . . , aik ]

and so (∃xk+1ψ) ∈ Γ. Since Γ is also the type of (bj0 , . . . , bjk) in M2,

M2 � (∃xk+1ψ)[bj0 , . . . , bjk ].

Let b be an element of M2 such that M2 � ψ[bj0 , . . . , bjk , b]. Since Γ+ is the
set of consequence of T ∪ {ψ}, (bj0 , . . . , bjk , b) realizes Γ+ in M2, as required to
prove the (1) of claim.

The same argument proves (2) of the claim. ut

Note that by the proof of the claim we also get the following simple version
of that claim.

(2.1) For each a in M1 there exists b ∈ M2 such that the 1-type realized in
M1 by a is the same as the 1-type realized by b in M2.

Now we can define the isomorphism from M1 to M2. First we can define
f on a set {ai0 , ai1} which includes a0 (so i0 = 0) and which includes b0 in its
range. This is done in two steps. First, choose b such that a0 realizes the same
1-type M1 that b realizes in M2, and set f(a0) = b. By (2.1), b exists.
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Second, choose a such that 〈a0, a〉 realizes the same 2-type in M1 that
〈f(a0), b0〉 realizes in M2. Define f(a) = b0. By the claim, a exists.

At the inductive stage n+1, assume that there is a finite subset {ai1 , . . . , aik}
of M1 on which we have defined f such that Γ0 = Γ1 where

• Γ1 is the type realized in M1 by (ai1 , . . . , aik).

• Γ2 is the type realized in M2 by (f(ai1), . . . , f(aik)).

By using the claim twice, we can first extend the definition of f to include an+1

in its domain, and then extend further to include bn+1 in its range, in each case
preserving the property that the resulting sequences realize the same type in
their respective models.

Let f be the function defined in the limit. M1 is the domain of f and M2 is
its range. Additionally, f is an elementary function, since for each k ∈ N and for
each formula ϕ(x0, . . . , xn),

M1 � ϕ[a0, . . . , an]

↔ ϕ is in the type of 〈a0, . . . , an〉 in M1 (by definition)

↔ ϕ is in the type of 〈f(a0), . . . , f(an)〉 in M2 (by construction of f)

↔ M2 � ϕ[f(a0), . . . , f(an)] (by definition)

Of course, any elementary surjection is an isomorphism, and so f is an isomor-
phism. This verifies M1

∼=M2, which proves (1). ut

6.1.2 Exercises
(1) In the proof of Theorem 6.8, complete the argument that Tk+1 is consistent

from the assumption that T bk+1 is consistent.

(2) Suppose that A is finite and thatM is a finite L-structure. Show that every
type realized in M is principal.

(3) Suppose that T is a consistent theory such that (for some n) every n-type
consistent with T is principal. Show that T has only finitely many consistent
completions.

(4) Suppose that T is ω-categorical and M is a countable infinite model of T .
Show that M has a nontrivial automorphism.

Hint: Use Theorem 6.13(2) and the proof that (2) implies (1) in the proof
of Theorem 6.13.

6.1.3 A theory with uncountably many models
In contrast with ω-categorical theories, there are natural theories which have not
just infinitely many non-isomorphic countable models, but uncountably many.
In fact, the theory of elementary arithmetic is one such.

Definition 6.14 Let Th(N) denote the set of first order sentences satisfied by
the natural numbers with constants for 0 and 1 and with binary function symbols
for addition and multiplication. ut
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Lemma 6.15 There are uncountably many 1-types extending Th(N).

Proof. Let pi denote the ith prime number greater than or equal to 2, and let τi
denote the term

τi = 1 + 1 + . . .+ 1︸ ︷︷ ︸
pi many 1’s

More precisely, τi = σpi where the terms σi, for i ≥ 1, are defined by induction
on i as follows. σ1 = c and σi+1 = F (σi, c); where c is the constant interpreted
by 1 and F is the function symbol interpreted by the function +(a, b) = a+ b.

For each X ⊆ N, let GX be the set of formulas

Th(N) ∪ {τi is a factor of x1 : i ∈ X}
∪{τi is not a factor of x1 : i 6∈ X}

For each X, let ΓX be a type extending GX . Since each of these types are
consistent, no two of them are equal. Since there are uncountably many subsets
of N, the lemma follows. ut

Corollary 6.16 There are uncountably many distinct isomorphism types of
countable models of Th(N).

Proof. Suppose that {Mi : i ∈ N} is a countable set of countable models of
Th(N). We must show that there is a countable model of Th(N) which is not
isomorphic to any of the models Mi, for any i ∈ N.

For each i ∈ N, the model Mi realizes only countably many 1-types. Conse-
quently, the set of 1-types Γ such that Γ is realized in at least one of the models
Mi, is a countable set. Since there are uncountably many 1-types extending
Th(N), there is a 1-type ∆ which is not realized in any of the models Mi, for
any i ∈ N.

By Theorem 6.4, there is a countable M of Th(N) such that M realizes ∆.
Thus for each i ∈ N, M is not isomorphic to Mi. ut

6.2 The countable spectrum

Definition 6.17 Suppose T ⊂ LA is an LA-complete consistent theory.
The countable spectrum of T is the number of countable models of T up to
isomorphism. ut

Example 6.18 Suppose T ⊂ LA is an LA-complete consistent theory which is
ω-categorical. Then the countable spectrum of T is 1. ut

By Problem 4 on page 61, we have the following lemma.
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Lemma 6.19 Suppose T ⊂ LA is an LA-complete consistent theory and there
is a finite LA-structure M such that

M � T

Then T is ω-categorical. ut

Thus if the countable spectrum of T is not 1 then every model of T is infi-
nite. Therefore the countable spectrum problem (of determining the possibilities)
reduces to the cases of LA-complete consistent theories with no finite models.

There are natural examples of LA-complete consistent theories whose count-
able spectrum is exactly ℵ0.

Example 6.20 Consider this structure: the field of complex numbers,

C = (C, 0, 1, i,+,×).

Let T be the set of sentences ϕ such that

C � ϕ.

Then the countable spectrum of T is ℵ0. ut

What about the cases where the countable spectrum is finite? Here there
is a surprise. There are examples of LA-complete consistent theories where the
countable spectrum is n for various finite n. In fact there are examples for any
value of n except n = 2. Remarkably that value is forbidden.

Theorem 6.21 (Vaught) Suppose T ⊂ LA is an LA-complete consistent the-
ory. Then the countable spectrum of T is not 2. ut

6.3 Vaught’s conjecture
After 126 pages of definitions and theorems, it might seem that first order logic
is well understood. However, there are fundamental questions which remain un-
solved, despite decades of research. For example, the following is still open.

Conjecture 6.22 (Vaught) Suppose that T is a complete consistent theory and
that the countable spectrum of T is infinite. Show that one of the following two
conditions holds.

(1) There is a countable set of models {Mi : i ∈ N} such that for every countable
M, if M � T , then there is an i such that M is isomorphic to Mi.

• The countable spectrum of T is ℵ0.

(2) There is a set of models {MX : X ∈ R} such that each MX satisfies T ,
and if X 6= Y , then MX is not isomorphic to MY .

• The countable spectrum of T is 2ℵ0 . ut
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Sets

∅ Empty set, {}
M,N Arbitrary Sets
N Natural numbers, {0, 1, 2, . . .}
Z Integers, {. . . ,−2,−1, 0, 1, 2, . . .}
Q Rationals numbers, {pq : p, q ∈ Z, q 6= 0}
R Reals numbers

Logical Symbols (Syntax)

Ai Propositional Symbols
ϕ,ψ Formulas
L0 Propositional Language
xi Variable Symbol
ci Constant Symbol
Fi Function Symbol
Pi Predicate Symbol
τ Term
A Alphabet
LA Language (with alphabet A)

Logical Connectives

¬ Negation
→ Implies
∧,∨ And, Or (Conjunction, Disjunction)
↔ Biconditional “if and only if”
∀ Universal Quantifier
∃ Existential Quantifier
` Proves
� Satisfies/Models
∼= Isomorphic
≡ Elementary Equivalence
⊆ Subset/Substructure
� Elementary Substructure

Logical Symbols (Semantics)

I, J Interpretation Function
ν, µ, ρ Truth Assignment, M-Assignment
M,N Structures


