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REVIEW OF EQUIVALENCE RELATIONS

Recall that E is an equivalence relation on a set X if it satisfies the following prop-

erties:
(1) = E x for any = € X. (Reflexive)
(2) If 2 Ey and y E z then z E z, for any x,y, z in X. (Transitivity)
(3) If  E y then y E x for any x,y in X. (Symmetric)

Note that these properties can be formalized as axioms, as in Exercise 3.39 in the
notes. However that is not the point at the moment. We will want to deal with external
equivalence relations. (That is, not necessarily part of some formal language, or definable
in some structure.)

Example 0.1. Let X = Z and define n E m <= n — m is even. Show that E is an
equivalence relation.

Given an equivalence relation F on X and x € X, define [z]p ={y € X : = F y}.
Claim 0.2. For z,y € X, z F y if and only if [x]g = [y]E.

Proof. Assume that © E y. Given z € [z|g, x E z. By symmetry and transitivity, y E z,
and so z € [y|g. We conclude that [z]g C [y|g. By symmetry we know that y E x as well,
so the same argument shows [y]g C [z]g as well, and therefore [z]g = [y]g.

On the other hand, assume that [z]g = [y]g. Since y € [y]g, then y € [z]g, and so by
definition z F y, as required. O

Claim 0.3. For 2,y € X, if [z]g N [y]g # 0 (there is something in the intersection of [z]g
and [y|g, then z E y and so [z]g = [y]E.

Proof. Let z be in [z]g N [y]g. Then (using the symmetry condition) = F z and z E y,
and so x E y. O

Corollary 0.4. For z,y € X, [z]g and [y|g are disjoint if and only if x and y are not
FE-related.

Let X/E = {[z]g: © € X} be the set of all E-equivalence classes. This is sometimes
called the quotient space.

Corollary 0.5. X/FE is a partition of X into disjoint (not empty) subsets.

Example 0.6. In the example above, Z/E = {A, B} where A is the set of even numbers
and B is the set of odd numbers. Note that A = [0]g = [n]g for any even number n, and
B = [1]g = [n]g for any odd number n.
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Example 0.7. Define E on R? by
(a,b) E (¢c,d) <= a® +b*=c*+d>

(1) Prove that E is an equivalence relation on R2.
(2) Describe the equivalence classes.

Example 0.8 (Group theory). Let G be a group and H < G a subgroup. Define E on
GbygEh < g 'heH,for any g,h € G. The quotient space G/FE is precisely the
(left) cosets of H.

If in addition H is a normal subgroup of G, that is, g !Hg = H for any g € G, then
there is a natural group structure on the quotient G/E defined by [g]g - [h]g = [g - h]E.
You need to use the normality assumption to show that this is well defined. With this
operation the quotient space G/E is a group as well: the quotient group.

Example 0.9. Let (A, <) be a linear order. Define E on A as follows. For a,b€ A, a E'b
if

e cither a = b; or

e a < band the set {c € A: a < c¢ < b} is finite; or

e b<aand{ce A:b<c<a} is finite.

Show that E is an equivalence relation.

Let X/E be the quotient space. There is a natural order on the quotient space making
it a linear order as well. For equivalence classes [x]g and [y]g, define [z]p < [y|g if and
only if [z]g # [y]g and = < y.

Why is this well defined? The issue is that if [x]g = [a]g and [y]g = [b]E, then the
definition [z]g < [y]g should also agree with a < b.

Indeed, assume [z|g # [y]g and < y, and a € [z]g and b € [y]g. Then there are
infinitely many elements between x and y. However there are only finitely many elements
between x and a, and between y and b. Therefore, it cannot be that b < a. [Draw a
picture.] Since (A, <) is a linear order, it must be that a < b.

Similar arguments show that (X/E, <) is in fact a linear order.

Some examples:

(1) Let (A, <) be (Z,<). What is the quotient space?

(2) Let (A, <) be (Q, <). What is the quotient space?

(3) Let A = NU {N—F% :N=0,1,2,..n= 1,2,3,...}. Consider (A, <) with the
usual order. What is the quotient space?



