
141A MATHEMATICAL LOGIC I

ASSAF SHANI

This course is an introduction to mathematical logic, more specifically, to the branch of
logic called Model Theory. At times we will need some basic results and notions from Set
Theory, as well as some basic concepts from Proof Theory (other branches of mathematical
logic), which we will cover accordingly.

1. Introduction

Before getting formal, let us recall some examples of mathematical structures.

1.1. Some mathematical structures. Here are some examples of mathematical struc-
tures, some of which you may have seen, and how we think of them in the general context
of alphabets, axioms, and models. We will make this more formal and precise soon.

Example 1.1. A Linear order is a pair (X,<) so that

• X is a set (just some collection of objects);
• < is a binary relation on X (meaning for x, y ∈ X we may ask if x < y is true or
not),

and such that the following statements hold:

(LO 1) (Strictness) for any members x, y of the set X, if x < y holds, then y < x fails (we
may denote this by y ̸< x;

(LO 2) (Transitivity) for any members x, y, z of the set X, if x < y and y < z, then x < z;
(LO 3) (Total (linear) ordering) for any members x, y of X, either x < y or y < x (or

x = y).

Examples of linear orders include the natural numbers (N, <), the integers (Z, <), the
rational numbers (Q, <), and the real numbers (R, <), all with the usual order < which
you are familiar with.

In this case, we will say that the signature (or alphabet) consists of one binary relation
symbol “<” ; conditions (LO 1),(LO 2),(LO 3), above are axioms in this language (for
this alphabet); and a linear order (X,<) is a model for this alphabet, which satisfies
these axioms.

Let us emphasize that by a model, a mathematical structure, we really mean anything,
in the most abstract sense, and not just familiar objects such as the natural numbers or
the real numbers. Here are some examples.

Define a relation <∗ on the set N as follows:

n <∗ m if and only if n > m, for any natural numbers n,m.

Date: Spring 2022.

1

2 ASSAF SHANI

Then (N, <∗) is again a linear order, quite different than (N, <). (Note that the set of
objects, in this case the natural numbers N, has very little to do with the model (linear
order). It is how we interpret the relation < in it that matters.)

Another example would be to take X = {□,△} and declare that □ < △ and that
△ ≮ □. Then (X,<) is a linear order.

A “non-example” would be to take X = {□,△} and declare that □ ̸< △ and that
△ ̸< □. Then (X,<) fails clause (3), so it does not satisfy the axioms of a linear order.
It is just some structure for the alphabet “<”.

Example 1.2. A Graph is a pair (V,E) so that

• V is a set (some collection of objects);
• E is a binary relation on V ,

and such that the following statement holds:

(Graph 1) (Symmetry) for any x, y in V , if x E y then y E x.

The members of V are often called the vertices of the graph and we say that there is an
edge between x and y if x E y.

In this case, we will say that the signature consists of one binary relation symbol E ;
the condition (Graph 1) above is an axiom in this language; and a graph (V,E) is a
model in this language, which satisfies this axiom.

Note that in both cases the models are just some collections of objects with a binary
relation. That is, the signature for both graphs and linear orders is just a single binary
relation. Whether we call it E or < does not really matter. It is the different axioms that
make the difference.

Example 1.3. A Group is a triplet (G, ·, e) so that

• G is a set;
• · is a binary operation on G (meaning for any x, y in G the operation products
another member x · y in G);

• e is a member of G,

so that

(Group 1) (Identity) for any x in G, x · e = x and e · x = x;
(Group 2) (Associativity) for any x, y, z in G, (x · y) · z = x · (y · z);
(Group 3) (Inverses) for any x in G there is some y in G (usually denoted x−1) so that

x · y = y · x = e.

Here the signature consists of two symbols, a binary function symbol ·, and a con-
stant symbol e. A model (G, ·, e) needs to interpret the function symbol · as a function,
taking two members x, y in G and producing a third, z in G, and to interpret the constant
symbol is a single member of G.

Examples of groups include

• (Q,+, 0);
• (R,+, 0);
• ({0, 1}, “ + mod 2”, 0) (addition mod 2, meaning 1 + 1 = 0);
• ({1,−1}, ·, 1) (usual product);
• ([0, 1), “ + mod 1”, 0).

141A MATHEMATICAL LOGIC I 3

1.2. Realization and formal proofs. Fix now some alphabet, meaning some symbols
for relations or functions. (For now, just think about one binary relation, as for orders
and graphs.)

A theory is just a set of axioms (sentences) in the language, using this alphabet. For
example, the theory for graphs is the single axiom (Graph 1) above, and the theory for
linear orders is the conditions (LO 1), (LO 2), (LO 3) above.

In all the examples above, the axioms are simply some key properties of common struc-
tures which we encounter often in mathematics. One may look at things the other way
around. Suppose you give me some axioms, can I find a mathematical model satisfying
these axioms? Can these axioms be realized? For example, you may want to find a graph
with some additional properties (say, “a graph with no triangles”).

Of course, if your demands are outrageous, the answer will be no. You may include
in your axioms the statement Φ =“there exist some x so that x E x and x ̸E x”. This
statement contradicts itself, and you cannot find any structure satisfying Φ.

Once we formalize things more, there is actually something to prove here. This is
the so called Soundness theorem, saying that nothing outrageously false can be true
in an actual mathematical model. Something is “outrageously false” if we can use it to
formally prove a contradiction: a statement and its negation. One thing we need to do is
to formalize what a proof is. A key point here is that a proof will be a purely syntactic
entity, just a sequence of steps following simple rules of deduction, something a computer
can do.

Back to the question: suppose you came up with some theory T (a collection of axioms),
which seems legit. Could it be that there are no models for it? Could it be that there is
some inherent falsness in the axioms, beyond what we, or a computer, can see from the
axioms themselves? The answer is no!

Theorem (The completeness theorem). If the theory T has no mathematical models,
then necessarily there is a formal proof of contradiction using the axioms in T .

Let us emphasize again: finding a proof of contradiction is something that can be verified
syntactically. It is something a computer can find. Very much to the contrary, arguing
that “a model does not exist” is not something a computer can even think about.

Another way of phrasing the completeness theorem is as follows: Suppose T is a theory
and Φ is a statement. Assume that in any model satisfying T , the statement Φ holds
true as well. Then there is in fact a formal proof of Φ from T . For example, if there is a
statement that is true about all groups, then necessarily we can find a proof for it (using
just the group axioms)! This is quite uplifting.

Closely related to the completeness theorem is the compactness theorem.

Theorem (The Compactness Theorem). Suppose T is a theory (a collection of axioms,
possibly infinitely many axioms). Assume that there is no mathematical model satisfying
all the axioms in T (that is, T cannot be realized). Then in fact there are finitely many
axioms Φ0, ...,ΦN in T so that just the axioms Φ0, ...,ΦN already cannot be realized.

You may think about it this way. Suppose you are trying to construct some (infinite)
mathematical object. There are many (infinitely many) specific properties which you want
this object to satisfy. Say you have a list of these requirements Φ0,Φ1,Φ2, ... It may be
hard to construct this object by hand, but you want to say that such an object exists. By

4 ASSAF SHANI

the compactness theorem, it is enough to show that any finitely many of your requirements,
Φ0, ...,ΦN , can be realized.

To emphasize that this is highly non-trivial, note that the realization of each finite
chunk Φ0, ...,ΦN can be by a different structure, depending on N , while at the end you
get one object realizing all the requirements together. In fact, it may be the case that
each finite chunk can be realized by a finite object, while at the end you get (from the
theorem) an infinite object.

1.3. Models. Suppose we have a theory T , which is not inherently contradictory, so it
does have models.

How many models are there?

How do we count?
First, if we just re-label a structure, it is not really different. Let N′ be the set of

objects 0′, 1′, 2′, 3′, ... (where N is the set of objects 0, 1, 2, 3, ...). Define n′ <′ k′ if and
only if n < k. Then (N′, <′) is a linear order. Technically, it is different than (N, <), in
the sense than the objects are different symbols. Clearly, however, this is the same linear
order (mathematical structure), just relabelled!

More specifically, there is a re-labelling function f : N → N′, f(n) = n′, which is one-
to-one and onto, and it respects the structures: given n, k in N, n < k if and only if
f(n) <′ f(k). We will say that such a function is an isomorphism of linear orders. (We
will define more generally, in a similar way, what is an isomorphism between arbitrary
structures.)

We will say that two linear orders (two mathematical structures) (X,<X), (Y,<Y), are
isomorphic if there is a relabelling map (an isomorphism) between them. In this case,
we consider them as essentially the same structure.

So we want to know how many different structures there are “up to re-labelling”.

Example 1.4. The linear orders (Q, <) and (N, <) are not isomorphic.

Proof. Assume, towards a contradiction, that f : N → Q is a one-to-one and onto function
which satisfies

(⋆) n < m ⇐⇒ f(n) < f(m) for any n,m ∈ N.
Take 0 in N, the smallest member, and let q = f(0), a rational number. Define p = q − 1,
so p is a rational number and p < q. By our assumption of f , there is some m so that
f(m) = p. Applying (⋆) we conclude that m < 0, a contradiction! □

Example 1.5. Let Z\{0} be the set of non-zero integers, and the usual ordering on them.
Then (Z \ {0}, <) and (Z, <) are isomorphic.

Proof. Define f : Z → Z \ {0} as follows. For a negative integer n, define f(n) = n. For
a non-negative integer n, define f(n) = n + 1. You can check that f is one-to-one, onto,
and it satisfies that n < k ⇐⇒ f(n) < f(k), for any integers n, k. (Make sure you know
how to argue for this.) □

We will be particularly interested in infinite structure. Another issue that comes up is
that of size (cardinality). Recall that two (infinite) sets X and Y have the same size
if there is a one-to-one and onto function f : X → Y . So, if two structures (X,<X) and
(Y,<Y) are isomorphic, necessarily the sets X and Y have the same size.

141A MATHEMATICAL LOGIC I 5

We will focus on the smallest infinite size, the countable infinite. (We will go over, and
develop, these things in more detail. For now I assume you have heard a little about it in
some way. Otherwise you may ignore this subtlety or think of it informally.) Recall that
a set X is countable if there is an onto function f : N → X. (That is, we can enumerate
all the members of X using the counting numbers.) For example, each of the sets N,Z,
and Q is countable, while the set of real numbers R is famously not countable.

How many countable models are there, up to isomorphism?

Just one model. Here is an interesting and very important example.

Definition 1.6 (Dense (unbounded) linear orders). Let the theory DLO (dense linear
orders) consist of the three axioms of a linear order (LO 1), (LO 2), (LO 3) above, together
with:

(Density) for any x and y, if x < y then there is some z so that x < z < y;
(No min) for any x there is some y with y < x;
(No max) for every x there is some y with x < y.

These are some of the key properties of the rational numbers Q, as an order (compared
to N or Z). In fact, these simple properties completely capture everything about the
rational numbers.

Theorem 1.7 (Cantor’s isomorphism theorem). Suppose (X,<X) and (Y,<Y) are two
linear orders satisfying the DLO axioms, and X and Y are countable infinite sets. Then
they are isomorphic. That is, there is a relabelling function f as above.

So for the theory DLO of dense linear orders, there is only one (countable) model, up
to isomorphism. In this case we will say that the theory is (countably) categorical.

Example 1.8. Each of the following two are isomorphic.

(1) (Q, <);
(2) (Q+, <), where Q+ is the set of positive rationals;
(3) (Q \ {0}, <), where Q \ {0} is the set of non-zero rational numbers.
(4) (Q \ Z, <), where Q \ Z is the set of rationals which are not integers.

Exercise 1.9. Show that the structures in (2), (3), and (4) above satisfy the DLO axioms.

As we will see, the following are curious consequences of Cantor’s isomorphism theorem.

Corollary 1.10. For any statement Φ (stated in the language using the relation <), either

• there is a formal proof of Φ, using the axioms DLO, or
• there is a formal proof that Φ is false, using the axioms DLO.

In this case we will say that the axioms DLO are complete. They “decide” every
statement. We will investigate complete theories a lot later on.

Corollary 1.11. For any statement Φ (stated in the language using the relation <), the
following are equivalent:

• The statement Φ is true in the structure (Q, <);
• The statement Φ is true in the structure (R, <).

6 ASSAF SHANI

So even though the two structures are not isomorphic (based on size consideration), one
cannot really see the difference between them, using the language of orders.

Another consequence is that the “theory of (R, <)” is decidable, meaning you can
run a computer program that will spit out statements (in the language for <), so that
the statements it spits out are precisely those statements true in (R, <). Other very
interesting mathematical examples of structures with “decidable theories” are (R,+, ·, 0, 1)
and (C,+, ·, 0, 1) (complex numbers).

Example 1.12. We will soon carefully formalize what “a statement in the language”
means. For now, here are statements that can be made in the language using one binary
relation “<”:

“for any x and y there exists z so that z < x and z < y”;

“for any x there is some y so that x < y and there is no z satisfying both x < z and
z < y”.

Using the axioms in DLO, you can see how to prove that the first statement is true, and
that the second statement is false.

Exercise 1.13. (1) Explain (informally) what each statement above means in terms
of the order.

(2) Determine whether each statement is true for the following linear orders:
• (N, <);
• (Z, <);
• (N, <∗).

1.4. More on isomorphisms.

Proposition 1.14. Suppose f : N → N is an isomorphism of the structure (N, <) and
(the same structure) (N, <). Then necessarily f is the identity map: f(n) = n for all n in
N.

An isomorphism from a structure into itself is called an automorphism.

Proof. Let f be an isomorphism as in the statement. We prove by induction on n =
0, 1, 2, ... that f(n) = n for each n.

Let us start with n = 0. Assume towards a contradiction that f(0) ̸= 0. Then f(0) = k
for some k > 0. Since f is onto, there is some m so that f(m) = 0. Since f(m) = 0 ̸= k =
f(0), necessarily m ̸= 0 (f is injective), and so m > 0. Now 0 < m yet f(0) > f(m), a
contradiction.

Assume that we know f(0) = 0, ..., f(n) = n, and we prove that f(n+1) = n+1. Again,
assume towards a contradiction that f(n+ 1) ̸= n+ 1. Since f is onto-to-one, it must be
that f(n+ 1) = k > n+ 1. Since f is onto there must be some m so that f(m) = n+ 1.
Again since f is injective we know that m ̸= n + 1 and also that m ̸= 0, ..., n, so it must
be that m > n+1. Again we arrive at a contradiction as n+1 < m yet f(n+1) > f(m).

We conclude that f(n) = n for all n in N, as required. □

A structure such as (N, <), which does not have any non-trivial automorphism (non-
identity automorphisms) is called rigid.

Example 1.15. Consider the linear order (Z, <). Then for any a and b in Z, there is
an automorphism of (Z, <), a map f : Z → Z which is an isomorphism of orders, so that

141A MATHEMATICAL LOGIC I 7

f(a) = b. Simply define f(x) = x + (b − a). Then f is a one-to-one and onto map from
Z to Z. Furthermore, for any x, y in Z, x < y ⇐⇒ x + (b − a) < y + (b − a). Finally,
f(a) = a+ (b− a) = b.

Exercise 1.16. (1) Prove that there does not exist an automorphism f of the linear
order (Z, <) such that f(0) = 1 and f(2) = 5.

(2) (⋆) In fact, the automorphisms of (Z, <) which we described above are all the
possible automorphisms of (Z, <). That is, if f is an automorphism of (Z, <),
prove that there is some integer c in Z so that for all x in Z, f(x) = x+ c.

Exercise 1.17 (If you are familiar with groups). For groups (G, ·G, eG) and (H, ·H , eH)
an isomorphism between them is a one-to-one and onto function f : G → H so that
f(eG) = eH and f(x · y) = f(x) · f(y) for any x, y in G. [The first · is ·G, the second is
·H .] Similarly we define an automorphism of a group as an isomorphism from it to itself.
The trivial automorphism is the identity map.

(1) Show that the group (Z,+, 0) is rigid, meaning it has no non-trivial automor-
phisms.

(2) Suppose that (G, ·, e) is a non-abelian (non-commutative) group. Show that (G, ·, e)
is not rigid (there is a non-trivial automorphism).

1.5. Proof of the isomorphism theorem for dense linear orders. Suppose (X,<X)
and (Y,<Y) are linear orders. Given sequences ā = a0, a1, ..., an−1 from X and b̄ =
b0, b1, ..., bn−1 from Y , say that ā and b̄ have the same type if

ai < aj ⇐⇒ bi <
′ bj

for any i, j ∈ {0, ..., n− 1}. (Equivalently: ā and b̄ have the same type if the map sending
ai to bi is order preserving.) For a sequence ā = a0, a1, ..., an−1 from A, and some a in A,
define ā⌢a as the sequence a0, a1, ..., an−1, an with an = a.

Lemma 1.18 (Proved in Pset 1). Suppose (X,<X) is some linear order, and (Y,<Y) is
a dense linear order. Let ā and b̄ be sequences from X and Y accordingly, and assume
that they have the same type. Then for any a ∈ X there exists some b ∈ Y such that the
sequences ā⌢a and b̄⌢b also have the same type.

Proof of Theorem 1.7. Let (X,<X) and (Y,<Y) be two dense linear orders, where X and
Y are countable sets. We will prove that there is an isomorphism between the two struc-
tures. The key ideas in the proof are very important in model theory. This type of proof
is often called a “back and forth construction”.

By assumption we have a list of all the members of X: x0, x1, x2, ... and a list of all
the members of Y : y0, y1, y2, We may also assume that each member of X appears
precisely once in the list x0, x1, ... and similar for Y .

It is worth noting that the “order of enumeration” has nothing to do with the actual
order in the structure. That is, we do not know if x0 <

X x1 or x1 <
X x0. For example,

an attempt to define f from X to Y by sending xn to yn, will most likely fail to be an
isomorphism (fail to respect the order). The proof will simultanously use these two very
different structures, the orders <X and <Y which we are interested in, and the external
“enumeration orders”. The function f will be defined in stages, where only finitely many
values are dealt with at each stage, according to the enumerations. At each stage we make

8 ASSAF SHANI

sure that the x1 <
X x2 ⇐⇒ f(x1) <

Y f(x2), for the finitely many values we are dealing
with.

Let us start, a little informally, with a sketch of how to start this construction, and
where it is going. First define f(x0) = y0. [Define also a0 = x0 and b0 = y0]

Next, where can we send x1? First check its relation to x0.
If x0 < x1, let m be the smallest number so that m > 0 and y0 < ym. (m may be 1, but
may not.) Now define f(x1) = ym. [Define a1 = x1 and b1 = ym.]
If a1 < a0, letm be the smallest number so thatm > 0 and b0 > bm, and define f(a1) = bm.
[Define a1 = x1 and b1 = ym.]
So far, the function f does respect the orders, defined only on {x0, x1}. [Equivalently, the
sequences a0, a1 and b0, b1 have the same type.]

We can play the same game with x2, asking on its relationship with x0, x1. However,
before doing that, recall that we want f to be not only order-preserving and injective, but
also onto. What if we skipped y1?
Suppose we did, that is, m > 1. Now there are three options for the relationship between
y1 and y0, ym:
If y1 is smaller than both y0 and ym: Since (X,<X) is a DLO, there is some xk so that
xk is smaller than both x0, x1. (Take the first such k we can find.) Define f(xk) = y1.
[Define a2 = xk and b2 = y1.]
If y1 is above both y0, ym: We may find xk above x0, x1, and define f(ak) = b1. [Define
a2 = xk and b2 = y1.]
If y1 is between y0 and ym, again there are two cases.
Either y0 < y1 < ym, then we can find (using the DLO assumption) some xk so that
x0 < xk < x1. (Note that if y0 < ym then by the previous step necessarily x0 < x1.)
Define f(xk) = x1. [Define a2 = xk and b2 = y1]
Otherwise, ym < y1 < y0, and similarly we may find k so that x1 < xk < x0, and define
f(xk) = x1.
In any of these cases, f is still injective and respects the orders. [The sequences a0, a1, a2
and b0, b1, b2 have the same type.] Furthermore now f is defined on x0, x1, and y0, y1 are
both in the image of f .

Formally, our construction is done recursively as follows. Assume that at stage n of our
construction we defined a pair of sequences ā = a0, ..., a2n from X and b̄ = b0, ..., b2n from
Y so that ā and b̄ have the same type. We define a2n+1, a2n+2 and b2n+1, b2n+2 as follows.

Let t ∈ N be the smallest natural number so that xt is not one of {a0, ..., a2n}. Define
a2n+1 = xt. Find some b2n+1 in Y so that a0, ..., a2n, a2n+1 and b0, ..., b2n, b2n+1 have the
same type. [Possible by Lemma 1.18, as (Y,<Y) is dense.] Now let u ∈ N be the smallest
natural number so that yu is not one of {b0, ..., b2n, b2n+1}. Define b2n+2 = yu. Find some
a2n+2 in X so that b0, ..., b2n, b2n+1, b2n+2 and a0, ..., a2n, a2n+1, a2n+2 have the same type.
[Possible by Lemma 1.18, as (X,<X) is dense.]

Continuing this “back and forth” process indefinitely, we end up with infinite sequences
a0, a1, a2, ..., b0, b1, b2, ... so that

• for any k, xk appears in {a0, ..., a2k} and yk appears in {b0, ..., b2k+2};
• for any k, the sequences a0, ..., a2k and b0, ..., b2k have the same type.

141A MATHEMATICAL LOGIC I 9

It now follows that the function f : X → Y defined by f(ai) = bi is defined on all members
of X, is onto, and is order-preserving:

x <X x′ ⇐⇒ f(x) <Y f(x′) for any x, x′ ∈ X.

We are done, by the following exercise.

Exercise 1.19. If f is an order-preserving map between two linear orders, then necessarily
f is one-to-one. (Recall that the order is strict.)

and at the end we arrive at a function defined on all of X, with all of Y in the image,
which respects the order. □

1.6. Propositional logic. Please look over Chapter 1 parts 1.1 and 1.2 of [Enderton]
for the basic definitions regarding propositional logic and connectives. I suspect most of
you will find it familiar (in essence, if not in notation), and easy to understand. You can
also find these in [Woodin-Slaman, 1.1 and 1.2]. (As usual, please ask if you have any
questions.)

In particular recall the commonly used connectives ¬, ∧, ∨, →, where given propositions
A and B (statements which could be true or false)

• ¬A means “not A”;
• A ∧B means “A and B”;
• A ∨B means “A or B”;
• A→ B means “A implies B”.

We will also use the symbol “⊥” represent the statement “False”.

2. First order logic

2.1. The language. The basic building blocks for our language are the following.

Non-logical symbols. The alphabet A is a collection of relation symbols and func-
tion symbols (A may be infinite). Each relation symbol R in A comes with a fixed arity
n, in which case we say that R is an “n-ary” relation. Similarly, each function symbol F
in A has a fixed arity.

If R is a 0-ary relation symbol, you may think of it as a proposition, either true or false.
If F is a 0-ary function symbol, we think of it as a constant symbol. That is, the

function represented by F only spits out one value, so this function simply corresponds to
a “constant symbol” for this value.

Terminology : The alphabet is often referred to as the Vocabulary, or the Signature.

Logical symbols.

• We will use the symbols (and) to parse formulas
• Logical connectives: ¬ → ∧ ∨;
• Quantifiers: ∃ ∀;
• We will have an equality symbol ≈ (which is to be always interpreted as a binary
relation representing true equality);

• We use variable x, y, z,... x0, x1,... etc. (Technically, we should fixed some
infinite set of variable in advance and only use those, but as customary, in different
situations one likes to use different symbols for the variables.)

10 ASSAF SHANI

The variables x, y, z, ... are meant to represent some members of our structure. Similarly,
the constant symbols in A represent some members of our structure.

Definition 2.1 (Terms). The Terms in the language are defined (recursively) as follows:

• Each variable is a term;
• Each constant symbol is a term;
• Given terms t1, ..., tn and an n-ary function symbol F then t = F (t1, ..., tn) is a
term.

Example 2.2. Consider two binary function symbols + and ·. Then the term “(x+ y)2”
in our formal language is denoted by ·(+(x, y),+(x, y)).

The term for “(x+ y) + z” will be +(+(x, y), z). Note that this is not the same as the
terms +(z,+(x, y)) or +(x,+(y, z)). These are just (different) formal strings of symbols.
The “identification” between them only happens under certain assumptions (axioms of
commutatity / associativity).

We will not actually write things like that often...

Remark 2.3. The important thing is that given a term t of the form t = F (t1, ..., tn), we
can find F , t1, ..., tn, just by looking at t.

The terms, like the variables, are supposed to represent members of our structures. We
get formulas by plugging terms into relatoins. That is, asking whether the terms satisfy
the relation.

Definition 2.4 (Atomic formulas). An atomic formula is an expression of the form
P (t1, ..., tn) where P is an n-ary relation symbol in A (or the relation ≈) and t1, ..., tn are
terms.

Example 2.5. Consider two binary function symbols + and · and a constant symbol “1”.
Then ≈ (·(x, x),+(1, 1)) is an atomic formula, with the intended meaning “x2 = 2”.

Consider one binary relation symbol E. Then for any two variables x, y, E(x, y) is an
atomic formula. (Before we wrote it as x E y.)

Remark 2.6. We will often (as normal humans do) use short-hand notations. For ex-
ample, if we use the symbols +, ·, 0, 1, we may write “2” to be understood as +(1, 1).
If we also are working in some associative number system (that is, we assume that
(x + y) + z = x + (y + z) for any x, y, z), then we may freely write “3” to be under-
stood as +(+(1, 1), 1) (in this case it would be the same as +(1,+(1, 1)). Similarly we
may simply write x+ y + z instead of +(x,+(y, z)) or +(+(x, y), z).

As long as we know what we mean, are what we are doing, there is no problem.

Note that atomic formulas can have free variables. For example Φ =“x > y” is a
formula, where x, y are variables and > is a binary relation. If we also have constant
symbols 1, 0, then Ψ =“1 > 0” is a formula, with no free variables.

The point is: it does not make sense to ask whether the formula Φ is true or not, in a
given structure (say the reals (R, <, 0, 1)). It depends of course on the values for x and
y. However, the interpretation of the constant symbols 0, 1 will be part of our structure,
so whether Ψ is true or not does have an answer in any given structure (it is true in the
usual (R, <, 0, 1)). We will say that Ψ is a sentence, while Ψ is a formula.

141A MATHEMATICAL LOGIC I 11

Definition 2.7 (Formulas). The Formulas in the language are defined (recursively) as
follows. At the same time, we also define what the free variables of a formula are

• Any atomic formula is a formula. It’s free variables are defined to be all the
variables appearing in it.

• If φ is a formula, then ¬φ is a formula. The free variables of ¬φ are the free
variables of φ.

• If φ1, φ2 are both formulas, then (φ1∧φ2), (φ1∨φ2), and (φ1 → φ2) are formulas.
In each case the free variables of the formula consists of the free variables of φ1

together with the free variables of φ2.
• If φ is a formula, x is a variable, then (∃x)φ and (∀x)φ are formulas. The free
variables are the free variables of φ excluding x.

• We also declare that ⊥ is a formula, with no free variables.

Example 2.8. • (<(x, y) ∧ <(y, z)) is a formula with 3 free variables, x, y, z. (In-
tended meaning: x < y and y < z.)

• (∃x) < (0, x) is a formula with no free variables. (Intended meaning: there is some
x with 0 < x.)

Definition 2.9 (Sentences). A sentence is a formula with no free variables.

Example 2.10. Consider the language of of set theory, with one binary symbol ∈ (with
inteded meaning “membership”).

• ∈(x, y) is an atomic formula with free variables {x, y} (intended meaning: x is a
member of y, we usually write: x ∈ y);

• (∃x)(x ∈ y) is a formula with one free variable y (intended meaning: y is not an
empty set);

• ¬(∃x)(x ∈ y) is a formula with one free variable y (intended meaning: y is the
empty set);

• (∃y)¬(∃x)(x ∈ y) is a sentence (intended meaning: the empty set exists).

Exercise 2.11. Consider the informal formulas we wrote in Example 1.12. Write these
formally in the language for the alphabet A = {<}.
Example 2.12. Consider the binary operations +, ·, a binary relation <, and a constant
“1”, and assume that are talking about some number system, such as the real number.

Can we express, in our language, the statement “
√
2 < 3

2”?
2 and 3 are short-hand notations for specific terms in the language, so that’s not the

problem. We do not have a division operation, but that is easy to fix: we will consider
instead “2 ·

√
2 < 3”, or “

√
2 +

√
2 < 3”.

However, there is no term in our language that can capture
√
2. (This is not just

a formal statement. Even if we take the true standard interpretation of things as real
numbers, there is no term which will be interpreted as

√
2.) Nonetheless, we can still

capture this expression in our language, using the power of quantifiers.
One example would be: “(∃x)((x2 = 2) ∧ ((x + x) < 3)) ”. (Here x2 is short-hand for

·(x, x), etc...)
Another way would be: “(∀x)((x2 = 2) → (x+ x < 3))”

2.2. Structures. Fix a signature A (a collection of relations symbols and function sym-
bols). (Sometimes we will call the signature “the language”, identifying it with the lan-
guage created from it as above.

12 ASSAF SHANI

Definition 2.13 (Structures). A structure A for the signature S consists of the following
information.

• A set A (“the universe (or domain) of the structure A”.
• for any n-ary relation symbol R in the signature S, an n-place relation RA on A.
That is RA is a subset of An. We call RA the interpretation of R in the structure
A.

• For any n-ary function symbol F in S, an n-place function FA : An → A. We call
FA the interpretation of F in the structure A.

• The equality symbol≈ is always interpreted as true equality, ≈A=
{
(a, b) ∈ A2 : a = b

}
.

Given an n-place relation symbol R, for any n-many members of A, a1, ..., an, we may
ask whether they satisfy the relation, that is, whether (a1, ..., an) is a member of the subset
RA. We will often say “RA(a1, ..., an) holds” to mean that, and “RA(a1, ..., an) fails” to
mean (a1, ..., an) /∈ RA. When R is binary we often use a1 R

A a2 instead.
For a 0-place relation symbol P , its interpretation PA is either “true” or “false”. (That

is, it is just a predicate.)
For a 0-place function symbol c, its its interpretation cA is a function with 0 variables

as input, with output in A. That is, it just has one output in A. We identify cA as this
single member of A.

The examples of orders and graphs we have seen are all structure for the signature
containing one binary relation symbol. A group is a structure for the language containing
one binary function symbol · and one constant symbol e. A field can be seen as a structure
in the language {+, ·, 0, 1}, two binary function symbols and two constant symbols.

Example 2.14. Unlike these examples, sometimes the question of which vocabulary to
choose in order to formally present our structures can be more subtle, and there could be
different ways.

Recall that a vector space (over the reals1.) is a set V (“of vectors”, for example R3)
with addition and subtraction operations +,− between vectors in V , as well as scalar
multiplication: for v ∈ V and α ∈ R we have a vector α · v ∈ V .

Consider the vocabulary A consisting of the binary function symbols +,− as well as a
constant symbol 0̄, and (infinitely many) unary function symbols fα for each real α ∈ R.
The intended interpretation would be for +,− to be the addition and subtraction, 0̄ to be
the zero vector, and each fα to be the function taking a vector v to α · v.

2.3. Interpreting the language in a structure.

Example 2.15. Consider the signature {s, 0} where s is a 1-place function symbol and
0 is a constant symbol (a 0-place function symbol). Define a structure A as follows. The
universe A is the set of integers A = N = {0, 1, 2, 3, ...}. The interpretation of s is the
function sA : N → N defined by sA(n) = n+1 (the successor function). The interpretation
of 0 is 0A = 0.
t = s(s(x)) is a term in this language with one variable x. Its intended interpretation

should be the function sending n to n + 2. t = s(s(0)) is a term with no variables (term
for a constant). Its intended interpretation is 2.

1You can do the same for vector spaces over some other field, for example Q or C

141A MATHEMATICAL LOGIC I 13

Let t be a term and x̄ = x1, ..., xn a list which includes all variables appearing in t.
In this case we sometimes write t(x1, ..., xn) for t. (“t is a term whose value depends on
x1, ..., xn”.) There is a minor abuse of notation here. For example, if t is simply the
variable x, we may thing of t as t(x), but also as t(x, y). That is, we may always add
“dummy variables”.

Definition 2.16 (Interpretation of terms). Fix a signature S and a structure A. For a
term t and variables x1, ..., xn which include all variables appearing in t, we define the
realization of t in A to be a function tA(x1, ..., xn) from An → A as follows, recursively
along the construction of terms.

[Case 1] t is a variable. Then t is xi for some i ∈ {1, ..., n}. Then tA(ā) = ai for any
ā = (a1, ..., an) in A

n.
[Case 2] t is F (t1, ..., tk) for some k-ary function symbol F and some terms t1, ..., tk. Define

tA(ā) = FA(tA1 (ā), ..., t
A
k (ā)).

Remark 2.17. In Case 2, tAj is already defined inductively. Note also that we are using
the fact that if x1, ..., xn includes all the variables appearing in t, and t is of the form
F (t1, ..., tk), then also x1, ..., xn includes all the variables appearing in tj for each j ∈
{1, ..., k}. This does require a proof. We skip it here. You can find a more careful analysis
of the syntax in [Woodin-Slaman, Chapter 2] or in [Enderton].

Similarly, in order to carry this recursive definition, we need to know that given t
we can uniquely identify “where it came from”, meaning finding the F , t1, ..., tk for which
t = F (t1, ..., tk). The is not difficult to see here. (Similar facts are true for the construction
of formulas.) Again we skip this syntax analysis here, and you can see more in [Woodin-
Slaman, Chapter 2] or in [Enderton]. See in particular “unique readability” results.

Let us emphasize that the “unique readability” of this particular way of coding terms
/ formulas, is not important, but just that there is some reasonable way of doing so. For
example, if you feel more comfortable adding some parenthesis, commas, semicolons, here
and there, why not... 2

Remark 2.18. Suppose c is a constant symbol in the signature (a 0-place function). Then
c is a term. For any variables x1, ..., xn, we may view c as a term c(x1, ..., xn). What is
the function cA(x1, ..., xn) : A

n → A? It is the constant function: cA(ā) = cA for any ā in
An.

Example 2.19. Consider A = (R,+, ·) (standard operations). Consider the term t “x ·
y + x”. It should be interpreted as a function from R2 → R. It is clear of course what
the interpretation here is, but let us follow the definitions. Formally our term is t =
+(·(x, y), x).

As the interpretation is done recursively along the construction, we must consider the
whole construction of t.

Let t1 be the variable x.
Let t2 be the variable y.

2One can be more extreme, and replace each terms (and similarly formulas) with their entire sequence
of construction. That is, instead of ·(+(x, y), 1) we would use the “term” ⟨x; y; 1; +(x, y); ·(+(x, y), 1)⟩.
You may also add some more information to the sequence coding the “instructions” of how to construct a
term from previous terms in the sequence. This way, there is certainly no ambiguity on how the “definition
along the construction” is done.

14 ASSAF SHANI

Let t3 be ·(t1, t2).
Let t = t4 be +(t3, t1)
The interpretation of t1 is tA1 : R2 → R, tA1 (a, b) = a. Similarly, tA2 (a, b) = b.
Now tA3 (a, b) = ·A(tA1 (a, b), tA2 (a, b)) = ·A(a, b) = a · b.
tA(a, b) = +A(tA3 (a, b), t

A
1 (a, b)) = +A(a · b, a) = a · b+ a.

Finally, we define the interpretation of formulas in a structure. For a formula φ(x1, ..., xn)
its interpretation in a structure A will be a function φA(x1, ..., xn) from An to {0, 1}. For
ā = a1, ..., an from A, either φA(ā) = 1 (True) or φA(ā) = 0 (False). In other words, the
interpretation of φ(x1, ..., xn) in A is an n-ary predicate. We sometimes say “φA(a1, ..., an)
holds” to mean that φA(a1, ..., an) = 1. Similarly, we sometimes identify φA as the subset
of An, {ā ∈ An : φ(ā) = 1}.

Example 2.20. Consider the signature {s, 0} where s is a 1-place function symbol and
0 is a constant symbol (a 0-place function symbol). Define the structure A = (N, sA, 0)
where sA(n) = n+ 1 the successor, and 0A = 0.

The variables x, y are terms. s(y) is a term. So φ(x, y) = (x ≈ s(y)) is an atomic
formula (with free variables x, y). For n,m ∈ N, the interpretation φ(n,m) is true if and
only if n = m+ 1.
ψ(x) = (∃y)φ(x, y) is a formula (with free variable x). For n ∈ N, the interpretation

ψ(n) is true if and only if n > 0.
θ = (∀x)ψ(x) is a formula with no free variables. Its interpretation is False in the

structure A.

Given a formula φ, and variables x̄ = x1, ..., xn, we write φ(x̄) only when the list
x1, ..., xn includes all free variables of φ (possible more, “dummy variables”).

Definition 2.21 (Interpretation of atomic formulas). Fix a signature S. Let φ = R(t1, ..., tn)
where R is an n-ary relation symbol in the language, t1, ..., tn are terms. Let x1, ..., xn be
variables containing all variables appearing in φ. For ā = a1, ..., an in A, define

φA(a1, ..., an) =

{
1 (True) (tA1 (ā), ..., t

A
n (ā)) ∈ RA (RA(tA1 (ā), ..., t

A
n (ā)) holds);

0 (False) (tA1 (ā), ..., t
A
n (ā)) /∈ RA (RA(tA1 (ā), ..., t

A
n (ā)) fails);

Technically we should write φA(x1, ..., xn)(a1, ..., an), but we will omit the sequence
x1, ..., xn from the notation if it is clear from context.

Remark 2.22. The interpretations of relation symbols in the vocabulary S depend on
the structure. Our equality symbol ≈ however is always interpreted as true equality (it is
not up to the structure to interpret it).

We continue to define the interpretation of formulas in a structure A, recursively along
the construction of formulas. It will be notationally convenient to view φA(x1, ..., xn) as
a subset of An. (The subset is all (a1, ..., an) for which φ

A(a1, ..., an) = 1.)

Logical connectives.

Assume φ = ¬ψ. The if x̄ = x1, ..., xn includes all free variables of φ, it includes all free
variables of ψ, and so (recursively) ψA(x1, ..., xn) is already defined. Define

φA(x1, ..., xn) = An \ ψA(x1, ..., xn). (The complement.)

141A MATHEMATICAL LOGIC I 15

If φ = (ψ1 ∧ ψ2). Define

φA(x1, ..., xn) = ψA
1 (x1, ..., xn) ∩ ψA

n (x1, ..., xn). (The intersection.)

If φ = (ψ1 ∨ ψ2). Define

φA(x1, ..., xn) = ψA
1 (x1, ..., xn) ∪ ψA

n (x1, ..., xn). (The union.)

If φ = (ψ1 → ψ2). Define

φA(x1, ..., xn) = (An \ ψA
1 (x1, ..., xn)) ∪ ψA

n (x1, ..., xn).

If φ =⊥. φA(x1, ..., xn) = ∅ (the empty set).

Quantifiers.

Assume φ = (∃z)ψ, and assume that z does not appear in x̄. If x̄ = x1, ..., xn includes all
free variables in φ, then x1, ..., xn, z includes all free variables appearing in ψ. Define
φA(a1, ..., an) = 1 if and only if there is some c ∈ A so that ψA(a1, ..., an, c) = 1.

Note that φA(x1, ..., xn) as a subset of An is the projection of ψA(x1, ..., xn, z) (a subset
of An ×A) to An. That is, define π : An ×A→ An by π(a1, ..., an, c) = (a1, ..., an). Then
(a1, ..., an) ∈ φA(x1, ..., xn) if and only if (a1, ..., an) is in π[ψ

A(x1, ..., xn, z)] (the image of
the set ψA(x1, ..., xn, z) under the map π).

Remark 2.23. Here, before, and in the future, we use the common “identification” be-
tween, for example, An × A and An+1. Recall that all we mean by An is an (ordered)
sequence of n members from A. How such sequences are formally coded, or what not, is
not important. In particular, we identify (in the natural way) An×Am, which is formally a
pair of sequences, one of length n and the other of length m, with An+m, a single sequence
of length n+m.

2.3.1. Assume φ = (∀z)ψ, and assume that z does not appear in x̄. if x̄ = x1, ..., xn
includes all free variables in φ, then x1, ..., xn, z include all free variables appearing in ψ.
Define φA(a1, ..., an) = 1 if and only if there for all c in A, ψA(a1, ..., an, c) = 1.

Pictorially, viewing ψA(x1, ..., xn, z) as a subset of An × A, φA(x1, ..., xn) are those
elements in An whose “fiber”

{
c ∈ A : ψA(a1, ..., an, c) = 1

}
is the entire A.

Another point of view is as a sort of “large conjunction”. We may view ψA(x1, ..., xn, z)
as a parametrized family of subsets of An: for each c ∈ A the corresponding set is
ψA(x1, ..., xn, c) =

{
(a1, ..., an) : ψ

A(a1, ..., an, c) = 1
}
, and

φA(x1, ..., xn) =
⋂
c∈A

ψA(x1, ..., xn, c).

Remark 2.24 (Sentences). If φ is a sentence (formula with no free variables), we can
interpret it with no variables at all, and simply get a truth value “1” (true) or “0” (false).

Example 2.25. Consider the structure (R,+, ·, 0, 1) with the usual interpretation. Con-
sider the sentence

φ = (∀y)(∃x)(x · x ≈ y).

To interpret it we need its “entire construction”. Begin with the term t1 = x · x (formally
·(x, x)) whose interpretation, as a function of (x, y), is the function on R2 sending x, y to
x2. Similarly, the interpretation of t2 = y is the function taking x, y to y.

16 ASSAF SHANI

Next consider the atomic formula ψ(x, y) = (x · x ≈ y). Its interpretation in our
structure is the set of all pairs of reals (x, y) so that y = x2. That is, a parabola.

Let θ(y) = (∃x)ψ. Its interpretation is a subset of R, specifically all reals b for which
b = x2 for some x. That is, all non-negative reals.

Finally, φ = (∀y)θ, is false, since the interpretation of θ(y) is not the entire structure
R.

A minor headache. What if the quantified-over variable z appears among the “free look-
ing” sequence of variables x̄? Let us first see why this interrupts our intended interpreta-
tion.

Consider θ = (∃x)(x ·x ≈ y), where ψ = (x ·x ≈ y) as above. Formally, we may consider
θ(y, x), as y, x is a list including all the free variables of θ (which is just y).

If we were to try and follow the above definition, the interpretation of θ(y, x) will be
the projection of ψ(y, x), which is a subset of R (rather than R2). However, the intended
meaning of θ(y, x) is really “y is the square of something”, without any mention of x!
That is, there should be no difference between

θ(y, x) = (∃x)(x · x ≈ y), and θ′(y, x) = (∃z)(z · z ≈ y).

Note that θ′(y, x) does fall into the “normal” category. That is, it is a formula with one
free variable y, y, x is a list of two distinct variables, and non of them is the quantified-over
variable z. So the interpretation of θ′ is defined at this point. We will simply define the
interpretation of θ as the one for θ′. That is, θA(y, x) is the set of all (b, a) in R2 so that
θA(y)(b) = 1. In this case, this is the set of all (b, a) so that b ≥ 0 (and a in R arbitrary).

More formally: suppose φ = (∃z)ψ and x̄ = x1, ..., xn is a sequence of variables which
does contain z. For convenience, assume that xn = z. Then z is not a free variable of φ. In
particular, the list x1, ..., xn−1 is a list containing all free variables of φ, and this list does
not contain the quantified-over xn. So, as above, we have already defined the interpretation
φA(x1, ..., xn−1) ⊆ An−1. Finally define φA(x1, ..., xn) = φA(x1, ..., xn−1)×A (a subset of
An, as required).

A final remark: you may avoid this nonsense by using different variables (as in θ′ above).

Exercise 2.26. Consider φ = (∃x)((x < 0) ∧ (∀x)(x · x ≥ 0)). What is its truth value in
R (with the usual interpretation of the symbols)?

Notation 2.27. Given a structure A, a formula φ(x1, ..., xn) and a1, ..., an from A, we
will write

A |= φ(a1, ..., an) ⇐⇒ φA(a1, ..., an) = 1,

in which case we say that φ(a1, ..., an) is “satisfied”. (The symbol |= is to be read, as a
verb, “models”. I think.) Of particular importance are the sentences φ, for which we may
ask if they are satisfied by A, or if “A models φ”, or if “φ is true in A”.

2.4. Morphisms and formulas.

Definition 2.28. Let A, B be two structures for the same signature S. Let f : A→ B be
a function from the domain of A to the domain of B.

(1) Say that f is a homomorphism3 if:

3Warning: this term may mean different things in different sources.

141A MATHEMATICAL LOGIC I 17

• for any n-ary relation symbolR in S, for any a1, ..., an fromA, if RA(a1, ..., an)
then RB(f(a1), ..., f(an));

• for any n-ary function symbol F in S, for any a1, ..., an, an+1 from A, if
FA(a1, ..., an) = an+1 then FB(f(a1), ..., f(an)) = f(an+1). [In other words,
f(FA(a1, ..., an)) = FB(f(a1), ..., f(an)).]

(2) Say that f is an embedding if it is one-to-one and
• for any n-ary relation symbol R in S, for any a1, ..., an from A, RA(a1, ..., an)
if and only if RB(f(a1), ..., f(an));

• for any n-ary function symbol F in S, for any a1, ..., an, an+1 from A, if
FA(a1, ..., an) = an+1 then FB(f(a1), ..., f(an)) = f(an+1). [Same as for a
homomorphism.]

(3) Say that f is an isomorphism if it is an embedding and is onto.

Remark 2.29. (1) Being one-to-one is the same as the condition for being an embed-
ding with the relation symbol ≈.

(2) If there are only function symbols in the vocabulary, then a one-to-one homomor-
phism is an embedding. Generally, a one-to-one homomorphism may not be an
embedding.

Exercise 2.30. Let f : A→ B be a homomorphism from A to B. Show that the following
are equivalent.

• f : A→ B is an isomorphism from A to B.
• There is a g : B → A which is a homomorphism from B to A and f ◦ g = idB and
g ◦ f = idA. [Here idA is the identity map from A to A.]

Lemma 2.31. Let h : A → B be a homomorphism between two structures of the same
signature. Then for any term t(x1, ..., xn) and any a1, ..., an from A,

h(tA(a1, ..., an)) = tB(h(a1), ..., h(an)).

Proof. We prove this by induction along the construction of the terms.
Case 1: if t is a variable xi, then t

A(a1, ..., an) = ai and t
B(h(a1), ..., h(an)) = h(ai).

Case 2: t = F (t1, ..., tk). Let ā = a1, ..., an and b̄ = h(a1), ..., h(an). Then h(tA(ā)) =
h(FA(tA1 (ā), ..., t

A
k (ā))) by the definition of term evaluation. The latter is equal to FB(h(tA1 (ā)), ..., h(t

A
k (ā)))

since h is a homomorphism. By the inductive assumption, h(tAi (ā)) = tBi (b̄) so the latter
expression is equal to FB(tB1 (b̄), ..., t

B
k (b̄)), which is tB(b̄), again by the definition of term

evaluation. □

Say that two structures A and B are isomorphic if there is an isomorphism from A to
B. In this case we write A ≃ B.

Exercise 2.32. Show that “isomorphism” is an equivalence relation on structures (of a
fixed signature S). That is:

• Every structure A is isomorphic to itself;
• If A is isomorphic to B then B is isomorphic to A;
• If A is isomorphic to B and B is isomorphic to C then A is isomorphic to C.

Recall that if two structures A and B are isomorphic, that should mean they are really,
essentially, the same thing. For example, given a sentence φ, it better be that A and B
agree on whether φ is true or false, if they are isomorphic.

18 ASSAF SHANI

Theorem 2.33. Let A and B be structures for the same signature S. Suppose that
f : A→ B is an isomorphism of A and B. Let φ(x1, ..., xn) be a formula. Then

(⋆) φA(a1, ..., an) = 1 ⇐⇒ φB(f(a1), ..., f(an)) = 1, for any a1, ..., an from A.

In particular, if φ is a sentence, then

A |= φ ⇐⇒ B |= φ.

Recall that in our first class we showed that (Q, <) and (N, <) are not isomorphic. Our
proof back then can be seen as follows. The sentence φ = (∃x)(∀y)((x ≈ y) ∨ x < y) is
true in (N, <) but false in (Q, <). So they cannot be isomorphic.

Proof. Recall that we write φ(x1, ..., xn) only when x1, ..., xn is a list of distinct variables
which includes all free variables of φ.

The proof will proceed inductively along the construction of formulas.
By Lemma 2.31 we already know that f(tA(a1, ..., an)) = tB(f(a1), ..., f(an)) for any

a1, ..., an in A and any term t.
Start with atomic formulas. Let φ be of the form R(t1, ..., tk) where t1, ..., tk are terms

and R is an k-ary relation. Let x1, ..., xn be a list of variables including all the variables
appearing in φ. Fix some a1, ..., an from A. Let di = tAi (a1, ..., an) for i = 1, ..., k.
Then, by definition, φA(a1, ..., an) = 1 if and only if (d1, ..., dk) ∈ RA.
Similarly, let ei = tBi (f(a1), ..., f(an)).
Then, by definition, φB(f(a1), ..., f(an)) = 1 if and only if (e1, ..., ek) ∈ RB.
We know that ei = f(di). Finally, since f is an isomorphism, (d1, ..., dk) ∈ RA if and only
if (e1, ..., ek) ∈ RB, which concludes the proof of (⋆) for the atomic formula φ.

Next we consider connectives. Assume (⋆) is true for ψ, and show it is true for φ =
¬ψ. Indeed, φA(a1, ..., an) = 1 if and only if ψA(a1, ..., an) = 0 if and only if (inductive
assumption) ψB(f(a1), ..., f(an)) = 0, if and only if φB(f(a1), ..., f(an)) = 1. So (⋆) is true
for φ.

Assume now that (⋆) is true for ψ1 and ψ2, and show that it is true for φ = (ψ1 ∧ ψ2).
Then φA(a1, ..., an) = 1 iff both ψA

1 (a1, ..., an) = 1 and ψA
2 (a1, ..., an).

By the inductive assumption, for each i, ψA
i (a1, ..., an) = 1 iff ψB

i (f(a1), ..., f(an)) = 1.
So φA(a1, ..., an) = 1 iff both ψB

1 (f(a1), ..., f(an)) = 1 and ψB
2 (f(a1), ..., f(an)) = 1, which

is true iff φB(f(a1), ..., f(an)) = 1. This concludes the proof of (⋆) for φ.
The cases where φ = (ψ1 → ψ2) or φ = (ψ1 ∨ψ2) are extremely similar, and are left for

you to complete. These can also be skipped using some “logical equivalences” [see Pset
3]. For example, (ψ1 ∨ ψ2) is equivalent to ¬(¬ψ1 ∧ ¬ψ2), and (ψ1 → ψ2) is equivalent to
(ψ2 ∨ ¬ψ1).

You may be a bit bored by this... Indeed not much has been going on, other than
repeatedly stating our definitions. Indeed, the major interesting case is quantification.
Start with an existential quantifier. That is, assume (⋆) is true for ψ, and let φ be of
the form (∃x)ψ, and prove that (⋆) is true for φ. As usual x1, ..., xn is a list of variables
containing all free variables in φ.

Assume first that x is not one of x1, ..., xn. (The normal situation...)
If φA(a1, ..., an) = 1, by the definitions, there is some a ∈ A so that ψA(a1, ..., an, a) = 1.
By (⋆) for ψ, we know that ψB(f(a1), ..., f(an), f(a)) = 1.
Again by definition it follows that φB(f(a1), ..., f(an)) = 1.

141A MATHEMATICAL LOGIC I 19

So we proved the =⇒ of (⋆) for φ.
Assume now φB(f(a1), ..., f(an)) = 1. So there is some b inB for which ψB(f(a1), ..., f(an), b) =
1.
Since f is onto, there is some a in A so that b = f(a). So ψB(f(a1), ..., f(an), f(a)) = 1.
Now similarly by (⋆) for ψ we get ψA(a1, ..., an, a), and therefore φA(a1, ..., an) = 1, con-
cluding the ⇐= of (⋆) for φ.

Assume now that φ = (∀x)ψ and we know (⋆) for ψ. Again this case can be avoided
using the logical equivalence between (∀x)ψ and ¬(∃x)¬ψ [see Pset 3], but let us repeat
the argument for clarity.
If φA(a1, ..., an) = 1, then for any a ∈ A, ψA(a1, ..., an, a) = 1.
We want to show that φB(f(a1), ..., f(an)) = 1. That is, that for any b ∈ B, ψB(f(a1), ..., f(an)) =
1.
Fix some b ∈ B. Since f is onto, there is some a ∈ A for which f(a) = b. As
ψA(a1, ..., an, a) = 1, applying (⋆) for ψ we conclude that ψB(f(a1), ..., f(an), b), as re-
quired.

On the other hand, assume that φB(f(a1), ..., f(an)) = 1. We want to show that
φA(a1, ..., an) = 1.
Fix an arbitrary a ∈ A. We need to show that φA(a1, ..., an, a) = 1. By assumption, and
the definition of interpretation for ∀, ψB(f(a1), ..., f(an), f(a)) = 1. Finally, by (⋆) for ψ,
ψA(a1, ..., an, a) = 1, as required.

Finally, let us treat the weird case, where in our list of variables x1, ..., xn we have the
variable over which we just quantified. Let us do this for the existential quantifier only.

For notational convenience, assume without loss of generality that we quantified over
the last variable xn. That is, φ = (∃xn)ψ and x1, ..., xn is a list of variables containing all
the free variables of φ (as well is xn which is not a free variable of φ). Assume (⋆) holds
for ψ, and show it for φ.

Recall that in this case, we may also view φ as φ(x1, ..., xn−1), and in fact we defined
the interpretation of φ(x1, ..., xn) by: φ

A(a1, ..., an) = 1 ⇐⇒ φA(a1, ..., an−1) = 1, for any
structureA. [More formally: φA(x1, ..., xn)(a1, ..., an) = 1 ⇐⇒ φA(x1, ..., xn−1)(a1, ..., an−1) =
1.]

In conclusion, for any a1, ..., an from A, φA(a1, ..., an) = 1 iff φA(a1, ..., an−1) = 1 iff
φB(f(a1), ..., f(an−1)) = 1 [as we proved this case above] iff φB(f(a1), ..., f(an)) = 1 [again
by the “silly quantifier definition”].

□

Definition 2.34 (Elementary equivalence). Let A and B be models for the same vocab-
ulary. Say that A and B are elementary equivalent, denoted A ≡ B if for any sentence
φ, A |= φ ⇐⇒ B |= φ.

Corollary 2.35. If A and B are isomorphic then they are elementary equivalent. In
symbols: A ≃ B =⇒ A ≡ B.

Remark 2.36. Whenever we compare two structures in any way: either ≃ or ≡, or we
talk about homomorphisms between them, there is always an implicit assumption that
they are structures for the same signature.

20 ASSAF SHANI

3. Substructures and elementary substructures

Definition 3.1 (Substructure). Let A and B be structure for some signature S. Say that
B is a substructure of A if:

• B ⊆ A (the universe of B is a subset of the universe of A);
• given any n-ary relation symbol P in S, for any b1, ..., bn in B,

RB(b1, ..., bn) ⇐⇒ RA(b1, ..., bn);

• given any n-ary function symbol F in S, for any b1, ..., bn in B,

FB(b1, ..., bn) = FA(b1, ..., bn).

Let us focus first on a relational language, that is, when the signature has only relation
symbols, for example, linear orders. In this case, a substructure of A is some subset
B ⊆ A, where we interpret the relations in B according to these given by A. In particular,
for any set B ⊆ A, we can interpret the relation symbols according to A, and this will
define a substructure. For example, for any subset B ⊆ Q, we may view (B,<) as a linear
order, where < is given according to Q.

If there is a constant symbol c, then its interpretation in B and in A must be the same.
In particular, cA must be in B. If there are function symbols, then we also want the
substructure to be closed under these functions. That is, if B ⊆ A is a set, and for any n-
ary function symbol F in the language, and any b1, ..., bn from B, FA(b1, ..., bn) ∈ B, then
we can again make B into a substructure by simply interpreting the symbols according
to A. For example, given a vector space over R, in the language described before, a
substructure will be precisely a subspace (as is commonly defined for vector spaces).

Remark 3.2. B is a substructure of A if and only if the identity map f : B → A, defined
by f(b) = b for any b ∈ B, is an embedding from B to A.

Remark 3.3. As always, the language matters. Given some group (G, ·, e), a substructure
is some set H ⊆ G so that e ∈ H and H is closed under multiplication. However, a
subgroup is assumed to be also closed under inverses. We can view the group in an
expanded language (G, ·,□−1, e), where □−1 is an unary function symbol which here is
interpreted as sending g ∈ G to its inverse g−1. In this language, a substructure is precisely
a subgroup.

Definition 3.4 (Elementary substructure). Let A and B be structures for a signature S.
say that B is an elementary substructure of A, denoted B ⪯ A, if B ⊆ A and for any
formula φ(x1, ..., xn) and any b1, ..., bn from B,

φB(b1, ..., bn) ⇐⇒ φA(b1, ..., bn).

Remark 3.5. By considering only sentences φ, it follows that if A ⪯ B then A ≡ B.

If B ⪯ A then B is a substructure of A, but not the other way around. For example,
(Z, <) is a substructure of (Q, <), but it is not elementary. [Why?]

It is of interest to understand when substructures are elementary. However, at the
moment, an important feature for us will be merely the existence of (small) elementary
substructures.

141A MATHEMATICAL LOGIC I 21

Theorem 3.6 (“Downwards Lowenheim-Skolem”). Fix a countable vocabulary S. Let A
be any structure (where A can have any size). Then there is an elementary substructure
B ⪯ A so that B is countable.

Before proving so, let us discuss some consequences.

Corollary 3.7. For every model A, for a countable signature, there is a countable model
B so that A ≡ B.

Corollary 3.8. The structure (R, <) and (Q, <) are elementary equivalent: (R, <) ≡
(Q, <).

Proof. By the above, there is some countable B ⊆ R so that B = (B,<) is an elementary
substructure of (R, <). In particular B ≡ (R, <), and so B is a DLO. Since B and (Q, <)
are countable DLOs, they are isomorphic! In particular, B ≡ (Q, <). It follows that
(R, <) ≡ (Q, <) as well. □

In particular, we see that elementary equivalence does not generally imply isomorphism.
Recall that R is not countable, and therefore (R, <) and (Q, <) are not isomorphic.

There are more subtle reasons of being non-isomorphic. We will see examples of struc-
tures that are elementary equivalent and are both countable, they they are not isomorphic.
In fact there are very natural examples: vector spaces and algebraically closed fields.

In the above considerations, all we used is that “all countable DLOs are isomorphic”.
We will see other examples of axioms with this properties soon. Let us see a simple
example here, much simpler than the case for DLOs.

Given finitely many formulas ψ1, ..., ψk, we write as short-hand notation
∧k

i=1 ψi, or∧
1≤i≤k ψi, for the long conjunction ψ1∧ψ2∧ ...∧ψk. [Note that more formally this should

be (...((ψ1 ∧ ψ2) ∧ ψ3) ∧ ... ∧ ψk). Again ψ1 ∧ ψ2 ∧ ...ψk is short-hand notation for it. Of
course part of why this is a reasonable notation is because we know (check) that the order
of paranthesising these conjuctions would not change the interpretations. For example,
(ψ1 ∧ ψ2) ∧ ψ3 and ψ1 ∧ (ψ2 ∧ ψ3) always interpret the same way.]

Exercise 3.9. Consider the empty vocabulary. A model is simply a set. Define the
sentences φn = ∃x1...∃xn(

∧
1≤i<j≤n ¬(xi ≈ xj)) saying that “there are at least n distinct

objects”. Let T = {φn : n = 1, 2, 3, ...}.
(1) Show that any two countable models of T are isomorphic.
(2) Conclude that any two sets (of any size) are elementary equivalent in the empty

vocabulary.

We now turn towards proving Theorem 3.6. Before, we must recall some facts about
countable sets.

3.1. Countable sets. Understanding countable sets, and how to manipulate them, is
extremely important for us (and in many parts of mathematics). We give here a detailed
review.

Consider N = {0, 1, 2, ...} the counting numbers. Recall that a set X is countable if
there is an onto map f : N → X. (Or if X is empty, we still say that ∅ is countable,
but this will not be an important case.) We identify such map f with the sequence
⟨f(0), f(1), f(2), ...⟩, which we think of as an enumeration of X. Note that a finite set
is also countable. The enumeration does not have to be one-to-one.

22 ASSAF SHANI

Fact 3.10. SupposeX is infinite (not finite) and countable. Then there exists a one-to-one
and onto map between N and X.

Proof. Since X is countable, we may fix some enumeration x0, x1, x2, ... of all the members
of X. Define y0, y1, ... recursively as follows.

• y0 = x0;
• given y0, ..., yk, let m be the smallest natural number so that xm does not appear
in the list y0, ..., yk, and define yk+1 = xm.

Note that this process never fails becauseX is not finite. Now y0, y1, y2, ... lists all members
of X and for i ̸= j, yi ̸= yj [check]. In other words, the map f(n) = yn is one-to-one and
onto between N and X. □

Fact 3.11. If Y is countable and g : Y → X is onto, then X is countable.

Proof. If f : N → Y is onto and g : Y → X is onto then g ◦ f : N → X is onto. □

Fact 3.12. Suppose X ⊆ N. Then X is countable.

Proof. We use the fact that any subset of N has a minimal member (according to the usual
ordering of N). Define x0, x1, x2, ... as follows:

• x0 is the minimal member of X;
• given x0, ..., xn, xn+1 is the minimal member of X \ {x0, ..., xn}, if X \ {x0, ..., xn}
is not empty. If X \ {x0, ..., xn} is empty, xn+1 = xn.

□

Exercise 3.13. If h : X → Y is one-to-one and Y is countable, then X is countable.
[Hint: assume first that Y = N. Next use the fact that there is a one-to-one and onto map
between Y and N.]

Corollary 3.14. A countable subset of a countable set is countable. (If X ⊆ Y , then the
map h : X → Y , h(x) = x, is one-to-one.)

Corollary 3.15. Let X be an infinite set. The following are equivalent.

(1) X is countable;
(2) there is a one-to-one map from X to N;
(3) there is a one-to-one and onto map from X to N.

((1) and (2) are equivalent even for finite X.)

Recall that for sets A and B, their product A × B is the set of all ordered pairs (a, b)
where a ∈ A and b ∈ B.

Fact 3.16. The product N× N is countable.

“Proof by picture”:

0, 0

0

1, 0

1

2, 0

5

3, 0

6

0, 1

2

1, 1

4

2, 1

7

0, 2

3

1, 2

8

2, 2

141A MATHEMATICAL LOGIC I 23

Corollary 3.17. The set Q is countable.

Proof. Consider the map sending (n,m) to n
m+1 . It is onto from N× N to Q. □

Note that if X,X ′, Y, Y ′ are sets, so that there is an onto map from X → X ′ and an
onto map from Y → Y ′, then there is an onto map from X × Y → X ′ × Y ′.

Corollary 3.18. If A and B are countable then so is A×B.

Similarly, if X,X ′ have the same cardinality (there is a one-to-one and onto map from
X to X ′) and Y, Y ′ have the same cardinality, then X × Y and X ′ × Y ′ have the same
cardinality.

The following is super important.

Lemma 3.19. If A0, A1, A2, ... are countable sets, then A =
⋃

n=0,1,...An is also countable.

Proof. It suffices to find an onto map from N× N to A. [why?]
For each n, An is countable, so we may enumerate it by an0 , a

n
1 , a

n
2 ,

Define g : N× N → A by g(n,m) = anm. Then g is onto.

a00 a01 a02

a10 a11 a12

a20 a21 a22 □

Corollary 3.20. “A countable union of countable sets is countable”. That is, if I is a
countable set, and for each i ∈ I we have some countable set Ai, then the set A =

⋃
i∈I Ai

is countable.

For a set A let A<N =
⋃

n∈NA
n, the set of all finite tuples from A, of arbitrary finite

length.

Exercise 3.21. Suppose that A is countable. Prove that A<N is countable.

Corollary 3.22. Let S be a countable signature (countably many relation and function
symbols). Let F , T be the set of all formulas in the signature S, and the set of all terms
in the signature S, respectively. Then F and T are countable.

Proof. Let A be S together with the symbols {(,),→,∨,∧,∃,∀,⊥, x0, x1, x2, ...}. (x0, x1, ...
is supposed to represent some infinite sequence of variables that we will use for the for-
mulas.) Any formula and any term can be identified as a finite string of symbols from A.
In other words, we may identify T and F as subsets of A<N, which is countable. □

In particular, if our vocabulary is finite (as for linear orders, groups, fields, graphs) then
the language is countable.

Fact 3.23. The set of real numbers R is not countable.

Note that English is as well a countable language. In particular, there are real numbers
which you cannot describe in any way.

24 ASSAF SHANI

3.2. Existence of elementary substructures. First, being “just a substructure” al-
ready gives us “some elementarity”. By definition, if B is a substructure of A, then for any
atomic formula φ(x1, ..., xn), for any b1, ..., bn from B, φB(b1, ..., bn) ⇐⇒ φA(b1, ..., bn).

We may define quantifier free formulas as we defined formulas, omitting the quantifiers
stage. That is, atomic formulas are quantifier free, negations, conjuctions, disjunctions,
and implications between quantifier free formulas, are again quantifier free formulas.

Exercise 3.24. Suppose B is a substructure of A. Prove that for any quantifier free
formula φ(x1, ..., xn), for any b1, ..., bn in B,

φB(b1, ..., bn) = 1 ⇐⇒ φA(b1, ..., bn) = 1.

[You proved this in Pset 3 in greater generality, for an embedding between structures.]
Being an elementary substructure is quite powerful, and therefore seemingly difficult to

verify. One has to worry about all formulas and worry about the difference between how
A and B may interpret them. The following gives a simpler “step by step” criterion for
verifying elementarity.

Theorem 3.25 (Tarski-Vaught criterion). Suppose B is a substructure of A. The follow-
ing are equivalent:

(1) B ⪯ A;
(2) for any formula φ(x1, ..., xn, xn+1), for any b1, ..., bn in B, if there is some a in A

for which φA(b1, ..., bn, a) holds, then there is some b in B for which φA(b1, ..., bn, b)
holds.

[Why is the second line not simply the definition of elementarity for the formula ∃(xn+1)φ?]

Proof. (2) =⇒ (1) (“The easy direction”): Assume that B ≺ A, φ(x1, ..., xn, xn+1 is a
formula, b1, ..., bn are in B and φA(b1, ..., bn, a) is true for some a in A. Consider the
formula θ = (∃xn+1)φ. Then θA(b1, ..., bn) is true. By the elementarity assumption,
θB(b1, ..., bn) holds as well. In particular, there is some b ∈ B so that θB(b1, ..., bn, b) holds.
Now again by the elementarity assumption θA(b1, ..., bn, b) holds, as required.

(2) =⇒ (1) (the main point): We prove by induction on the construction of formulas
that for any formula φ(x1, ..., xn) and any b1, ..., bn in B,

(⋆) φB(b1, ..., bn) ⇐⇒ φA(b1, ..., bn).

For atomic formulas, this follows from Exercise 3.24. (Here we are not using elementar-
ity, just that B is a substructure of A.)

The connectives case is similar to arguments we have seen a few times now. For example,
if φ = ¬ψ then

φB(b1, ..., bn) = 1 ⇐⇒ ψB(b1, ..., bn) = 0 ⇐⇒ ψA(b1, ..., bn) = 0 ⇐⇒ φA(b1, ..., bn) = 1,

where the middle ⇐⇒ is by the inductive assumption. The other connectives are similar.
Let us focus on the case of an existential quantifier. Assume that (⋆) holds for ψ, and

we need to prove it for φ = (∃x)ψ. We will also focus on the case where the quantified-over
variable x does not appear in the list x1, ..., xn.

If φB(b1, ..., bn) holds, then there is some b ∈ B for which ψB(b1, ..., bn, b) is true. It
follows that ψA(b1, ..., bn, b) is true, and therefore φA(b1, ..., bn) holds. [The assumption
(2) was not used here.]

141A MATHEMATICAL LOGIC I 25

Finally, assume that φA(b1, ..., bn) holds, so there is some a ∈ A for which ψA(b1, ..., bn, a)
holds. By assumption (2), there is some b ∈ B for which ψA(b1, ..., bn, b) holds. By
the inductive hypothesis, ψB(b1, ..., bn, b) holds, since b1, ..., bn, b are all from B. In turn
φB(b1, ..., bn) is true, as required. □

Finally we prove a strengthened version of the “downwards Lowenheim-Skolem” theo-
rem stated above.

Theorem 3.26. Let S be a countable signature. LetA be a structure andX ⊆ A a subset.
Assume furthermore that X is countable. Then there is an elementary substructure B ⪯ A
with B countable and X ⊆ B.

Proof. We will define a sequence of countable sets B0, B1, B2, ... where B0 = X. At each
stage we will add more “witnesses” to satisfy the Tarski-Vaught criterion. At the end, we
will have “caught our tails”.

Let F be the set of all formulas in the language. It is countable, since the vocabulary
is countable.

Assume that Bk is defined and is countable. We construct Bk+1 as follows. For each
formula φ(x1, ..., xn, xn+1) and for any parameters b1, ..., bn in Bk, we ask: is there some
a in A for which A |= φ(b1, ..., bn, a)? If there is such an a, choose one. (Call it, say,
aφ(x1,...,xn,xn+1),b1,...,bn .)

How many pairs of formula & sequence of parameters from Bk are there? F × B<N
k .

Countably many! Collect all of these, together with Bk, to form Bk+1. So Bk+1 is
countable as a union of two countable sets.

Finally, define B =
⋃

k=0,1,2,...Bk. B is countable as a countable union of countable
sets. X = B0 ⊆ B. Using the Tarski-Vaught criterion, we show that B is an elementary
substructure of A.

First we need to check that B is a substructure, that is, it is closed under all functions
FA for F a function symbol in S. We could have “taken care of it directly”, but it actually
follows from our construction. Given b1, ..., bn from B, there is some large enough k so
that b1, ..., bn are all in Bk [Tail = caught]. Consider the formula ψ(x1, ..., xn, xn+1) =
(xn+1 ≈ F (x1, ..., xn)). For a = FA(b1, ..., bn), A |= ψ(b1, ..., bn, a). We need to show that
a ∈ B. By construction, some a′ ∈ A for which A |= ψ(b1, ..., bn, a

′) was thrown into
Bk+1. However, since A |= ψ(b1, ..., bn, a

′), then a = FA(b1, ..., bn) = a′, so a = a′ is in B,
as required. [Note that at this point we can actually talk about B as a structure whose
domain is B.]

The argument for the Tarski-Vaught criterion is similar. Let φ(x1, ..., xn, xn+1) be any
formula, b1, ..., bn some members of B, and assume that φA(b1, ..., bn, a) is true for some
a in A. Fix k large enough so that b1, ..., bn are all in Bk. Then in the construction we
threw into Bk+1 some a′ so that φA(b1, .., bn, a

′) holds. In particular this a′ is in B, as
required in the Tarski-Vaught criterion. □

Example 3.27. Consider the “field of complex numbers” (C,+, ·, 0, 1). Recall that C is
algebraically closed, meaning that for any polynomial P (x) =

∑n
i=0 aix

i with coeffi-
cients ai ∈ C (which are not all zero), then P has a root: some c ∈ C for which P (c) = 0.
Note that polynomials are essentially terms in this language.

What does the construction above look like for this structure, when we start with the
empty set?

26 ASSAF SHANI

For example, any natural number k has a term tk = 1+ ...+1 (k-times) which “defines
it”. Since it is true in C that (∃x)x = tk, then k will be added to our first stage B1.
Similarly, you can see that every rational number q ∈ Q will be added to B1. Moreover,
as (∃x)(x2 + 1 = 0) is true in C, ı (the square root of −1), will be added to B1 as well.

The elementary substructure we get is a countable algebraically closed field. In fact, we
get the minimal algebraically closed field (of characteristic 0).

[Remark: in this case, in fact B1 = B2 = B3.... That is, after one step we already get
an algebraically closed field. This however is something unique to fields, and not general
model theoretic.]

Example 3.28. Consider A = (N, <) and B = (N \ {0}, <). Then
• B ⊆ A (a substructure).
• B ≃ A, the map f(n) = n− 1 is an isomorphism. (In particular, A ≡ B).
• However, B is not an elementary substructure of A. Specifically, B |= ¬φ(1) and
A |= φ(1), where φ(x) = (∃y)(y < x).

3.3. Theories. As always, we work with some fixed vocabulary. Say that T is a theory
if T is just a set of sentences in the language. Say that T is satisfied by a model A,
denoted A |= T , if A |= φ for any φ ∈ T . (We will also say that A is a model of T .) Say
that T is satisfiable if there exists some model which satisfies it. (If it has a model.)

Remark 3.29. If T is a satisfiable theory (it has some model), then it has a countable
model. It may tempt us to think that, in order to understand a theory T , we may restrict
out attention to countable models. This, however, turns out not to be so.

Definition 3.30. Say that a theory T logically implies a sentence φ, denoted T |= φ, if
for any model A of T , A |= φ as well. We will also say that φ is a logical consequence
of T .

A sentence φ is said to be logically valid if it is true in any model. We will also denote
this by |= φ. (That is, “the empty theory” logically implies φ.)

Remark 3.31. Logical implication is the central question here. For example, if you prove
something about vector spaces, you start with some structure satisfying the vector space
assumption, and you prove things in that structure. Since the structure was arbitrary,
you were proving that something is a consequence of the vector space axioms.

Another central question is whether some T is satisfiable. Note that T |= φ if and only if
the theoryT∪{¬φ} is not satisfiable. (The latter will sometimes be denoted T∪{¬φ} |=⊥.)

Example 3.32. • Let T be the theory of linear orders, in the signature <. Let φ
be the sentence (∀x1)(∀x2)(∀x3)(∀x4)(((x1 < x2)∧ (x2 < x3)∧ (x3 < x4)) → (x1 <
x4)). Then T logically implies φ. On the other hand, T does not logically imply
the (Density) axiom of DLO.

• Let T be the theory DLO of dense linear orders. Let φ be the sentence (∀x)(∀y)((x <
y) → (∃z)(∃w)((x < z) ∧ (z < w) ∧ (w < y))). Then T logically implies φ.

• Let φ be the sentence (∀x)(x ≈ x). Then φ is logically valid.
• Let P be an unary predicate. Let φ be (∀x)(P (x) ∨ ¬P (x)). Then φ is logically
valid. Let ψ be the sentence (∀x)P (x)∨ (∀x)¬P (x). Then ψ is not logically valid,
meaning there is some model in which it is false.

141A MATHEMATICAL LOGIC I 27

Definition 3.33. Fix a signature S. A theory T (of sentences in the signature S) is
complete if for any sentence φ (in the signature S) either φ ∈ T or φ /∈ T .

Definition 3.34. Let A be a structure. The theory of A, denoted Th(A), is the set of
all sentences φ in the language so that A |= φ.

Claim 3.35. For any structure A, Th(A) is a complete theory.

Proof. Fix a sentence φ in the language. If φA = 1 (is true), then φ ∈ Th(A). Otherwise,
by the definition of the interpretation of formulas in a structure, (¬φ)A = 0 (is false), so
¬φ ∈ Th(A). □

We will often identify a theory T with its logical consequences: the set of all sentences
φ in the language for which T |= φ. (Note that a structure A is a model for T if and only
if it is a model for the set of consequences of T .) In that spirit, we may say that T is
complete if for any sentence φ, either T |= φ or T |= ¬φ.

Recall that two models A and B (for the same vocabulary) are elementary equivalent,
denoted A ≡ B, if for any sentence φ, A |= φ ⇐⇒ B |= φ.

Remark 3.36. Two models A and B are elementary equivalent if and only if B |= Th(A).

Being elementary equivalent means that we cannot distinguish the models using any
sentence in our formal language. On the other hand, recall that being isomorphic means
that the models are truly “essentially the same”. We saw that elementary equivalence
does not imply isomorphism. For example, (R, <) and (Q, <) are elementary equivalent,
but not isomorphic, as they have different size. There could also be elementary equivalent
A, B of the same size, which are still not isomorphic. There are in fact many interesting
such examples. For example, R and R2, viewed as vector spaces in the language discussed
earlier, are not isomorphic (they have different dimensions), but they turn out to be
elementary equivalent (and they have the same size). Also, any two countable algebraically
closed fields of characteristic 0 are elementary equivalent, yet they are not all isomorphic
to one another.

Finally, what we mentioned earlier about (R, <) and (Q, <) can be strengthened, and
applies in greater generality.

Lemma 3.37. Let T be a theory (in a countable vocabulary) so that any two countable
models of T are isomorphic. Then any two models (of any size) are elementary equivalent.
In particular, T is complete: for any sentence φ, either T |= φ or T |= ¬φ.
Proof. For any two models A and B of T , we may find countable models A′ and B′ so that
A ≡ A′ and B ≡ B′. By assumption, A′ and B′ are isomorphic, so A′ ≡ B′. It follows that
A ≡ B.

Fix a sentence φ. Assume for contradiction that neither T |= φ nor T |= ¬φ. The
first assumption means (by definition) that there is some model A for T so that A |= ¬φ;
the second that there is some model B for T so that B |= φ. By the previous argument
however A ≡ B, a contradiction. □

Corollary 3.38. Th(R, <) = Th(Q, <) and is precisely all logical consequences of the
theory DLO.

Proof. If T is the set of logical consequences of DLO, then any model of DLO must satisfy
T , and therefore the theory of any such model is precisely T . □

28 ASSAF SHANI

Exercise 3.39. Let E be a binary relation symbol. Consider the theory T saying that E
is an equivalence relation with precisely 2 equivalence classes, and each equivalence class
is infinite. More precisely, T consists of the axioms

• (∀x)(x E x),
• (∀x)(∀y)(x E y → y E x),
• (∀x)(∀y)(∀z)((x E y ∧ y E z) → x E z)
• (∃x)(∃y)((∀z)(z E x ∨ z E y) ∧ ¬(x E y)),

as well as the axioms

• (∀x)(∃x1)...(∃xn)(
∧n

i=1(xi E x) ∧
∧

i ̸=j ¬(xi ≈ xj)),

for each natural number n. Prove that any two countable models for T are isomorphic.

4. A playful approach

Many construction in mathematics are often cast in terms of games and strategies. We
will discuss some games which characterize elementary equivalence between models, and
isomorphism between countable models. Several facts in this section will be stated without
proof. Those will not be part of our core material in the class, but feel free to read more
or reach out if you want to discuss these or further directions.

For notational convenience, let us restrict attention to relational languages, meaning
that we have only relation symbols and no function symbols (so no constant symbols
either). These ideas can be generalized to arbitrary languages without much difficulty.

Fix a relational signature S. Fix structures A,B. Any subset X ⊆ A may be viewed
as a substructure. Given X ⊆ A and Y ⊆ B, and a function f : X → Y , say that f
is a partial embedding if f is an embedding from the substructure of A with domain
X to the substructure of B with domain Y . (Equivalently, this is just the definition of
embedding but we only take elements from X instead of all of A.)

Consider the following two-player game, which we will denote G(A,B). We may call
this the Back-and-Forth game. This is often called the Ehrenfeucht-Fräıssé game.
(Extra credit for pronunciation!)

A “play” in the game looks as follows.
First, player I picks some a0 in A.
In response, player II must pick some b0 in B. This b0 must satisfy that the function
f : {a0} → {b0}, f(a0) = b0, is a partial embedding.

Next, player I picks some b1 in B.
In response, player II must pick some a1 in A, so that the function f : {a0, a1} → {b0, b1}.

... Suppose we arrived at some even stage 2k, where a0, ..., a2k−1, b0, ..., b2k−1 were
already played (according to the rules).
Player I now picks some a2k in A.
In response, player II picks some b2k inB, so that f : {a0, ..., a2k} → {b0, ..., b2k}, f(ai) = bi,
is a partial embedding.

Next, at stage 2k + 1, player I picks some b2k+1 from B.
In response, player II must pick some a2k+1 fromA, so that f : {a0, ..., a2k+1} → {b0, ..., b2k+1},
f(ai) = bi, is a partial embedding.

Clearly, player I is on the offense, while player II is on the defense. What is happening
is that that the two players are studying the models A and B. Player II really believes
that they are isomorphic. Player I, however, is skeptical. At each stage player I challenges

141A MATHEMATICAL LOGIC I 29

player II, by adding some members (either to the domain or the range of a “potential
isomorphism”), and player II must respond by showing how such potential isomorphism
will behave on these members.

This game continues indefinitely... Who wins? If at any point, player II failed to find
a response, then player II loses. If player II prevails through all finite stages, always
providing a response, then player II wins.

What is a strategy in a game? Exactly what it sounds like... A strategy for player II
is some pre-determined decision of how to respond to any move of player I. [Technically,
a strategy us a function τ that takes as input the information of everything that has
happened in the game so far, together with the current stage of the game, and spits out
the next move.]

When is a strategy a winning strategy? If it guarantees a victory. A strategy τ for
player II is a winning strategy if no matter what moves player I plays, as long as player
II follows this strategy, player II will win. (In this case, it simply means that player II
always has a legit move to make.)

For example, if you are playing connect-4, the second player may play a “mirroring
strategy”, to always play the mirror image of player I’s move. This, however, is a losing
strategy!

Theorem 4.1. Suppose that A and B are countable structures. The following are equiv-
alent.

(1) A and B are isomorphic.
(2) Player II has a winning strategy for G(A,B).

Remark 4.2. Consider the language consisting of one relation symbol <. Let A and B
be DLOs. In Pset 1, Question 3, you described a winning strategy for player II in the
game G(A,B).
Proof. Assume first that A ≃ B, and fix some isomorphism f : A → B. Player II has
the following strategy, to “respond according to f”. That is, when player I plays a2k in
A, player II responds b2k = f(a2k). When player I plays b2k+1 in B, player II responds
a2k+1 = f(b2k+1). Since f is an isomorphism, its restriction to any subdomain is a partial
embedding. It follow that the moves player II makes are always legit, and so player II
wins.

Assume now that player II has some winning strategy τ in the game G(A,B), and
construct an isomorphism between A and B. This is exactly what we have done in the
first week of classes.

By assumption, A and B are countable. We may fix enumerations a′0, a
′
1, a

′
2, ... and

b′0, b
′
1, b

′
2, ... ofA andB respectively. We define new enumerations a0, a1, a2, ... and b0, b1, b2, ...

so that the map f(ai) = bi will be an isomorphism.
While player I is in some sense “the bad one”, challenging our belief that A and B are

isomorphic, their skepticism turns out useful for us now. We now take the role of player
I, describing their moves in the game.

First, let player I play a0 = a′0.
Player II now responds according to the strategy to provide some b0 (which is not neces-
sarily b′0).
Next, let player I play b1 = b′0.
Player II responds according to the strategy to provide some a1 in A.

30 ASSAF SHANI

At stage 2k, player I plays a2k = a′k, player II responds with some b2k. Then player I
plays b2k+1 = b′k, and player II responds with some a2k+1.

Finally, define f : A → B by f(ai) = bi. Since player II always played according to a
winning strategy the map f is in fact an isomorphism. [Why?]

[Unlike in Week 1, we did not worry here about whether, at stage 2k, a′k already appears
as some ai or not. Similarly for b′k at stage 2k + 1. Does this pose a problem?] □

For uncountable models, “player II having a winning strategy” does not necessarily
imply isomorphism. It is however a strong and interesting notion of “similarity” between
the models.

Shorter plays. [Optional reading topic] Note that player II’s task is not easy, finding
ahead of time a strategy that will last infinitely many rounds of the game. Fix a natural
number n. We may consider a game Gn(A,B) which is played just as G(A,B) but is
halted after n many rounds. Again player II can lose by failing to respond at any given
round, and wins by prevailing until the final round.

Theorem 4.3. Let A and B be structures for a finite relational signature. The following
are equivalent.

(1) A and B are elementary equivalent.
(2) For each n, player II has a winning strategy for the game Gn(A,B).

If you are interested, you can find a proof of this result in [Marker, Theorem 2.4.6]. I
will be happy to discuss it. (The definition of Gn there is slightly different, and the result
more refined, as [Marker, Lemma 2.4.9].)

Note that for n < m, the strategy τm for Gm(A,B) may (and most likely will) not agree
with τn, even on the first n stages.

Note that there is no assumption on the cardinalities of A and B. They are not even
assumed to be of the same cardinality! In fact, you can use Theorem 4.3 to give another
proof that (Q, <) and (R, <) are elementary equivalent.

Remark 4.4. It is worth noting that clause (2) in Theorem 4.3 is formulated completely
in terms of the structures. (Unlike “elementary equivalence”, which is purely described in
terms of the formal language.) That is, the definition of being a “partial embedding” only
talks directly about the structure, and does not involve the formal language.

4.1. The random graph. Consider the vocabulary {E} of one binary relation. (Intended
here for graphs.) Let ψn be the following sentence

∀x1...∀xn∀y1...∀yn

(
n∧

i=1

n∧
j=1

xi ̸= yj) → ∃z
n∧

i=1

((xi E z) ∧ ¬(yi E z))

 .

Here
∧n

i=1

∧n
j=1 xi ̸= yj is notation for x1 ̸= y1 ∧ x1 ̸= y2 ∧ ... ∧ x1 ̸= yn ∧ x2 ̸= y1 ∧ ... As

usual x ̸= y is short for ¬ ≈ (x, y). Similarly,
∧n

i=1 is short for n many ∧’s.
What does ψn say: for any two disjoint subsets of vertices {a1, ..., an} and {b1, ..., bn},

we may find some vertex c which has an edge with each of the ai’s and does not have an
edge with any of the bi’s.

The most common example of a graph with this property is the random graph. This
is a graph whose vertex set is N (some countable infinite set) and the edge relations are

141A MATHEMATICAL LOGIC I 31

decided randomly by flipping a coin for each pair (n,m). You can see, at least intuitively,
that such a graph will satisfy ψn for any n. [We can also construct the graph in a more
explicit way. Feel free to ask.]

Let T be the theory containing the sentences:

• ∀x∀y(x E y → y E x) (the graph axiom);
• ∀x¬(x E x) (“no loops”);
• ∃x∃y(¬x ≈ y);
• ψn for each n.

(T is infinite.)

Exercise 4.5. (1) Suppose A and B are models of T . Show that player II has a
winning strategy for the game G(A,B).

(2) Conclude that any two countable models of T are isomorphic.
(3) Conclude that the sentences which are true for the random graph (the theory of

the random graph) are precisely the logical consequences of T .
You can find more details about this in [Marker, p. 50], and I will be happy to talk

about it. You can see there also some probabilistic facts about the random graph.
In a sense, proving that the “back-and-forth” works here is easier than what you have

done for DLOs. The theory T has infinitely many axioms, quite directly ensuring that the
back-and-forth can go through. In the case of DLO there are only finitely many axioms.
You had to do some more work to “extract” information about larger finite sets, using
axioms which only talk about 2 or 3 objects at a time.

Fräıssé limits. [Optional reading topic] Both the the DLO (Q, <) and the random graph
can be seen as examples of “Fraisse limits”. The structure (Q, <) can be seen as the “limit
of all finite linear order”, and the random graph can be seen as the “limit of all finite
graphs”. The Fraisse limit is a construction that allows in some generality to construct a
“limit structure” to a collection of finite structures.

If you are interested, you can read about it in [Hodges, Section 7.1], and I will be happy
to talk about it. (You have all the tools necessary to read this section.)

Remark 4.6. If you like category theory, you will love Friasse limits.

5. A remark on Q,R and elementary substructures

We saw that (Q, <) and (R, <) are elementary equivalent. In fact (Q, <) is an elementary
substructure of (R, <). Let us see why.

Lemma 5.1. Suppose A = (A,<) is countable DLO. Suppose ā = a1, ..., an and b̄ =
b1, ..., bn are from A and have the same type (as in Pset 1). Then there is an automorphism
of A, f : A→ A, such that f(ai) = bi.

This is essentially what we proved in Week 1. We can start with the sequences
ā = a1, ..., an, b̄ = b1, ..., bn, and continue the back-and-forth process a1, ..., an, an+1, ...,
b1, ..., bn, bn+1 so that both the an and bn sequences enumerate all of A, and the map
sending ai to bi is an isomorphism from A to A.

Corollary 5.2. Let A be a countable DLO. Suppose ā = a1, ..., an and b̄ = b1, ..., bn are
from A and have the same type. Then for any formula φ(x1, ..., xn),

A |= φ(a1, ..., an) ⇐⇒ A |= φ(b1, ..., bn).

32 ASSAF SHANI

Proof. If f : A→ A is an automorphism of A sending ai to bi, then

A |= φ(a1, ..., an) ⇐⇒ A |= φ(f(a1), ..., f(an)) ⇐⇒ A |= φ(b1, ..., bn).

□

Corollary 5.3. Suppose B ⊆ A is a substructure and both are DLOs. Then B ⪯ A.

Proof. Let us apply the Tarski-Vaught criterion. Let φ be a formula, b1, ..., bn from B and
a from A so that A |= φ(b1, ..., bn, a). We want to find b in B so that A |= φ(b1, ..., bn, b).

We consider the following cases:

(1) a = ai for some i;
(2) a > ai for i = 1, ..., n;
(3) a < ai for i = 1, ..., n;
(4) otherwise, we may find i, j so that ai < a < aj where ai is largest below a and aj

is smallest above a.

In case (1), we take b = a = ai and we are done. In all other cases, using the fact that
B is a DLO, we may find b ∈ B so that the two sequences a1, ..., an, a and b1, ..., bn, b
have the same type. (You did something similar in Pset 1). By the previous corollary,
A |= φ(b1, ..., bn, b), as required. □

Remark 5.4. Lemma 5.1, as well as the following corollaries, are also true with A re-
placed by (R, <). You can prove Lemma 5.1 directly in this case (writing explicitly an
automorphism), without an appeal to Cantor’s isomorphism theorem.

Corollary 5.5. (Q, <) is an elementary substructure of R.

Proof. By the downwards Lowenheim-Skolem theorem, there is some A ⪯ (R, <) with A
countable and Q ⊆ A. So A is a countable DLO, and therefore (Q, <) ⪯ A. It follows
that (Q, <) ⪯ (R, <). □

Remark 5.6. We just witnessed a very interesting phenomenon: where a substructure is
automatically an elementary substructure. This is also true for algebraically closed fields:
if F1 is a subfield of F2 and both are algebraically closed, then it is in fact an elementary
substructure, with the language +, ·, 0, 1,. Similarly this is true for vector spaces, in the
language we represented them above.

A related very interesting and important concept is that of quantifier elimination. We
will not go into it in this class. You can find a (very rudimentary) example in [Enderton, p.
190]. See [Marker, Section 3.1] to learn more. (In particular, DLOs and algebraically closed
fields “have quantifier elimination”.) As always, feel free to talk to me about it if you are
interested.

6. Constructing models

Let us now turn to the question: given a theory T (for a signature S, can we find a
model for T? (That is, a structure A in the signature S so that A |= T .)

Of course, this is not always possible. If there is some sentence φ so that both φ and ¬φ
are in T , then there cannot be any model for T . More generally, if T |= φ and T |= ¬φ,
then there cannot be a model for T . Note that for such T , necessarily T |= ψ for any
sentence ψ. This is simply because the statement “T |= ψ” is of the form “if A is a model
for T , then ...”. If there are no models of T , this statement is always true...

141A MATHEMATICAL LOGIC I 33

This is indeed not an easy question, and we will be dealing with it for a while. To begin,
let us make some simplifying assumption, and develop some intuition. Assume that (1)
T is a complete theory (for any φ, either φ ∈ T or ¬φ ∈ T), and (2) that there is not φ
for which both φ,¬φ are in T (T does not contain any immediate contradiction). Recall
that these two conditions are true for Th(A) for any structure A. So it really looks like T
is the theory of some structure... Yet it is still not clear.

Remark 6.1. We started by being generous with our logical connectives. This allowed us
to more freely express things in the language. However, we don’t really need all of them.
As we have seen, if we just use the connectives ∧ and ¬, and the universal quantifier ∀, we
do not “lose any expressive power”. Meaning, we can still represent any formula, which
also uses ∨,→,∃, using just ∧,¬,∀. (Up to logical equivalence of formulas.)

The choice of connectives is not too important. We can also use ∨,¬, ∃ to express all
the others.

When proving things by induction on the construction of formulas, it is convenient to
restrict to fewer cases, say just ∧,¬, ∀, to avoid repeating the same argument.

6.1. Henkin theory. Fix a signature S. Assume T is a complete theory with no con-
tradictions as above. Assume further that the signature contains many (say, infinitely
many) constant symbols. Then, we may try to construct a structure using these constant
symbols.

Specifically: we may try to create a structure A = (A, ...) where A is the set of all
constants in the signature. For any n-ary relation symbol R in the signature and any
c1, ..., cn from A (that is, constant symbols in the signature), we need to decide whether
RA(c1, ..., cn) is true or false (to define the structure A).

Seems like we have a very natural way of making this decision: note that φ = R(c1, ..., cn)
is an atomic sentence in the signature S. By our assumptions, either φ ∈ T , in which case
we will decide that RA(c1, ..., cn) is true, or ¬φ ∈ T , in which case we will decide that
RA(c1, ..., cn) is false.

How will we interpret the constant symbols in A? Something like cA = c seems right...
Issue: what if we have two different constant symbols c, d in S and T contains the

sentence c ≈ d. Then a model A for T will necessarily satisfy A |= c ≈ d, which means
that cA = dA (actually equal as members of the set A). So rather than interpreting cA = c
and dA = d, we will want to identify c, d as the same element of our domain. We will
do this by taking a quotient. Also, we do want that c ≈ c will be in T , for any constant
symbol c.

Ignoring this issue for now, suppose we defined a model A as above. Then by its
definition for any atomic sentence φ in T , A |= φ. We want A to satisfy all sentences in
T . Let φ be in T . We will want to prove inductively that A |= φ for any φ in T .

One inductive instance is: φ = ¬ψ is in T . Then by our non-contradiction assumption,
ψ is not in T . We would like to conclude that ψA = 0, in which case we deduce that
φA = 1, as desired. To do so, we need to carry out a stronger inductive hypothesis:

[Better inductive hypothesis] For any φ, φA is true if and only if φ is in T .

Another inductive instance will be: φ = ψ1 ∧ ψ2. If we know that ψ1, ψ2 are both true
in A, then we are good. But how do we know that? If ψ1 and ψ2 are both in T , then the
inductive assumption will tell us that they are true in A. Similarly, if ψ1 ∧ ψ2 /∈ T , we
would want to conclude that it is false in A, which we could do if we knew that either ψ1

34 ASSAF SHANI

or ψ2 are not in T (in which case their negations are in T). In conclusion, we will want T
to satisfy that:

[Condition on T] ψ1 ∧ ψ2 is in T if and only if ψ1, ψ2 are both in T .

This seems reasonable... And it is true in case T = Th(A). So it must be true for T in
order for T to have a model.

What about the quantifier stages (of the inductive construction of a formula). Suppose
φ = (∀x)ψ. If φ is in T , in order to (inductively) conclude that φ is true in A, we would
want the sentences ψ[c] to be in T for each constant symbol c. [Recall from Pset 4 that
ψ[c] is the formula we get by replacing each free occurrence of x in ψ with the constant
symbol c. It is helpful for intuition to assume that all occurrences of x are free in which
case we simply replace each x with c.] If this is true, then inductively we know that ψ[c]
is true in A, which means that A |= ψ(cA) (by Pset 4), and so since the members of A are
just these constant symbols, (∀x)ψ will be true in A...

Finally, (essentially the most important case), for the other direction, if (∀x)ψ is not in
T . (Equivalently, ¬(∀x)ψ is in T , which is an existential quantifier: (∃x)¬ψ). To conclude
that (∀x)ψ fails in A, we need some a ∈ A so that ψA(a) fails. That is, we need to have
some constant symbol c for which ψ[c] /∈ T .

This is often referred to as Henkin’s condition. Note that such condition implicitly
makes us have infinitely many constant symbols in the language.

Under the conditions we just collected, we are in position to prove the existence of a
model! (With still an extra simplifying assumption.)

Theorem 6.2. Let S be a vocabulary with no function symbols other than constants.
(That is, the only function symbols are 0-ary function symbols.) Let T be a set of sentences
in the language satisfying the following conditions.

(1) [¬] For any sentence φ: φ ∈ T if and only if ¬φ /∈ T .
(2) [∧] For any sentences ψ1, ψ2: ψ1 ∧ ψ2 ∈ T if and only if both ψ1, ψ2 are in T .
(3) [∀] For any sentence ψ(x): (∀x)ψ ∈ T if and only if ψ[c] ∈ T for any constant

symbol c in S.
(4) [≈] For any constant symbols c, d, e from S:

• c ≈ c ∈ T ;
• if c ≈ d ∈ T then d ≈ c ∈ T ;
• if c ≈ d ∈ T and d ≈ e ∈ T then c ≈ e ∈ T .

Furthermore, given any n-ary relation symbol R and constant symbols c1, ..., cn
and d1, ..., dn, if R(c1, ..., cn) is in T and ci ≈ di ∈ T for i = 1, ..., n, then also
R(d1, ..., dn) ∈ T .

Then there is a structure A satisfying T , A |= T . (Note that condition (1) implies that T
is complete, so A |= T is equivalent to saying Th(A) = T .)

Remark 6.3. Recall that in Pset 4 you considered substituting a constant c in place of a
variable x to turn a formula φ(x) (with possibly x as a free variable) into a sentence φ[c].

The same idea works with more variables. Given a formula φ(x1, ..., xn) (so x1, ..., xn
is a list containing all free variables of φ), and constant symbols c1, ..., cn (not necessarily
different), let φ[c1, ..., cn] be the result of replacing every free occurrence of xi with ci.
Formally, this can be defined inductively along the construction of φ.

141A MATHEMATICAL LOGIC I 35

As always, it is best to assume that we “do not recycle variables”. So if we think of
φ as φ(x1, ..., xn), we assume that x1, ..., xn do not appear in any quantifier in φ (so if
they do appear they are free variables). Then φ[c1, ..., cn] is literally just replacing each
appearance of xi by ci.

Similarly, we may “transform” a formula φ(x1, ..., xn) into a formula with 1 variable
φ(x1)[c2, ..., cn].

Remark 6.4. Henkin’s condition follows from (3): if ¬(∀x)ψ ∈ T then there is some
constant symbol c for which ¬ψ[c] ∈ T – a witness for the existential statement.

If we were to use the existential quantifier ∃ instead of the universal quantifier ∀, we
would phrase the Henkin condition as follows: if (∃x)ξ ∈ T then there is some constant
symbol c so that ξ[c] ∈ T .

As discussed before, we define a model A using the constant symbols as elements. Since
≈A must be interpreted as true equality, if c ≈ d ∈ T (so we want it to be a true statement
in A) we cannot introduce c and d as different members of A. Instead, the members of A
will be equivalence classes.

Let C be the set of all constant symbols in S. Define a relation E on C by

c E d ⇐⇒ c ≈ d ∈ T.

By condition (4), E is an equivalence relation on C. Define A = {[c]E : c ∈ C}, the
quotient space. Note that we have the “projection map” C → A sending c 7→ [c]E . We
will often write [c] instead of [c]E , as E is fixed (and is the only equivalence we consider)
from now until the end of the proof.

Remark 6.5. We are making so many assumptions, so you may ask, why not replace the
“equivalence relation condition” in (4) with the simpler:

(4’) For any constant symbols c, d from S, c ≈ d ∈ T if and only if c = d (they are the
same symbol).

The reason is that, despite this assumption seeming much more reasonable than the many
other assumptions we are making, we will in fact be able to realize all other assumptions,
but in the natural way to do so (4’) will fail, and (4) is the best we can hope for. (If
you think of the way the “Henkin condition” works, you see it gives many many constant
symbol, without paying much thought to whether or not they must be equal...)

However, for the purpose of intuition for the coming proof, you can often switch (4) to
(4’) to have a clearer mental picture. In this case, we do not need the quotient space, and
simply A = C.

We now continue to define the model A. Given an n-ary relation symbol R and a1, ..., an
from A, we must decide whether (a1, ..., an) is in R

A or not. By definition, ai = [ci]E for
some constant symbols c1, ..., cn. Define

(a1, ..., an) ∈ RA ⇐⇒ R(c1, ..., cn) ∈ T.

Exercise 6.6. Prove that this is “well defined”. That is, if we present ai = [di] for
constant symbols d1, ..., dn, then we get the same definition. Note that [ci] = ai = [di]
implies that ci ≈ di ∈ T , by definition of E

So we now have a well defined structure A for the vocabulary S. To conclude Theo-
rem 6.2 we are left to prove that any sentence φ, A |= φ ⇐⇒ φ ∈ T . More generally:

36 ASSAF SHANI

Claim 6.7. For any formula φ(x1, ..., xn) and any a1, ..., an in A, if ai = [ci] then

A |= φ(a1, ..., an) ⇐⇒ φ[c1, ..., cn] ∈ T.

We prove this by induction. Begin with the atomic case.
Suppose φ(x, y) = x ≈ y. Then φA([c1], [c2]) = 1 ⇐⇒ [c1] = [c2] (actual same object),

by the definition of structures. The latter is true if and only if c1 ≈ c2 ∈ T , by the
definition of the equivalence relation E. Note that c1 ≈ c2 is the sentence φ[c1, c2] (φ(x, y)
with x, y substituted by c1, c2), so we are done. Note again that this does not depend on
the choice of “representatives of the equivalence classes”.

For the general atomic formula case, suppose φ(x1, ..., xn) = R(x1, ..., xn), a1, ..., an ∈ A,
ai = [ci]. By definition,

φA(a1, ..., an) = 1 ⇐⇒ (a1, ..., an) ∈ RA ⇐⇒ R(c1, ..., cn) ∈ T,

as required (by the claim), as R(c1, ..., cn) = φ[c1, ..., cn].
Next, we deal with the connectives and quantifiers. This is just like we did (informally)

before. Now that we have all the assumptions in place, the proofs go through.
Suppose φ = ψ1 ∧ ψ2, and x1, ..., xn is a sequence of variables containing all the free

variables of φ (so also of each ψ1, ψ2). By assumption (2) in the theorem, φ ∈ T if and
only if both ψ1, ψ2 are in T . By the inductive hypotheses (the claim for ψ1, ψ2), the latter
is true if and only if ψA

1 = 1 and ψA
2 = 1, which (by the definition of truth values in a

structure) is true if and only if φA = 1. This concludes the claim for φ.
Suppose φ = ¬ψ, x1, ..., xn is a sequence of variables containing all the free variables

of φ (so also of ψ). By assumption (1) of the theorem, φ ∈ T if and only if ψ /∈ T which
is true (by the claim for ψ) if and only if ψA = 0 which is true (by the definition of
interpretations in a structure) if and only if φA = 1.

Finally, assume φ = (∀x)ψ. Suppose first φ ∈ T . We want to conclude that φA = 1,
that is, that ψA(a) = 1 for any a ∈ A. By assumption (3) in the theorem, given any
constant symbol c, the sentence ψ[c] is in T . Take any a ∈ A. a = [c] for some constant
symbol c in the language. Since ψ[c] ∈ T , by the inductive assumption (the claim for ψ)
ψA(a) = 1. As required.

Suppose now φ /∈ T . We want to conclude that φA = 0. That is, we need to find some
a ∈ A so that ψA(a) = 0. By assumption (3) in the theorem, there is some constant symbol
c so that ψ[c] /∈ T . Then by (1) necessarily ¬ψ[c] ∈ T . By the inductive assumption, we
know that ¬ψ[c]A = 1, that is, ψ[c]A = 0, as required.

This concludes the proof of Theorem 6.2. Call a theory satisfying the conditions of the
theorem a Henkin theory. These are a lot of assumptions. Nevertheless, we will be able
to use this idea to find models for an arbitrary theory, as long as it is satisfiable. The
vague idea:

Some theory T ⇝ a Henkin theory T ′ “extending T”⇝ a model A.

The main work ahead of us is to justify the first step. In particular, as not every theory
is satisfiable, we still need some way of determining when such “extention” is possible.

6.2. Adding Henkin conditions. Note that all the conditions tell us that more things
need to be in T . Generally, there is no reason for T to satisfy any of the Henkin conditions.
The key idea is to keep expanding the theory, to meet the Henkin conditions.

141A MATHEMATICAL LOGIC I 37

Let us consider the negation ¬ case. It says two things. One is that no formula and its
negation both appear in T . This is clearly necessary in order for T to be satisfiable.

The second thing (the completeness assumption, is that either a formula or its negation
is in T . Generally, a theory T may not have either φ,¬φ in it. It may even be that neither
is a logical consequence of T . In that case, we’ll just add one!

Claim 6.8. Suppose T is a satisfiable theory and φ is a sentence. Then one of the following
two: T ∪ {φ}, T ∪ {¬φ}, is satisfiable. (Maybe both.)

Proof. Let A be a model for T . If φA = 1, then A is a model for T ∪{φ}. If φA = 0, then
A is a model for T ∪ {¬}. □

So we can enforce (at least one instance of) condition ¬ without changing the main
question: is our theory satisfiable or not.

What about the ∧ case. Again it says two things: one is that if ψ1, ψ2 are in T , then
ψ1∧ψ2 are in T , and the other is that if ψ1∧ψ2 are in T , then both ψ1, ψ2 are in T . Both
are closure conditions for T .

Claim 6.9. Let T be a satisfiable theory.

• If ψ1, ψ2 are in T , then T ∪ {ψ1 ∧ ψ2} is satisfiable.
• If ψ1 ∧ ψ2 ∈ T , then T ∪ {ψ1, ψ2} is satisfiable.

Proof. Let A be a model for T . If ψ1, ψ2 are in T , then necessarily both are true in A,
and so ψ1 ∧ψ2 is true in A. If ψ1 ∧ψ2 is in T , then it is true in A, and so both ψ1, ψ2 are
true in A. □

Again, by adding some formulas to T , we are able to enforce (one instance of) condition
∧, without changing the satisfiability.

The ≈ case is also easy to deal with. For example, suppose c ≈ d is in T for some
constant symbols c, d. Then we want d ≈ c to be in T , so we will simply add it. Note that
a structure satisfies T if and only if it satisfies T ∪ {d ≈ c}, so again we do not change
satisfiability.

Let us deal with the quantifier case ∃ now.
The key issue is the following. Suppose that (∃x)φ is in T . We want to conclude that

there is a constant symbol c so that φ[c] ∈ T .4 However, even if T is satisfiable, it may be
impossible to find a constant symbol c in our language for which T ∪φ[c] is also satisfiable.
[There may not even be constant symbols in the language...]

The solution is to not only expand T but also expand the language by adding a new
constant symbol c and then add φ[c] to T , creating a theory in a larger vocabulary S∪{c}.

Claim 6.10. Let T be a theory for a signature S. Assume T is satisfiable and (∃x)φ is in
T . Let c be a constant symbol not in S, and S ′ = S ∪{c}. Then T ∪{φ[c]} is a satisfiable
S ′ theory.

Proof. Let A be a model for T . Since A |= (∃x)φ, there is some a ∈ A so that A |= φ(a).

Expand A to a model A′ for S ′ by interpreting cA
′
= a. Then A′ |= T (see Pset 4, the

not-for-submission-question) and A′ |= φ[c] (see Pset 4 question 5 part (3)). □

4This is the same as saying, suppose ¬(∀x)ξ ∈ T , we want to find some c for which ¬ξ[c] ∈ T .

38 ASSAF SHANI

The other direction is easy: if φ(x) is a formula, c a constant in the language, and φ[c]
is in T , we want to conclude that (∃x)φ is in T . As before, we may just add it: for any
structure A, A |= T =⇒ A |= T ∪ {(∃x)φ}. So, if T is satisfiable, so is T ∪ {(∃x)φ}.

Nevertheless, let us view this easier direction in another way, as a “closure rule for ∀”.
The direction φ[c] ∈ T imlpies that (∃x)

Claim 6.11. Let T be a theory for a signature S containing a constant symbol c. Assume
T is satisfiable and ¬(∃x)φ is in T . Then T ∪ {¬φ[c]} is satisfiable.

Proof. Any S-structure A which is a model for T must satisfy φA(a) = 0 for any a ∈ A, so
in particular φA(cA) = 0, so A |= ¬φ[c]. (See Pset 4, the not-for-submission-question.) □

In conclusion: assume T is satisfiable. It seems that we can expand it to some theory,
in a larger signature, so that it will satisfy all the conditions for being a Henkin theory.
The idea is to repeatedly apply the “one step” operations we described above, infinitely
many times.

Before, let us rid of one, less significant, assumption we have made in Theorem 6.2:
that there are no function symbols with arity ≥ 1.

6.3. Dealing with function symbols. So far, for simplicity, we assumed that there
were no non-constant function symbols. First, where did we even use this assumption?
At the very first step of the proof of Claim 6.7, when we dealt with atomic formulas.
We considered only atomic formulas of the form R(x1, ..., xn) where xi is a variable (or
a constant symbol). On “the other side”, we were asking if R(c1, ..., cn) ∈ T for some
constant symbols c1, ..., cn.

Generally, an atomic formula φ(x1, ..., xn) is of the form R(t1, ..., tk) where t1, ..., tk are
terms whose variables are contained in x1, ..., xn. Similarly, if we have function symbols
and constant symbols we get many terms t with no free variables (which we will call
constant terms). For example, t′i = ti[c1, ..., cn] is a term with no variable, and we would
like to ask if R(t′1, ..., t

′
k) ∈ T (this makes sense as R(t′1, ..., t

′
k) is a sentence).

Remark 6.12. Recall that in Pset 4 you dealt with replacing a variable x1 with a con-
stant symbol c. Given a term t(x1, ..., xn) we defined a term t[c] with fewer variables
t[c](x2, ..., xn). Similarly given a formula φ(x1, ..., xn) we defined φ[c](x2, ..., xn). Simi-
larly, we can replace several variables by several constants, constructing t[c1, ..., cn] and
φ[c1, ..., cn] from t(x1, ..., xn) and φ(x1, ..., xn). In what follows, we will want to substitute
a variable x with a constant term σ.

For example, in the language +, ·, 0, 1, consider the term t(x, y) = (x + y) · x and the
formula φ(x, y) = t(x, y) ≈ 0. Let σ(x) = 1+1, a constant term. How would we substitute
x by σ?
- t[σ](y) = ((1 + 1) + y) · (1 + 1).
- φ[σ](y) = t[σ](y) ≈ 0 = ((1 + 1) + y) · (1 + 1) ≈ 0.
Similarly we may define t[σ1, ..., σn] and φ[σ1, ..., σn] given a term t(x1, ..., xn), a formula
φ(x1, ..., xn) and constant terms σ1, ..., σn.

In order to prove that the structure we are constructing, the one whose domain is
(equivalence classes of) constant symbols, we will need Claim 6.7 to still hold for any
formula:

A |= φ(tA1 (a1, ..., an), ..., t
A
k (a1, ..., an)) ⇐⇒ φ[t′1, ..., t

′
n] ∈ T.

141A MATHEMATICAL LOGIC I 39

That is, when we have function symbols, we have all sorts of constant terms which are
not constant symbols, which correspond to more sentences (constant terms plugged in as
variables). For these sentences, T has already “made up its mind” about it being true or
false, and we need to model to agree with T .

Here are the main modifications of Theorem 6.2 in the case where we do have function
symbols. (In particular, these modification define what it means to be a Henkin theory
when there are function symbols.)

Condition (3) will be changed to

(3’) – If (∀x)ψ ∈ T the for any constant term (not just constant symbol) c in the
language, ψ[c] is in T , and

– If ¬(∀x)ψ ((∃x)¬ψ) is in T , then there is some constant symbol c so that
¬ψ[c] ∈ T .

Conditions (1) and (2) remain the same.
Condition (4) will be replaced by

(4’) For any constant terms c, d, e from S:
– c ≈ c ∈ T ;
– if c ≈ d ∈ T then d ≈ c ∈ T ;
– if c ≈ d ∈ T and d ≈ e ∈ T then c ≈ e ∈ T .

Furthermore, given any n-ary relation symbol R and constant terms c1, ..., cn
and d1, ..., dn, if R(c1, ..., cn) is in T and ci ≈ di ∈ T for i = 1, ..., n, then also
R(d1, ..., dn) ∈ T .

Theorem 6.13. Let S be any vocabulary. Let T be a set of sentences in the language
satisfying (1), (2), (3’) and (4’). Then there is a model for T .

The model is constructed as in Theorem 6.2 above. The additional thing we need to
do, to define the model, is to interpret the function symbols in S.

Given an n-ary function symbol F and a1, ..., an in A, fix constant symbols c1, ..., cn so
that ai = [ci], and define

FA(a1, ..., an) = b,

if b = [d] for a constant symbol d so that the sentence F (c1, ..., cn) ≈ d is in T .

Exercise 6.14. Show that FA is well defined.

Note that one thing to show is that such a b exists. Why is that? Otherwise, if there
is no constant symbol d such that F (c1, ..., cn) ≈ d is in T , then (∃x)F (c1, ..., cn) ≈ x
is not in T , so (∀x)¬(F (c1, ..., cn ≈ x)) is in T , and therefore for any constant term d
¬(F (c1, ..., cn) ≈ d) is in T .

However, d = F (c1, ..., cn) is itself a constant term, so we conclude that ¬(d ≈ d) is in
T . By (4’), d ≈ d is in T as well. This contradicts (1), as we have φ and ¬φ both in T for
some sentence φ.

The rest of the exercise, and the proof of the theorem, is very similar to our proof of
Theorem 6.2, and we skip it here.

Remark 6.15. You may at times forget about these function symbols. The following
arguments will not change much due to these function symbols.

40 ASSAF SHANI

However, we will keep the “split condition (3)” as above. In a sense, it is in fact more
natural to present it this way, as one “Henkin condition for ∃” and one “Henkin condition
for ∀”.

6.4. Coding functions as relations. [We didn’t do this in class. This is a brief discus-
sion on how such coding can be done and what needs to be proven to see that it in fact
works to the fullest extent.]

There is a more general way in which one can reduce problems about a vocabulary with
functions symbols to one without function symbols.

Let S be a vocabulary. For each n-ary function symbol F in S, introduce an n+ 1-ary
relation symbol RF . Let S ′ be the vocabulary we get by replacing each function symbol
F in S by RF .

For each such F consider the sentence φF (in the language for S ′)

φF = ∀x1, ...,∀xn∃xn1 [R(x1, ..., xn, xn+1) ∧ ∀y(R(x1, ..., xn, y) → xn+1 ≈ y)].

Given a structures A for S, define a structure A′ for S ′ as follows. The universe A′ of
A′ is A. If R is a relation symbol in S, RA = RA′

. If F is a function symbol in S then

RA′
F =

{
(a1, ..., an, an1) : F

A(a1, ..., an) = an+1

}
.

Then A′ satisfies φF for each F in S.
Similarly, given an S ′-structure A′ satisfying φF for each F ∈ S, define an S-structure

A as follows: the universe A of A is A′. RA = RA′
for any relation symbol R in S. Given

a function symbol F in S, define

FA(a1, ..., an) = an+1 if and only if (a1, ..., an, an+1) ∈ RA′
F .

The latter gives a well-defined function because A′ |= φF .
So there is a one-to-one correspondence between S structures and S ′ models for {φF : F ∈ S}.

Note that this correspondence respects the structures: A ≃ B (as S-structures) if and only
if A′ ≃ B′ (as S ′-structures).

This correspondences can be taken a step further. We can transform every S formula to
an S ′ formula as follows. In S ′ there are no terms, other than the variables. We can however
define for each term t in S a formula ψt in S ′ implicitly defining t. For example, if F is a
binary function symbol, t = F (x, y) for variables x, y, we define ψt(x, y, z) = RF (x, y, z). If
we already defined ψt1 , ψt2 with variables x, y, z for S-terms t1, t2, with variables x, y, and
t = F (t1, t2), then define ψt(x, y, z) = ∃z1∃z2(ψt1(x, y, z1) ∧ ψt2(x, y, z2) ∧ φF (z1, z2, z)).
You can similar define ψ(x1, ..., xn, xn+1 for any term t(x1, ..., xn).

Suppose now we have an atomic formula in S of the form φ(x, y) = P (t) for an unary
relation symbol P , we will define φ′(x, y) = ∃z(ψt(x, y, z) ∧ P (z)). The point is that, for
the correspondence described above, φ(a, b) will be true in A if and only if φ′(a, b) will be
true in A′. Similarly you can define φ′ for any formula φ.

The upshot is the following: given an S-theory T , let T ′ = {φ′ : φ ∈ T}. Then A |= T
if and only if A′ |= T ′.

In particular, T is satisfiable if and only if T ′ is satisfiable.
This trick is very useful, and often used. We will often take the “no functions point of

view” as well, just for the notational advantage of not having to deal with terms (other
than variables and constants). However, this is not to say that function symbols should
be discarded. The point of mathematical logic is not that things can be coded in this

141A MATHEMATICAL LOGIC I 41

or that manner. The point is to study mathematical structures, and using functions in
the language sometimes better represents these structures. For example, given models
for the theory of vector spaces, in the language which we used to describe vector spaces,
a substructure precisely coincides with a subspace in the vector-space sense. If function
symbols are replaced by relation symbols, this natural correspondence fails.

7. Formal deductions

Back to our vague plan:

Some theory T ⇝ a Henkin theory T ′ “extending T”⇝ a model A.

We are now working towards the first step.
Recall the key Henkin theory conditions:

(1) [¬] For any sentence φ: φ ∈ T if and only if ¬φ /∈ T .
(2) [∧] For any sentences ψ1, ψ2: ψ1 ∧ ψ2 ∈ T if and only if both ψ1, ψ2 are in T .
(3) [∀] If ¬(∃x)ψ ∈ T then for any constant term t in the language, ¬ψ[t] is in T ;

[∃] If (∃x)ψ ∈ T , then there is some constant symbol c so that ψ[c] ∈ T .
(4) [≈] ...

(Note that (3) is equivalent to the previously stated (3’), using condition (1). It will be
convenient to use the existential point of view now. Remember again that any formula is
equivalent to one using only the logical symbols ¬,∧, ∃,≈.)

As we discussed, we want to start with some theory T and keep expanding it (we will
need to do so infinitely many times), with the hope of having a Henkin theory at the end.

It seems like this will work, and it will. Note however that this was all under the
assumption that T is satisfiable. We still need to figure out when that is the case. We will
talk about that soon.

In most cases it was clear how to extend T to satisfy (another instance of) one of the
conditions. The one exception was the case for ¬. Assuming T is satisfiable, we don’t
necessarily know, and it may be difficult to determine, which of φ or ¬φ may be added
to T , while remaining satisfiable. All we know is that one works, and possibly both. This
motivates us to talk about binary splitting trees.

7.1. Trees. [See board for pictures] We will consider finite and (countably) infinite trees.
A tree is a structure of the form (T,⊏, r) where T is a set (the nodes of the tree), r ∈ T is
the room, and ⊏ is the relation of extension along the tree (existence of a branch between
nodes). We assume that it is transitive:

• for a, b, c in T , a ⊏ b and b ⊏ c implies a ⊏ c.

The tree has no loops:

• for a, b in T it is not the case that a ⊏ b and b ⊏ a.

Everything extends the root:

• for any a in T , r ⊏ a or r = a.

And finally, when looking at the branch below some given node in the tree, the tree relation
⊏ is linear:

• for any a, b, c in T , if a ⊏ c and b ⊏ c then either a ⊏ b or b ⊏ a.

42 ASSAF SHANI

Exercise 7.1. Write the axioms of being a tree in the language using one binary relation
⊏ and one constant symbol r.

Trees are studied in many ways, and it does make sense to study models for this theory.
However, this will not be the point of view below, as the trees we consider are external.

Definition 7.2. • Given a ∈ T , the partial branch below a is {b ∈ T : b ⊏ a}.
• The height of a node a ∈ T is the number of nodes below a. (So the height of the
root is 0.)

• Say that a ∈ T is a leaf if there is not b for which a ⊏ b.
• If a is a leaf, we will call its partial branch a branch.
• For a, b ∈ T , say that b is an immediate successor of a in T if a ⊏ b and there
is no c for which a ⊏ c ⊏ b.

• Say that a node a ∈ T is a k-splitting node in T if it has k (distinct) immediate
successors in T .

• A tree T is finitely splitting if every node is finitely splitting.
• A tree T is binary splitting if every node is k-splitting for k ≤ 2.

We will think of a node as some stage in a construction we are carrying. Going upwards
in the tree will mean doing another step in the construction. That is, ensuring another
Henkin condition. A (binary) split in the tree will precisely correspond to the ¬ case.

7.1.1. The infinite binary tree. Start with a root, and keep splitting all the way... A
convenient way of representing this is using binary sequences. Recall that Xn is the set of
all sequences (x1, ..., xn) with xi inX, andX<N =

⋃
n∈NX

n is the set of all finite sequences

from X. (A length 0 sequence is “the empty sequences” <>. X0 is the set containing only
the empty sequences {<>}.) The set {0, 1}<N is the set of all finite binary sequences.

Given two sequences σ, τ , say that τ extends σ, σ ⊏ τ , if σ is a subsequence of τ . That
is, τ = ⟨x1, ..., xn⟩ for some n, and σ = ⟨x1, ..., xm⟩ for some m < n.

For example, < 010 > (strictly) extends < 01 > and < 0 >. For the two sequences
< 010 > and < 10 >, neither one extends the other. In this case we say that they are
incomparable.

Exercise 7.3. Check that {0, 1}<N with the relation ⊏ and the root <>, is a (binary
splitting) tree.

⟨⟩

0

00

000 001

01

010 011

1

10

100 101

11

110 111

Definition 7.4. Let T,⊏, r be a tree. A subtree is a “downwards closed subset of T”.
That is, T ′ ⊆ T so that r ∈ T ′ and for any a ∈ T ′ if b ∈ T and b ⊏ a then b ∈ T ′ as well.

Example 7.5. • The tree {0, 1}<n =
⋃

k<n{0, 1}k, all binary sequences of length
< n, is a sub-tree of the full binary tree.

• {0, 1}n is not a sub-tree for n > 0.

141A MATHEMATICAL LOGIC I 43

• {<>,< 0 >,< 1 >,< 11 >,< 00 >,< 001 >,< 000 >} is a sub-tree.
• {<>,< 0 >,< 00 >,< 01 >,< 10 >} is not a sub-tree.

7.2. Formal deductions. We work with the connectives ∧,¬ and the quantifier ∃. Recall
that the others can be expressed using these three. In particular, we think of ¬(∃x)φ as
(∀x)¬φ.

Let S be a vocabulary and T a set of sentences. We expand S to S+ by adding infinitely
many new constant symbols c0, c1, c2, (We assume that these symbols are not in S).

Definition 7.6. A deduction tree for T is a finite tree Γ together with an assignment of
an S+-sentence φa to each node a ∈ Γ, so that the following rules are satisfied. (You may
think of the tree, and the assignment of sentences, as being build up recursively along the
tree.)

(1) [Rule for ¬, “a split”] Given a node b in T , and any sentence φ, we can “split
the tree in two” by adding nodes a, a′, both immediate successors of b in the tree,
where φa = φ and φa′ = ¬φ.

b

φa = φ φa′ = ¬φ

Otherwise, for every node a in the tree, one of the following holds:
(2) φa ∈ T (“using an axioms”).
(3) [Rule for ∧]

• φa = ψ1 ∧ ψ2 where ψ1, ψ2 “appear below a”; that is, there are nodes b1, b2
below a in the tree so that ψ1 = φb1 and ψ2 = φb2 ;

• φa = ψ where there is some b ⊏ a so that either φb = ψ ∧ θ for some θ, or
φb = θ ∧ ψ for some θ.

(4) [Rule for ∃] φa = φ[c] (substitution) where there is some b ⊏ a so that φb = (∃x)φ
and c is a constant symbol in S+ \ S which does not appear in any φc for c ⊏ a.

(5) [Rule for ∀] φa = ¬φ[t] where there is some b ⊏ a so that φb = ¬(∃x)φ and t is
any constant term (a term with no variables).

(6) [Rules for ≈]
• φa = t ≈ t where t is any constant term;
• φa = φ[s], where there are some b, c ⊏ a for which φb = s ≈ t and φc = φ[t],
where s, t are constant terms. (Here φ is any formula with one free variable
and φ[s], φ[t] are substitutions.)

The above rules should be read as “we can assign to the node a a sentence φa as indicated,
assuming that the following conditions are true (involving nodes below a)”.

Remark 7.7. A deduction tree is a binary tree. In fact it can always be viewed as a finite
subtree of the full binary tree.

Remark 7.8. The above rules are all syntactic manipulations on sentences. You can write
a computer program which takes T as an input, and the program constructs a deduction
tree by repeatedly applying these rules in some way.

Remark 7.9. All these rules are supposed to be “obviously true” rules of deduction.
For example, if we have some theory T and we can prove from it ψ1 and ψ2, then we

know that ψ1 ∧ ψ2 is a consequence of the theory.

44 ASSAF SHANI

The ¬ rule can be seen as a “proof by conradiction”. Say we want to argue that φ is
true. We split by saying: either φ is true or is false. We then continue to argue using the
assumption for contradiction ¬φ, hoping to reach a contradiction at the end, leaving us
with φ as the only viable option.

The ∀ rule is also natural. Suppose we have a theory talking about a binary relation E
representing a graph. Then ¬(∃x)x E x says no vertex is connected to itself (there are no
loops). In particular, if we have a constant term t, then in any structure the interpretation
of t will simply be a vertex. If all vertices are not connected to themselves, then necessarily
it is true for the vertex which is the interpretation of t. So we conclude that the sentence
¬(t E t) must be a consequence of ¬(∃x)x E x.

Finally, the ∃ rule is also something we do naturally when proving: if we assume some
existential statement ∃xφ, then we fix some arbitrary name for a witness.
For example, assume we have a group and we assume that “there exists an element of
order 3” and “there exists an element of order 2”, and we want to prove that “there exists
an element of order 6”.
The natural way to do this is as follows: using the first “exists assumption”, fix some
element a of order 3, using the second assumption, fix some element b of order 2.
Now study the element a · b and find out what its order has to be.

Definition 7.10. Given a deduction tree Γ, say that a branch in Γ contains a contradic-
tion if there are two nodes a, b in this branch so that φa = ¬φb. Say that Γ is a deduction
for a contradiction if every branch in Γ contains a contradiction. Equivalently: if for
every leaf c in Γ, there are a, b ⊑ c for which φa = ¬φb.

Definition 7.11. Say that a theory T is inconsistent if there is a deduction tree for T
which is a deduction tree for a contradiction. Denote this by T ⊢⊥.

Our goal is to prove (one form of Godel’s completeness theorem):

T ⊢⊥ if and only if T |=⊥.

That is, T is inconsistent (a syntactic condition) if and only if T is not satisfiable (a
semantic condition).

Let us start by talking more about deduction trees and giving some examples.

Example 7.12. Let φ be a sentence. Then the theory T = {φ,¬φ} is inconsistent. A
contradiction deduction tree is simply:

φ

¬φ

More precisely, we can take the tree as {<>,< 0 >}, φ<> = φ (using the “axiom rule”)
and φ<0> = ¬φ (using the “axiom rule”).

Example 7.13. Let T = {(∃x)¬(x ≈ x)}. A contradiction deduction tree from T is:

(∃x)¬(x ≈ x)

¬(c ≈ c)

c ≈ c

At the root we used the axiom rule. Then we used the ∃ rule: here c is
a new constant, not appearing so far. Finally we used the ≈ rule to add c ≈ c.

141A MATHEMATICAL LOGIC I 45

Note that this:

(∃x)¬(x ≈ x)

c ≈ c

¬(c ≈ c)

is not a legit deduction tree, as we cannot apply the ∃ rule using c, as
c already appeared.

Example 7.14. Let φ be some sentence. T = {φ ∧ ¬φ}. The following a deduction of a
contradiction from T .

φ ∧ ¬φ

φ

¬φ

In the second and third steps we used the ∧ rules, both applied to the root as
the φb.

Example 7.15. Consider the follow variation of the ∀ rule (which can be seen as the
“contrapositive of the ∃ rule):

• [∀′ rule] We can write φa = (∃x)φ if φ(x) is a formula with one free variable x and
there is some b ⊏ a with φb = φ[t] for some constant term t.

Then in fact, given the other rules, this rule and our ∀ rule are equivalent, in the following
sense.

How can we “deduce” the ∀ rule from this rule? Suppose we have some φb = ¬(∃x)φ
and we want to use the ∀ rule to add ¬φ[t] above b. Instead, do as follows:

¬(∃x)φ

φ[t]

(∃x)φ

¬φ[t]

First we split according to the ¬ rule, applied for the sentence φ[t].
Then we used the ∀′ rule to conclude (∃x)φ from φ[t]. Now the left branch contains a
contradiction, and we may continue with the right branch as if we used the ∀ rule.

On the other hand, using our standard rules, how can we use the natural looking ∀′
rule? Suppose we have some φb = φ[t] for some constant term t and formula φ(x). We
want to conclude (∃x)φ.

φ[t]

(∃x)φ ¬(∃x)φ

¬φ[t]

First we split, then we used our (usual) ∀ rule. The right branch
contains a contradiction, and we may continue to “argue along the left branch” as if we
used the ∀′ rule.

Definition 7.16. Let T be a theory and φ a sentence. Say that T proves φ (or φ is a
formal consequence of T), denoted T ⊢ φ, if T ∪ {¬φ} ⊢⊥. (That is, we prove φ from
T by “assuming towards a contradiction” that φ fails, and reaching a contradiction.)

46 ASSAF SHANI

Example 7.17. Let ψ1, ψ2 be any sentences. Then {ψ1, ψ2} ⊢ ψ1 ∧ ψ2. We need to con-
struct a deduction tree from {ψ1, ψ2,¬(ψ1∧ψ2)} so that every branch has a contradiction.
We may do that as follows:

¬(ψ1 ∧ ψ2)

ψ1

ψ2

ψ1 ∧ ψ2

We are going towards the completeness theorem, which will tell us that if T |= φ then
in fact T ⊢ φ. That is, if something is necessarily true (a semantic question) then we can
formally prove it (a syntactic question).

First we note that the other directly is clearly true, since in our formal deductions we
only do “obviously true” steps.

Theorem 7.18 (Soundness for ⊢). If T ⊢ φ then T |= φ.

In particular, if T ⊢⊥ (T is inconsistent, it proves a contradiction), then T |=⊥: it is
unsatisfiable, it has no model.

Remark 7.19. It suffices to prove the theorem for the case φ =⊥, since we can replace
T with T ∪ {¬φ}.

Proof. It suffices to prove that if T is satisfiable, then T ̸⊢⊥, there is no proof of a
contradiction from T . The key lemma is the following.

Lemma 7.20. Suppose T is satisfiable. Let Γ be a deduction tree from T . Then there is
a branch (at least one) which is satisfiable. That is, there is some leaf a in Γ so that the
theory T ′ = {φb : b ⊑ a} is satisfiable.

The proof is by induction on the construction of a deduction tree, along the allowable
steps to add a node a and sentence φa.

Suppose Γ is a deduction tree, c is leaf in Γ so that {φb : b ⊑ c} is satisfiable, and Γ′ is
an extension of Γ according to one of the deduction rules.

Fix a model A for {φb : b ⊑ c}. A is a model for a signature S ′ where S ′ contains S as
well as finitely many of the constants c0, c1, ..., those appearing in {φb : b ⊑ c}.

Note that if c is a leaf in Γ′ as well, then there is nothing to prove, {φb : b ⊑ c} is
satisfiable, and c is still a leaf. The interesting case therefore is when we add a node above
c.

We now need to consider all the cases.
One option is the split: Γ′ is obtained from Γ by adding two immediate successors a, a′

above c, where φa = θ and φa′ = ¬θ, for some sentence θ.
Both a, a′ are now leafs. We need to show that either {φb : b ⊑ a′} = {φb : b ⊑ c}∪{φa′},
or {φb : b ⊑ a} = {φb : b ⊑ c} ∪ {φa}, is satisfiable.
This is precisely the content of Lemma 6.8. Specifically: either θ or ¬θ must be true in A.
For the rest of the cases in Definition 7.6, we also proved this already, in Section 6.2.

For example, if we used the ∃ rule: φa = ψ[ck] where φb = (∃x)ψ for some b ⊑ a and
ck does not appear in any of the formulas {φe : e ⊏ a} = {φe : e ⊑ c}.

141A MATHEMATICAL LOGIC I 47

Since A |= φb = (∃x)ψ, there is some a ∈ A so that ψA(a) = 1. Then, as we have seen, we
may expand A to A+, whose signature also includes the constant symbol ck, by defining

cA+
k = a, and this way we have that A+ |= ψ(cA

+

k), and so A+ |= ψ[ck] (see Pset 4), as
required.

Suppose we used the ∀ rule: φa = ψ[t] where t is a constant term (in the signature
S+ = S ∪ {c0, c1, ...}), where there is some b ⊏ a so that φb = (∀x)ψ.
If t is a term in the signature of A (which we called S ′), then necesssarily A |= ψ[t], since
A |= (∀x)ψ. (Recall Pset 4.)
If t uses additional constant symbols, not in S ′, expand A to A+ as follows: fix some

a0 ∈ A and define cA
+

l = a0 for any cl which appears in t but not in S ′. Since A+ |= (∀x)ψ
(recall Pset 4), then necessarily A+ |= ψ(tA+) and so A+ |= ψ[t] (recall Pset 4).

The other cases are easier. For example, if φa = φb1 ∧ φb2 where b1, b2 ⊏ a, then
necessarily A |= φa.

Finally, assume that T is satisfiable, and let Γ be a deduction tree. We need to show
that not every branch contains a contradiction.
By the lemma, there is some branch which is satisfiable: there is a structure A satisfying
all sentences φb for b in this branch. Since a model cannot satisfy both φ and ¬φ, for any
sentence φ, this branch cannot contain a contradiction. □

7.3. Infinite trees and branches.

Definition 7.21. Given a tree (Γ,⊏, r), an infinite branch is a chain r = t0 ⊏ t1 ⊏ t2 ⊏
..., where ti+1 is an immediate successor of ti in the tree.

Example 7.22. • If T is a finite tree, there is no infinite branch in T .
• Any infinite binary sequence, b = ⟨e0, e1, e2, ...⟩ where ei ∈ {0, 1}, corresponds to
an infinite bracnh in the full binary tree: let tk = ⟨e0, ..., ek⟩.

The following is an important combinatorial lemma.

Lemma 7.23 (König’s lemma). Let T be a finitely branching tree. If T is infinite, then
there is an infinite branch through T .

Remark 7.24. If T is finitely branching, the following are equivalent:

• T is infinite;
• T has nodes of arbitrary large height.

Remark 7.25. The assumption that T is finitely branching is necessary to conclude the
existence of an infinite branch. (Even if the assumption “T is infinite” is replaced by “T
has nodes of arbitrary large height”.)

r

a0 a1 a2 a3 a4 ...

48 ASSAF SHANI

r

...

...

Proof of Konig’s lemma. Approach: “go upwards”. Find a node of height 1, then climb
to a node of height 2, and continue... Can we do it? No, we may get stuck. We need to
make better decisions to avoid getting stuck.

Given a ∈ T , let T a = {b ∈ T : a ⊑ b}. So T r = T . We define the infinite branch
recursively as follows.

Let t0 = r the root of the tree. Let a1, ..., ak be the immediate successors of t0 in the
tree. (By assumption, we have only finitely many.)

Ask: is T ai finite, or infinite?

Since T = T r =
⋃k

i=1 T
ai , it cannot be the case that each T ai is finite. (A finite union

of finite sets is finite.)
So there must be some ai for which T

ai is infinite.
Let t1 = ai where i is the smallest so that T ai is infinite.
Continue this way... Assume we have defined t0, ..., tm, in such a way that T tl is infinite

for each l = 0, ...,m.
Let a1, ..., ak be the immediate successors of tm in T . Then T tm =

⋃
i=1,...,k T

ai .

Since T tm is infinite (the inductive assumption) then T ai must be infinite for some i.
Let tm+1 = ai where i is smallest so that T ai is infinite.
Note that, by definition, tm ⊏ tm+1, as ai is an immediate successor of tm. In particular,

t0, t1, t2, ... is an infinite branch through T . □

7.4. Proof of the completeness theorem.

Theorem 7.26 (Completeness for ⊢). Let S be a countable signature. Suppose T |= φ.
Then T ⊢ φ.

That is, if something is always true (in terms of models) then we can formally prove it,
using a few simple rules of deduction.

Remark 7.27. The theorem is true for any signature S. The general proof follows similar
ideas, but requires some familiarity with uncountable cardinals and ordinals.

Remark 7.28. It is enough to prove the theorem when φ =⊥, as T can be replaced with
T ∪ {¬φ}. That is, it is enough to prove that: if T is not satisfiable, then there is a proof
of a contradiction from T .
Equivalently: if there is not proof of contradiction from T , then T has a model.

Corollary 7.29. |= φ (φ is logically valid) if and only if ⊢ φ (there is a formal proof of
φ from the empty theory).

Towards the proof of the completeness theorem, fix a countable signature S, a theory
T , and let S+ be as above: S adjoined by infinitely many new constant symbols c0, c1,

141A MATHEMATICAL LOGIC I 49

Remark 7.30. It will be convenient below to use the deduction rule ∀′ instead of the
deduction rule ∀ rule in our formal deductions. We already saw that this does not change
the provability notion ⊢.

Recall our Henkin conditions for a theory T : (1)-(4) at the beginning of Section 7. We
may replace the ∀ Henkin condition in (3) with the ∀′ Henkin condition for T :

if ψ[t] ∈ T for some formula ψ(x) and constant term t, then (∃x)ψ ∈ T as well.

Exercise 7.31. Show that the ∀ and ∀′ Henkin rules are equivalent, given the other
Henkin rules. That is: assume T satisfies (1), (2), (4) and the ∃ condition of (3). Show
that T satisfies the ∀ Henkin condition if and only if T satisfies the ∀′ Henkin condition.

Assume that there is no proof of contradiction from T . We need to find a model for T .
The idea will be to build an ever-growing deduction tree, starting from T , attempting

to find a contradiction. If we never do, at the end we will get a Henkin theory extending
T , for which we can find a model.

More specifically, we will construct an infinite tree following our rules of deduction, so
that an infinite branch will necessarily be a Henkin theory. This makes sense, as each
“rule of deduction” is precisely a “closure rule for being a Henkin theory”. So if we repeat
these closure rules infinitely many times, we hope to have a theory which is closed under
all the rules.

For example, given some sentence θ, we will want to have either θ or ¬θ. If we make
sure that at some level of the tree, all nodes split into θ,¬θ, then any branch will have to
make such choice.

Suppose one of the nodes in the branch is of the form (∃x)φ. Then we would want a
node above if of the form φ[c] for some constant c.
Similarly, if somewhere along this branch ψ1, ψ2 appear, we will want at some point for
ψ1 ∧ ψ2 to appear.
To make sure these (and other) things happen, some book-keeping needs to be done.

We split the natural numbers to 9 infinite subsets: numbers which are 0 mod 9, 1
mod 9,..., 8 mod 9.
We will define an increasing sequence of finite trees, Γ0,Γ1,Γ2, ..., so that

• Γn+1 is “an end-extension” of Γn: the new nodes in Γn+1 are added as immediate
successors of leafs of Γn.

• The definition of Γn+1 from Γn will depend on n mod 10. Essentially Γn+1 will
result by applying one of the rules of deductions to Γn (to each leaf).

• Each Γn is a deduction tree from T .

Essentially, the construction will just be to “randomly apply formal rules of deduction”,
without any rhyme or reason, trying to see if we can deduce a contradiction.

Another take: you provide the axioms T to a computer, and ask the computer to prove
that they are contradictory. The computer does not know what the axioms are supposed
to mean, so it just keeps formally applying deduction rules, checking if at any state a
contradiction is reached.

Example 7.32. Here is vague sketch of how some steps of the construction may go, in
case we start with the “no max” axiom for an order: (∀x)(∃y)(x < y).

First, let us write this axiom using only ∃,¬,∧: ¬(∃x)¬(∃y)(x < y).

50 ASSAF SHANI

First, we apply the axiom to the root.
This axiom says that for any x, it is not true that there is no y bigger than it. In particular,
this should be true for the constant c1 substituted for x. Indeed using the ∀ rules we can
do this substitution. Let us instead use the ∀′ rule.
First we do a split using the sentence θ = (∃y)(c1 < y).
On the left side, we note that the formula ¬(∃y)(c1 < y) is of the form ψ[c1] where
ψ(x) = ¬(∃y)(x < y).
Using the ∀′ rule we conclude (∃x)¬(∃y)(x < y).
We now reached a contradiction on the left side (between the root and the leaf), and so
we do not progress further in that direction.
On the ride side we may use the ∃ rule to add c1 < c2 (since c2 has not appeared on this
branch so far.
Maybe now we decide to write c3 ≈ c3. Why not.
Again we can apply the ∀ rule to ¬(∃x)¬(∃y)(x < y). This is done below by using a split
and the ∀′ rule. Note that in the ∀ rule we are allowed to substitute any constant term.
Similarly when we split we can use any formula.
Next we may use the ∃ rule to add a witness c2 < c4. Note that we cannot use c3 as it
already appears in the branch.
Next we may want to take some θ (say, θ = c2 < c6) and split into the two cases: θ,¬θ.
Now we proceed in both directions and apply further rules of deduction...

¬(∃x)¬(∃y)(x < y)

¬(∃y)(c1 < y)

(∃x)¬(∃y)(x < y)

(∃y)(c1 < y)

c1 < c2

c3 ≈ c3

¬(∃y)(c2 < y)

(∃x)¬(∃y)(x < y)

(∃y)(c2 < y)

c2 < c4

¬(c2 < c6)

...

c2 < c6

...

Our construction proceeds as follows.
Fix an enumeration ⟨θn : n = 0, 1, 2, ...⟩ of all sentences using the vocabulary S+.
(Recall: we proved that if S is countable then there are countably many formulas and
terms for S.)

Assume Γn−1 is defined, is a finite tree with assignments φa for nodes a ∈ Γn−1.

• If α is a leaf in Γn−1, and the branch below α contains a contradiction, that is:
there are a, b ⊑ α with φa = ¬φb, then we will not add anything above α to Γn

(and hereafter), so α remains a leaf.
That is, when we reach a contradiction, along any branch, we stop the construc-

tion along that branch.

Let α1, ..., αk be an enumeration of all the leaves of Γn−1 for which “no contradiction
was reached”.

141A MATHEMATICAL LOGIC I 51

Let us deal first with the more interesting cases: ¬, ∃, and ∀. We will deal later with ∧
and ≈.

• [Taking care of completeness] If n = 1 mod 9, n = 9 ·m+ 1 for some m, we do a
“θm split”: for each i = 1, ..., k, add to Γn two nodes ai, a

′
i which are immediate

successors of αi. Define φai = θm and φa′i
= ¬θm.

• [Henkin witnesses for ∃] Suppose n = 2 mod 9, n = 9 ·m+2 for some m and that
θm happens to be of the form (∃x)ψ. Fix i and assume further that θm is φb for
some b ⊑ αi. (“(∃x)ψ appears in the branch below αi”.) Let j be the minimal
natural number so that the constant symbol cj does not appear in any formula
along the branch below αi.
Add a node a to Γn, an immediate successor to αi, and define φa = ψ[cj].
If θm does not appear in the branch below αi, define φa = c0 ≈ c0.

• [∀′ condition] Suppose n = 3 mod 9, n = 9·m+3 for somem and that θm happens
to be of the form ψ[t] where ψ(x) is a formula and t is a constant term. Fix i and
assume further that θm is φb for some b ⊑ αi. (“ψ[t] appears in the branch below
αi”.)
Add a node a to Γn, an immediate successor to αi, and define φa = (∃x)ψ.
If θm does not appear in the branch below αi, define φa = c0 ≈ c0.

Next we deal with the 3 cases of the ∧ condition.

• Suppose n = 4 mod 9, n = 9 ·m + 4 for some m and that θm happens to be of
the form ψ ∧ ζ. Fix i.
Add a node a to Γn, an immediate successor to αi.
If there is b ⊑ αi with φb = θm, then define φa = ψ.
Otherwise, define φa = c0 ≈ c0.

• Suppose n = 5 mod 9, n = 9 ·m + 5 for some m and that θm happens to be of
the form ψ ∧ ζ. Fix i.
Add a node a to Γn, an immediate successor to αi.
If there is b ⊑ αi with φb = θm, then define φa = ζ.
Otherwise, define φa = c0 ≈ c0.

• Suppose n = 6 mod 9, n = 9 ·m + 6 for some m and that θm happens to be of
the form ψ ∧ ζ. Fix i.
Add a node a to Γn, an immediate successor to αi.
If there are b, c ⊑ αi with φb = ψ and φc = ζ, then define φa = ψ ∧ ζ.
Otherwise, define φa = c0 ≈ c0.

Next we deal with the two cases for the ≈ condition.

• Suppose n = 7 mod 9, n = 9 ·m + 7 for some m and that θm happens to be of
the form t ≈ t for some constant term t. Fix i.
Add a node a to Γn, an immediate successor to αi, and define φa = t ≈ t.
Otherwise, define φa = c0 ≈ c0.

• Suppose n = 8 mod 9, n = 9 ·m + 8 for some m and that θm happens to be of
the form ψ[t] for some constant term t. Fix i.
Add a node a to Γn, an immediate successor to αi.
If there are some b, c ⊑ αi with φb = ψ[e] and φc = t ≈ e, where e is a constant
term, then define φa = ψ[t].
Otherwise, define φa = c0 ≈ c0.

52 ASSAF SHANI

Finally, let us not forget the theory T !

• [Axiom case] Suppose n = 0 mod 9, n = 9 ·m for some m, and θm happens to be
in T . Fix i.
Add a node a to Γn, an immediate successor to αi, and assign φa = θm.
Otherwise, define φa = c0 ≈ c0.

For the root, we may define φr = c0 ≈ c0. (Or θ0, if it happens to be in T .)
Note that each Γn is a deduction tree from T . There are two options.
Case 1: the construction stops at some point. That is, there is some Γn for which

nothing was added to Γn+1.
This can happen only if every branch of Γn contains a contradiction. That is, only if Γn

is proof of contradiction from T !
We are currently assuming that this is not the case, so it must be that:
Case 2: the construction never stops. In this case let Γ be the union of all the trees Γn.

Then Γ must be infinite.

Remark 7.33. The reason that one can make sense of this union tree Γ is because of this
particular construction. Specifically, since each Γn+1 just adds some notes “on top of” Γn.

The nodes of Γ are simply the nodes which appears in Γn for some n.
Given two nodes a, b in Γ, we ask if a ⊏ b by finding some large enough n so that a, b are
nodes in Γn, and asking whether a ⊏ b in Γn.

This should be familiar from Pset 4 Question 2.

By Konig’s lemma, there is an infinite branch r = a0 ⊏ a1 ⊏ a2 ⊏ ... in Γ.
Let T+ = {φai : i = 0, 1, 2, ...}.

Claim 7.34. T+ satisfies all the Henkin conditions for the vocabulary S+. Moreover T+

extends T .

Proof. First, we need to show that T+ does not contain any sentence and its negation.
This must be the case, for otherwise the branch would “stop growing” after finitely many
steps!

Next, we want to show that for any θ, either θ ∈ T or ¬θ ∈ T .
Fix m so that θ = θm, and let n = 9 ·m+ 1.
By definition, an−1 has 2 immediate successors in Γn, with assignments θ and ¬θ.
an must be one of these two. So φan is either θ or ¬θ.

To see that T+ extends T : fix any θ ∈ T . There is some m for which θ = θm. Let
n = 9 ·m. The φam = θm = θ. So θ ∈ T+.

Let us look at the ∃ Henkin condition.
Suppose (∃x)ψ is in T+, that is, it is φak for some k. We want to conclude that ψ[cl] ∈ T+

for some l.
We probably took care of it: in stage n, if n = 9 ·m+ 2, where θm = (∃x)ψ.
Problem: this works only if k < n!

This problem is easy to fix. Instead of “fulfilling the corresponding Henkin condition”
of each θ once, we will do it infinitely many times to each condition.
This will happen if θ = θm for infinitely many m.

Lemma 7.35. Let X be a countable set. Then there exists an enumeration x0, x1, x2, ...
of all the members of X, so that each x ∈ X appears infinitely many times.

141A MATHEMATICAL LOGIC I 53

Proof. Since X is countable, so is Y = X × N.
Let y0, y1, y2, ... be an enumeration of Y .
For each n, if yn = (x, l) for some l ∈ N, define xn = x.
Pictorially, if x′0, x

′
1, ... is any enumeration of X, we get the new one by:

x′0

x0

x′1

x1

x′2

x5

x′3

x6

x′0

x2

x′1

x4

x′2

x7

x′0

x3

x′1

x8

x′2

□

Retroactively: let us take the enumeration ⟨θn : n = 0, 1, 2, ...⟩ so that each S+-sentence
θ appears infinitely many times.

Going back to the ∃ Henkin condition, we may now take m large enough (so that
n = 9 ·m+ 2 is bigger than k, and with θm = (∃x)ψ.

Let us now deal with the ∀′ Henkin condition.
Assume ψ[t] ∈ T+ for some formula ψ(x) and a constant term t. Fix k so that ψ[t] = φak .
Take m large enough, so that n = 9 ·m+ 3 > k and θm = ψ[t].
Then necessarily φan = (∃x)ψ.

Exercise 7.36. Prove that the remaining Henkin conditions are satisfied for T+.

□

Finally, since T+ is a Henkin theory, there is some model A+ for T+.
The reduct A of A+ to the signature S is a model for T . (Recall the definitions from Pset
4. A+ is a structure for the signature S+. A is defined for the signature S by interpreting
the symbols in S the same as A+.)
So T is satisfiable (has a model), concluding the proof of the completeness theorem.

Remark 7.37. If S is countable, and T is an S-theory which is satisfiable, then the
completeness theorem provides a countable model.
Specifically, we constructed the model using countably many constant symbols. We took
a certain quotient, making that model either finite or countably infinite.

So if S is countable, T has a model if and only if it has a countable model. This we
already know from the downwards Lowenheim-Skolem theorem.

8. Compactness

Theorem 8.1 (Compactness for |=). Let S be a countable signature. Let T be a set of
sentences using the signature S. The following are equivalent.

• T is satisfiable (there is a model for T);
• for any finite subset T0 ⊆ T , T0 is satisfiable.

Remark 8.2. This is related to the notion of compactness from topology.

Proof. If A is a model for T , then A is a model for any subset of T .

54 ASSAF SHANI

The main point is the other direction. Suppose that every finite subset T0 is satisfiable.
We need to show that T has a model.

If T were not satisfiable, by the completeness theorem there is a proof of cotnradiction
from T .
This proof is a finite deduction tree Γ. Let T0 be all the sentences in T which are assigned
to some node in Γ.
Then T0 is finite and Γ is a proof of contradiction from T0.
This leads to a contradiction (to the Soundness Theorem) as we assumed that T0 is satis-
fiable. □

Example 8.3. Let T = {ψn : n = 1, 2, ...}, where ψn is the sentence saying “there are at
least n different members”: (∃x1)...(∃xn)(

∧
i ̸=j ¬(xi ≈ xj)).

Each finite subset of T has a finite model. T also has a model, but it cannot be finite.
This shows that the model for T we get from the compactness theorem may have nothing

to do with the models we get from the assumption that each T0 is satisfiable.

Remark 8.4. Like the completeness theorem, the compactness theorem is true with no
assumptions on S at all. We focus on countable languages here for simplicity.

Recall that a sentence θ cannot distinguish between countable vs uncountable models,
by the downwards Lowenheim-Skolem theorem.

The theory discussed above has as its models precisely the infinite structures.
Two natural questions are:

Can a single sentence capture precisely the infinite structures?
Can a theory capture precisely the finite structures?
The answer for both is no.

Theorem 8.5. Suppose T has arbitrarily large finite models. That is, for any finite
number k there is a model A for T with |A| > k. Then T has an infinite model.

Proof. Let T+ = T ∪ {ψ1, ψ2, ...}.

Claim 8.6. T+ is fintiely satisfiable.

Proof. Fix a finite T0 ⊆ T+. Then there is some k so that T0 ⊆ T ∪ {ψ1, ..., ψk}.
Let A be a model for T with |A| ≥ k. Then A |= T and A |= ψi for i = 1, ..., k, so

A |= T0. □

By the compactness theorem, T+ has a model, which must be infinite. This model is
also a model of T . □

Corollary 8.7. There is no theory T whose models are precisely the finite structures.

Corollary 8.8. There is no sentence θ whose models are precisely the infinite structures.

Proof. If the models of θ are precisely the infinite structures, then the models of ¬θ are
precisely the finite structures. □

Recall that in Pset 3, Question 2(1), you wrote a sentence θ all of whose models are
infinite. Without knowing what sentence you may write, question 2(2) asked you to prove
that this particular sentence fails to characterize the infinite structures. Corollary 8.8 is
precisely the reason.

141A MATHEMATICAL LOGIC I 55

8.1. Ramsey’s theorem. Recall the (infinite) pigeon-hole principle: If X is infinite,
X = X0 ∪ ... ∪ Xn is partitioned into finitely many pieces, then (at least) one piece Xi

must be infinite.
Let us focus on the infinite set N. Furthermore, let us restate the principle as follows,

identifying a partition with a function:

If f : N → C and C is finite, then f−1(c) is infinite for some c ∈ C.

We will often call such a function a “coloring”. That is, each n ∈ N is labelled with a
color f(n) ∈ C. The conclusion is that, as there are only finitely many colors, there must
be a single colored assigned to infinitely many n ∈ N.

Ramsey’s theorem can be seen as a “higher dimensional pigeon-hole principle”.
Let us start with dimension 2.

Let [N]2 be the set of all unordered pairs {n,m} with n ̸= m, n,m ∈ N.
A function f : [N]2 → C will be called a coloring of pairs (of natural numbers).
A set S ⊆ N is called homogeneous if there is a c ∈ C so that for any distinct a, b ∈ N,
f({a, b}) = c. That is, all pairs from S are assigned the same color. (Said another way:
when restricting f to [S]2, it is a constant function.)

Theorem 8.9 (Ramsey’s theorem for pairs). Let C be a finite set, f : [N]2 → C. Then
there is an infinite set S ⊆ N which is homogeneous for f .

Remark 8.10. Another way to view [N]2 is as {(n,m) : n < m}. (Upper triangle in the
plane.) We can then think of our colorings as functions defined only on such pairs.

Alternatively, we can think of any such coloring as a symmetric function from N×N →
C. (In this case we simply ignore the values of f on pairs of the form (n, n).)

A 2-coloring f : [N]2 → {0, 1} can be thought of as a graph (unordered, with no loops,)
whose domain is N. That is, given such f define a relation E on N by

n E m ⇐⇒ m ̸= n ∧ f(n,m) = 1.

Similarly, given such graph (N, E) we may define f(n,m) = 1 ⇐⇒ n E m.
What is a homogeneous set S ⊆ N in this setting?

• S is homogeneous with fixed color 0 if no two members of S, n,m ∈ S, have an
edge between them. In other words, looking at S as a graph, it looks like vertices
with no edges. (An empty graph.)

• S is homogeneous with fixed color 1 if any two distinct members of S, n,m ∈ S,
are connected by an edge. In other words, looking at S as a graph, it looks like
infinitely many vertices which are all connected by edges. (A full graph.)

Rephrasing Ramsey’s theorem in this setting:
An infinite graph either contains a copy of an infinite empty graph or contains a copy

of an infinite full graph (possibly both).
This is part of “regularity phenomenon”: we can always find “large trivial-looking

substructures”.
For a larger (finite) “color set” C, we can view a coloring f : [N]2 → C in graph terms as

well: for any two vertices n ̸= m we assign an edge with some color c ∈ C. A homogeneous
S set is a set so that

Remark 8.11. A similar “higher dimensional” result is also true, if we replaced [N]2 with
[N]m for some fixed m, the set of all subsets of N is size m.

56 ASSAF SHANI

Ramsey’s original motivation was to find “infinite homogeneous subsets” of some struc-
ture A.
Suppose A is a structure with domain A = N, and φ(x, y) is a formula. Consider the
coloring f(n, k) = 1 if A |= φ(n, k) and f(n, k) = 0 if A |= ¬φ(n, k).
Using Ramsey’s theorem we may find an infinite S ⊆ N so that the question A |= φ(n, k)
has the same answer, for any n < k both in S. (Either true for any n < k from S or false
for any n < k from S.)

Similarly famous is the finite Ramsey theorem:

Theorem 8.12 (Finite Ramsey theorem). Let C be a finite set. Then for any natural
number h there is some (“large enough”) natural number N , so that:
for any coloring f : [N]2 → C there is some homogeneous set S ⊆ N of size at least h.

That is: we want to find large homogeneous sets for colorings of finite graphs. We can
do that, assuming the graph is large enough.

Even just formulating the finite Ramsey theorem is a little more convoluted that the
infinite one. Also proving the infinite Ramsey theorem is easier, and more natural.

Back to our compactness theorem, let us see how we can deduce the finite Ramsey
theorem from the infinite one (which we will proved soon).

Proof of the finite Ramsey theorem from the infinite one. For simplicity, let us work with
2 colors: C = {0, 1}.
Assume for contradiction that the finite Ramsey theorem fails in this case.
What does this mean?
There is some natural number h, so that for any natural number N , there is some coloring
f : [N]2 → {0, 1}, for which there is no homogeneous set of size ≥ h.
We would like to arrive at a counter example to the infinite Ramsey theorem.

Consider the language S = {R0, R1, c0, c1, ...}, where ci are constant symbols and Ri

are binary relations.
The idea is for ck to be a “stand-in” for the number k ∈ N, and the relation Ri(ck, cm) to
“represent” f(k,m) = i.
With this in mind, we may write axioms “saying that” this f is a counter-example to
Ramsey’s theorem, as follows.

(1) For each pair k ̸= m, consider the axiom ¬(ck ≈ cm).
(2) (∀x)(∀y)[(R0(x, y)∨R1(x, y))∧¬(R0(x, y)∧R1(x, y))]. Every pair is assigned one

of the two colors.
(3) (∀x)(∀y)(R0(x, y) ↔ R0(y, x)) and (∀x)(∀y)(R0(x, y) ↔ R0(y, x)). We want this

to correspond to a coloring of pairs as above.
(4) Given a natural number h, consider the sentence ψh saying that there is no homo-

geneous set of size h:

(∀x1)...(∀xh)[(
∧

1≤i<j≤h

xi ̸= xj) → (
∨

1≤i<j≤h

R0(xi, xj) ∧
∨

1≤i<j≤h

R1(xi, xj))]

Let T be the theory with all these sentences.
Our assumption (the failure of the finite Ramsey theorem) precisely says that any finite

subset of T is satisfiable:
If T0 ⊆ T is finite, it only mentions finitely many symbols c0, ..., cl. Let h be the largest

141A MATHEMATICAL LOGIC I 57

so that ψh is in T0.
By assumption, there is some N and f : [N]2 → {0, 1} with no homogeneous subset of size
h.
We may assume that N ≥ l.
(Let us view f as a symmetric function f : N ×N → {0, 1}.)

Define a structure A as follows.
A = {0, ..., N}.
ck = k for k = 0, ..., N . ck = 0 for k > N .
(k,m) ∈ RA

0 ⇐⇒ f(k,m) = 0.
(k,m) ∈ RA

1 ⇐⇒ f(k,m) = 0.
(m,m) ∈ R0 and (m,m) ∈ R1 for all m. (We need to make some definition, but we don’t
really care about these values.).

Exercise 8.13. Check that A |= T0.

Finally, by the compactness theorem, there is some model A |= T .
Define f : [N]2 → {0, 1} as follows:
If (cn, cm) ∈ RA

0 , f(n,m) = 0
If (cn, cm) ∈ RA

1 , f(n,m) = 1.
The axioms in T tell us that f is well defined.

By the infinite Ramsey theorem, there is an infinite S ⊆ N which is homogeneous for f .
This leads to a contradiction: let s1, ..., sh be distinct members of S.
Now cAs1 , ..., c

A
sh

witness that ψh fails in A. □

Proof of the infinite Ramsey theorem. Fix a finite set C and f : [N]2 → C.
Let a0 = 0 ∈ N.
Find some c0 ∈ C so that A0

c0 = {n > 0 : f(0, n) = c0} is infinite.
There must be some such c0, since the union

⋃
c∈C Ac is infinite, and C is finite. (The

union of finitely many finite sets is finite.)
Let a1 be the minimum of A0

c0 .

Next, find some c1 ∈ C so that A1
c1 =

{
n ∈ A0

c0 : n > a1 and f(a1, n) = c1
}
.

Inductively: given ck, an infinite Ak
ck
, let ak+1 = minAk

ck
.

Find ck+1 ∈ C so that
{
n ∈ Ak+1

ck+1
: n > ak and f(ak, n) = ck+1

}
is infinite.

We have a descending sequence N ⊃ A0
c0 ⊃ A1

c1 ⊃ ... with minimums a0 < a1 < a2 < ...
Is the set {a0, a1, a2, ...} homogeneous? Not quite...
For c ∈ C, let Sc = {ak : ck = c}.
Since N =

⋃
c∈C Sc, we must have some c∗ for which Sc∗ is infinite.

Let S = Sc∗ .

Claim 8.14. S is homogeneous for f , with color c.

Indeed: given b < d ∈ S, b = ak and d = am where ck = cm = c.
In particular am ∈ Ak

ck
and therefore f(ak, am) = ck = c. □

9. Models of a complete theory and types

As before, we focus on countable objects: S is a countable vocabulary, T is a theory in
the language for S, and we study countable models of T (S-structures A with A countable
and A |= T).

58 ASSAF SHANI

Remark 9.1. Even when S is countable and T is a natural theory, such as algebraically
closed fields, one can learn a lot by looking at the uncountable models. This requires some
familiarity with set theoretic techniques.

We focus on the countable models as there are already a lot of interesting things we can
say about those.

If Con(T) is not a complete theory, then there is some sentence θ and models A,B of T
with A |= θ and B |= ¬θ. In this case, the difference between A and B is clear, and they
are not isomorphic.

For example, suppose T is the theory of groups. A can be a group of size 5, and B can
be a group of size 10.
If T is the theory of linear orders, A can be Z and B can be Q, in which case we know
that the “Density” axiom separates them.

From now on, we focus on studying the models of a complete theory T .

We saw many complete theories with “nice axiomatizations”.
For example, Con(DLO), the logical consequences of the DLO axioms, is a complete the-
ory, which is equal to Th(Q, <), which is equal to Th(R, <).
Similarly, the logical consequences of “DLO + {cn+1 < cn : n = 1, 2, ...}”, in the vocab-
ulary {<, c1, c2, ...}, is a complete theory, equal to the theory of the structure (Q, <
, 1, 12 ,

1
3 , ...).

Similarly (though we have not proven it) the logical consequences of the theory ACF0

- algebraically closed fields of characteristic 0 - is a complete theory which is equal to the
theory of (C, ·,+, 0, 1).

Note that if T has a model, then T = Th(A) for any model A |= T .
Therefore, we will interchangeably work with either a complete theory, or a particular
model A, with the understanding that the theory we are studying is Th(A).
We may work with the structure (Q, <, 1, 12 , ...), meaning we are interested in its theory,

and any other structure of its theory, including (Q+, <, 1, 12 , ...).
Question: Let T be a complete theory, A,B models of T . Must they be isomorphic?
Note that, “A and B are models of the same complete theory” is the same as A ≡ B.

So an equivalent question is: given a structure A, if B ≡ A, must they be isomorphic?)
Early on, we suspected that they should be isomorphic. We saw however that (Q, <) ≡

(R, <), yet there is no bijective map between them, based on cardinality issues.
But now we focus on countable structures only. Still, we saw that there could be

countable structures A ≡ B yet A ̸≃ B.
We will now introduce tools “beyond sentences” to study structures and be able to

distinguish between non-isomorphic ones.

Before that, let us mention the following incredible result.

Definition 9.2. Let S be a countable signature, T a complete theory.

Let I(T) be the number of non-isomorphic countable models of T .

That is, I(T) ≥ k if we can find A1, ...,Ak |= T which are pairwise non-isomorphic. Note
that I(T) can be infinite as well.

Remark 9.3. Another way to view I(T): let M(T) be all countable models of T . The
isomorphism relation ≃ onM(T) is an equivalence relation, and therefore partitionsM(T)

141A MATHEMATICAL LOGIC I 59

into equivalence classes. I(T) is precisely the number of equivalence classes (which can be
infinite).

Example 9.4. (1) If T is unsatisfiable (inconsistent) then I(T) = 0.
(2) If T = Con(DLO) (S = {<}), or T = Con(Random Graph) (S = {E}), then

I(T) = 1.
(3) Let S = {<, c1, c2, ...}, T be the theory of (Q, <, 1, 12 , ...). Then I(T) = 3.
(4) If T = Th(C,+, ·, 0, 1), I(T) is infinite. Specifically, there are countable alge-

braically closed fields of “transendence degree n” for each n = 0, 1, 2, 3, ..., and
they are therefore non-isomorphic to one another.

Theorem 9.5 (Vaught’s theorem). Let S be a countable signature, T a complete theory.
Then

I(T) ̸= 2.

Given the generality here (T is just any complete theory, meaning the theory of some
structure, in an arbitrary countable signature), this is quite surprising!

Remark 9.6. For each n = 3, 4, 5, 6, ..., there is a complete theory T with I(T) = n
precisely. Such examples can be constructed in a way very similar to the example with
n = 3 done in Pset 5.

9.1. Types. Given finitely many sentences θ1, ..., θk, the theory {θ1, ..., θk} is “the same
as” the single sentence theory {θ1 ∧ ...∧ θk}. However, as we have seen, an infinite theory
can express more than any single sentence (and therefore more than any finitely many
sentences) can express.

Roughly speaking, a type is to a formula what a theory is to a sentence.
Given a signature S, and structure A, and a formula φ(x), recall that we may view the

realization of φ(x) in A as a subset of A, φA(x) ⊆ A, which is {a ∈ A : A |= φ(a)}.
φA(x) is not empty if and only if A |= (∃x)φ (the latter is a sentence).

Suppose we have two formulas φ(x), ψ(x), which interpret as some subsets of a model
A.
Can we find some member of A satisfying both?
For example, we may consider A = (R,+, ·, 0, 1), φ(x) = (∃y)(y ·y ≈ x) and ψ(x) = x ·x ≈
1 + 1.
There is some a ∈ A satisfying both φ and ψ if and only if φA(x)∩ψA(x) ̸= ∅ if and only
if A |= (∃x)(φ ∧ ψ).

Recall now the structures A,B, C from Pset 5. S = {<, c1, c2, ...}.
• A = (Q, <, 1, 12 , ...).
• B = (Q \ {0}, <, 1, 12 , ...).
• C = (Q+, <, 1, 12 , ...).

The key distinction between C and A,B is that in C there is no member which is below 1
n

for each n.
This cannot be expressed using any finitely many sentences.
Let ψn(x) be the formula x < cn, let p = {ψn(x) : n = 1, 2, ...} be this collection of
formulas. Then the question we are asking is: is there some a ∈ A so that A |= ψn(a) for
each n = 1, 2, ... We will call this p a 1-type (working in the structure A).

60 ASSAF SHANI

Definition 9.7. Fix a signature S and a structure A. Let x̄ = x1, ..., xn be (distinct)
variables. Let p be a set of S-formulas with free variables included in x1, ..., xn. (So each
φ ∈ p is thought of as φ(x1, ..., xn).

Say that p is an n-type (for A) if for any finite subset of p, θ1(x̄), ..., θk(x̄) from p, there
is some ā = a1, ..., an ∈ A so that A |= θi(ā) for i = 1, ..., k. (It is “finitely satisfiable”.)

Say that p is a complete n-type if it is an n-type and moreover for any formula φ(x̄),
either φ(x̄) ∈ p or ¬φ(x̄) ∈ p.

Given an n-type p and ā = a1, ..., an from A, say that ā realizes p if A |= θ(ā) for every
θ(x̄) ∈ p.

Say that p is realized (in A) for there is some ā in A realizing p.

Example 9.8. (1) Given a formula φ(x), if A |= (∃x)φ then {φ(x)} is a type, which
is realized in A.

(2) Let C = (Q+, <, 1, 12 , ...). Let ψn(x) = x < cn. Then p = {ψn : n = 1, 2, ...} is a

1-type. It is not realized in C. p is also a 1-type in A = (Q, <, 1, 12 , ...). Any a ≤ 0
in Q realizes p in A.

(3) Let A = (R, <,+, ·, 0, 1). Let ψ0(x) = 0 < x. For n = 1, 2, ..., let ψn(x) =
x · (1 + ...+1) < 1 where we add n many 1’s. That is, ψn(x) says that x <

1
n . Let

p = {ψn : n = 0, 1, 2, ...} is a type. p is not realized in A.
(4) Consider the signature for vector spaces of the fieldQ. S = {+,−, 0̄}∪{fq : q ∈ Q}.

For q ∈ Q, let ψq(x, y) = ¬(fq(x) = y). Then p = {ψq(x, y) : q ∈ Q} says that the
vectors x, y are linearly independent over Q.
In the vector space Q, p is a 2-type which is not realized.
In the vector space Q2, p is realized by a1, a2 where a1 = (1, 0) and a2 = (0, 1).

(5) Let A = (C,+, ·, 0, 1). We can express “x, y are algebraically independent” by a
2-type p(x, y).
This would say that P (x, y) ̸= 0 for any polynomial P with rational coefficients.
For any such fixed polynomial, this can be done by a single formula.

(6) Let A = (N, <, ·,+, 0, 1). Let p = {ψn : n = 1, 2, ...} where ψn = (1 + ...+ 1) < x,
where we add n many 1’s. p is a 1-type, which is not realized in A. A realization
of p is a “non-standard natural number”.

Remark 9.9. In the setting of Definition 9.7, fix p = p(x̄). The following are equivalent:

• p is an n-type;
• for any θ1(x̄), ..., θk(x̄) from p, (∃x1)...(∃xn)(θ1 ∧ ... ∧ θk) ∈ Th(A).

In particular, the main condition for “being a type” only depends on the theory.

Corollary 9.10. If p is a type (for A) and A ≡ B, then p is a type for B.

We will think of a structure as large if it satisfies many types, and as small if it fails to.
Back to our examples A,B, C: we see that C is small, compared to A,B, as it fails to

realize the type {x < cn : n = 1, 2, ...}.
What about A and B. As we have seen, what distinguishes them is the 0, the “limit” of

the constants cn. While A has this maximal element below all the cn’s, B does not. This
in fact corresponds to A being smaller than B!

The idea is that A fails to realize the “infinitesimal” type saying 0 < x and x < 1
n for

n = 1, 2,

141A MATHEMATICAL LOGIC I 61

More precisely, we will have to talk about types with parameters. This is the natural
analogy of a type where all formulas are allowed to use (the same) parameters.

Definition 9.11. Fix a signature S and a structure A. Let x̄ = x1, ..., xn be (distinct)
variables. Let d̄ = d1, ..., dk be some members of A. Let p be a set of formulas of the form
φ(x1, ..., xn, y1, ..., yk).

Say that p is an n-type with parameter d̄ if for any finite subset of p, θ1(x̄, ȳ), ..., θl(x̄, ȳ)
from p, there is some ā from A so that A |= θi(ā, d̄) for i = 1, ..., l. (Finitely satisfiable.)

In this case, a realization of p in A is ā from A so that A |= θ(ā, d̄) for any θ(x̄, ȳ) from
p.

An equivalent way to think about types with parameters, which we will often adopt is
as follows.

Remark 9.12. Let S+ be S adjoined by new constant symbols e1, ..., ek. Let A+ be the
expansion of A to S+ by eAi = di. Given a type with parameters p as above, let q be the
type of all formulas φ(x̄) which are of the form θ[ē] with θ(x̄, ȳ) ∈ p.

That is, for any θ(x̄, ȳ) in p, substitute each yi with the constant symbol ei, to get a
formula φ(x̄).

Then q is a type (with no parameters, for A+) if and only if p is a type (with the
parameters d1, ..., dk, for A).
Moreover, q is realized in A+ if and only if p is realized in A.

Back to A = (Q, <, 1, 12 , ...). Let c be a new constant symbol and expand A to A+ by

cA
+
= 0. Define p = p(x) by p = {c < x} ∪ {x < cn : n = 1, 2, ...}.

Then p is a 1-type (check).
Furthermore, p is not realized in A (that is, in A+).

Exercise 9.13. Let B = (Q \ {0}, <, 1, 12 , ...). Then for any expansion B+ for a new
constant c, if p is a type for B+, then p is realized in B+.

Specifically, we see that A is “missing something” and is therefore “smaller”.
We will make the notions of “big” and “small” precise soon, and see that B is as big is

it gets, and C is as small as it gets.
While types may be not realized, we will see now that we can also (elementarily) extend

the structure to realize them!
Recall that we defined types as something which is “locally (finitely) true”. This result

shows that a type can be thought of as something which is “somewhere (in some bigger
universe) true”.

Lemma 9.14. Fix A and p = p(x1, ..., xn) an n-type. Then there is a structure B so that

• A ≡ B;
• p is realized in B.

Proof. Let c1, ..., cn be new constant symbols. Consider the theory T , in an expanded
language S+ = S ∪ {c1, ..., cn}, containing Th(A) as well as the sentences θ[c1, ..., cn] for
each θ(x̄) ∈ p.

Claim 9.15. T is finitely satisfiable.

62 ASSAF SHANI

Proof. Let T0 ⊆ T be finite. Then there are finitely many θ1(x̄), ..., θk(x̄) from p so that
T0 ⊆ T ∪ {θ1[c̄], ..., θk[c̄]}.

By assumption, there is ā in A so that A |= θi(ā) for i = 1, ..., k.

Expand A to A+ for S+ by cA+
i = ai. Then (as we have seen before) A+ |= θi[c̄] for

each i.
It follows that A+ |= T0, as required. □

By the compactness theorem, T has a model B+. Let B be its reduct to S. This B
satisfies Th(A) (so B ≡ A).

Moreover, if bi = cB
+

i ∈ B, then b̄ = b1, ..., bn realizes p in B.
□

Definition 9.16. Given a structure A, ā = a1, ..., an from A, define the type of ā,
denoted tp(ā) to be

tp(ā) = {φ(x̄) : A |= φ(ā)} ,
where φ(x̄) ranges over all formulas with free variables included in x1, ..., xn.

Remark 9.17. tp(ā) is always a complete type.

Corollary 9.18. Fix a complete theory T . For any type p = p(x̄) (not assumed to be
complete) there is a type q = q(x̄), so that p ⊆ q and q is a complete type.

Proof. Find some model B in which p is realized. That is, there are ā = a1, ..., an in B
realizing p.
Let q = tpB(ā). Then p ⊆ q and q is a complete type. □

Next, we note that the above result can be strengthened. Specifically, we can get B
which is not just a model of Th(A), but in fact an elementary extension of A.

First, let us consider a slight generalization of “elementary substructure”.
Recall that a substructure A ⊆ B can be thought of as an embedding with the identity
function f(a) = a.
Conversely, given an embedding f : A → B, then we can think of A as embedded in B.

Specifically, let A′ = {f(a) : a ∈ A}. Then we may view A′ as a substructure of B, so
that f is an isomorphism between A and A′.
Since we completely identify isomorphic structure, we may identify A as A′ and think of
it as a substructure of B.

Definition 9.19. Let A,B be structures in the same vocabulary S. a map f : A → B is
an elementary embedding if for any formula φ(x1, ..., xn), for any a1, ..., an from A,

A |= φ(a1, ..., an) ⇐⇒ B |= φ(f(a1), ..., f(an)).

If f is the identity map, we recover the definition A ⪯ B.
Furthermore, as discussed above, whenever we have an elementary embedding f from A
to B we can view B as an elementary extension of A (after some renaming).

For example: given A1,A2, ... and elementary embeddings fi : Ai → Ai+1, one can
define a “union model” A and elementary embeddings from Ai to A, in a natural way,
similar to Pset 4.
Instead, we can (by renaming a little) view this as a chain A1 ⪯ A2 ⪯ A3 ⪯ ..., and then
apply the question from PSet 4 directly to get the union model A.

141A MATHEMATICAL LOGIC I 63

Fix a structure A for S. Expand S to SA by adding a constant symbol ca for each
a ∈ A.
The elementary diagram of A, De

A, is the following SA-theory, which is supposed to
code all truths in A.
Fix any formula φ(x̄). Fix ā = a1, ..., an ∈ A. Let c̄ = ca1 , ..., can , and φ[c̄] the result of
substituting every xi by ci.

5

If φA(ā) = 1, then put the sentence φ[c̄] in De
A.

If φA(ā) = 0, then put the sentence ¬φ[c̄] in De
A.

Exercise 9.20. Let B+ be an SA-structure. Assume that B+ |= De
A. Let B be the reduct

to S. Define a function f : A → B by f(a) = cB
+

a . Prove that f is an elementary
embedding: that is, for any formula φ(x1, ..., xn), for any a1, ..., an from A,

A |= φ(a1, ..., an) ⇐⇒ B |= φ(f(a1), ..., f(an)).

As above, we may think of this as follows. Define A′ =
{
cBa : a ∈ A

}
, and define the

structure A′ with universe A′ in the natural way. Then the map f is an isomorphism from
A to A′.
Furthermore, if B |= De

A then A′ is an elementary substructure of B.
So, by identifying A with A′, we may view B as an elementary extension of A.

Lemma 9.21. Fix A and p = p(x1, ..., xn) an n-type. Then there is a structure B so that

• A ⪯ B;
• p is realized in B.

Proof. Let S+ be S together with the new symbols c1, ..., cn and the new “symbols for A”
{ca : a ∈ A}.
Let T be the collection of all sentences θ[c1, ..., cn], for θ(x̄) ∈ p, together with De

A. (Recall
De

A from Pset 6.)
The same argument as in Lemma 9.14 above shows that T is finitely satisfiable. (In A+

above, we realize ca as a.)
So we get a model B+ realizing p and satisfying De

A. Let B be its reduct to S.
Now there is an elementary embedding of A into B. Specifically, the map sending a to

cB
+

a is such.
As discussed above, by renaming, we may view this B as an elementary extension of A,

A ⪯ B. □

Corollary 9.22. Fix A and p = p(x1, ..., xn) an n-type with parameter d̄ = d1, ..., dk in
A. Then there is a structure B so that A ⪯ B and p is realized in B.

Proof. Let e1, ..., ek be new constant symbols. Expand A to A+ by eA
+

i = di. Now apply
the previous lemma to A+. □

Let us note a simple generalization of what we have done so far.

Lemma 9.23. Fix A and types p0, p1, ... (with parameters). Then there is a structure B
so that

5Recall there are some subtleties with substitution when quantifiers are involved. However, we may
simply assume that the variables x̄ do not have any “quantified appearences”, and then substitution is
very natural.

64 ASSAF SHANI

• A ⪯ B;
• for each i = 0, 1, 2, ..., pi is realized in B.

Proof. The proof is essentially the same. Here we add infinitely many constant symbols.
For each i, if p = p(x1, ..., xni), we add ci1, ..., c

i
ni

and add to the theory θ[ci1, ..., c
i
ni
] for

each θ ∈ pi.
If p = p(x1, ..., xni) is a type with parameter d̄ = d1, ..., dk, we add θ[ci1, ..., c

i
ni
, cd1 , ..., cdk]

to T+, for each θ(x̄, ȳ) ∈ pi.
Again we see that this theory is finitely realizable, by the virtue of pi being all finitely

realizable, and so there is a model. In this final model, the interpretation of ci1, ..., c
i
ni

is a
realization of pi. □

A reformulation of our “isomorphism theorem” is the following:

Lemma 9.24. Suppose f : A → B is an isomorphism from A to B. Fix ā = a1, ..., an in
A, and let b̄ = f(a1), ..., f(an) in B. Then

tp(ā) = tp(b̄).

Corollary 9.25. Suppose A and B are isomorphic. Then a type p is realized in A if and
only if it is realized in B.

So, the realization of types, and failure therefore, may help us to distinguish non-
isomorphic structures!

Definition 9.26. Given A, ā, d̄, define

tp(ā/d̄) =
{
φ(x̄, ȳ) : A |= φ(ā, d̄)

}
.

(The type of ā “over” d̄.)
Equivalently, we may think of it tp(ā) in the structure A+ in the language S+ with

cA
+

i = di.

Again, our “isomorphism theorem” can be cast as follows:

Lemma 9.27. Suppose f : A → B is an isomorphism from A to B. Fix ā = a1, ..., an,
d̄ = d1, ..., dk in A, and let b̄ = f(a1), ..., f(an) in B and ē = f(d1), ..., f(dk). Then

tp(ā/d̄) = tp(b̄/ē).

Equivalently, if we expand by cA
+

i = di and c
B+

i = f(di), then tp(ā) (in A+) is equal to
tp(b̄) (in B+).

9.2. Large structures.

Definition 9.28. Let S be a countable signature and A a countable structure. Say that
A is saturated if any type (with parameters) is realized in A. (Equivalently, in any
expansion of A by finitely many constants, any type is realized.)

Theorem 9.29. Suppose A,B are countable structures for a signature S, and both are
saturated. Then A ≃ B.

Proof. We have seen this in various forms, several times, since week 1.
Let us sketch a winning strategy in the game G(A,B):

141A MATHEMATICAL LOGIC I 65

Suppose we have ā = a1, ..., an and b̄ = b1, ..., bn, the plays in the game so far.
So the map ai 7→ bi is a partial isomorphism.

Given any a ∈ A (played by player I), how would we respond?
Let p = tp(a/ā).
Then q =

{
φ(x, b̄) : φ(x, ā) ∈ p

}
is a type in B.

Since B is saturated, there is some b ∈ B realizing q.
Now the fact that tp(a/ā) = tp(b/b̄) means that b is a legit move (the map ai 7→ bi and
a 7→ b is a partial isomorphism).

The other case, where player I chooses b ∈ B, is similar, using that A is saturated. □

A similar proof, doing only the “forth” with no “back”, shows:

Theorem 9.30. Let T be a complete theory. Suppose B |= T is a saturated countable
model. Suppose A |= T . Then there is an elementary embedding from A to B.

So a countable saturated model, if exists, is unique (up to isomorphism), and is the
“largest model” in the sense that all other models appear as elementary substructures of
it.

A countable saturated model does not always exists however.

Definition 9.31. Let T be a complete theory. For n = 1, 2, ... define

Sn(T) = {p : p is a complete n-type for T} . S(T) =
⋃
n

Sn.

(Complete is important here.)

Exercise 9.32. Let A = (Q, <), T = Th(A). Prove that there is exactly one complete
1-type.
How many complete n-types are there?

Exercise 9.33. Let A = (Q, <, 1, 12 , ...), T = Th(A). What is S1(T)?

Remark 9.34. If p(x̄) is an n-type with parameters d̄ = d1, ..., dk, then p is also an
(n+ k)-type (without parameters).

By “forgetting the parameters” this way, the question of realization may change.
Nevertheless, it shows that if we understand Sn(T) for all n, then we also understand all
types with parameters.

Generally speaking, each type p ∈ Sn(T) is a set of formulas, p ⊆ F , where F is the set
of all formulas in the signature S.
Let P(F) be the posetset of F : P(F) = {X : X ⊆ F} (the set of all subsets of F).
Recall that in our case F is countable.
Recall also that for a countable set F , the powerset P(F) is not countable.

So generally, Sn(T) ⊆ P(F), is contained in some uncountable set.
Depending on T , Sn(T) could in fact be very small (finite), could be infinite yet count-

able, and could be uncountable!
In either of these three cases, we learn a lot about the models of T .

Theorem 9.35. Let T be a complete theory. The following are equivalent.

(1) There is a countable model A |= T which is saturated.
(2) For every n = 1, 2, ..., Sn(T) is countable.

66 ASSAF SHANI

Proof. (1) =⇒ (2).
Assume that A |= T and A is a saturated model.
In particular, any type p ∈ Sn(T) is realized in A.

Recall that if p is a complete type and ā in A is a realization of p, then necessary
th(ā) = p.
(This is analogous to “if T is a complete theory and A is a model of T , then T = Th(A)”.

So any p ∈ Sn(T) is tp(ā) for some ā ∈ An.
Since A is countable, An is countable, and so there are only countably many complete
types in Sn(T).

(2) =⇒ (1).
We will simply realize more and more types, until we catch our tail. Specifically, we will
build a sequence of models A0,A1, ... so that

(⋆) A0 ⪯ A1 ⪯ A2 ⪯ ...

and so that for any type p with parameters in Ai, p is realized in Ai+1.
Remark: (1) Recall that if A ≡ B then a type over A an be viewed as a type over B (it

depends only on the theory. (This is for a type with no parameters.)
(2) Since Ai is an elementary substructure of Ai+1, then any type p with parameters in Ai

can be viewed as a type in Ai+1 as well. [Exercise: why is that?]
Suppose we can build a chain as in (⋆), where A0 |= T .

Let A be the “union model”, as in Pset 4.
In particular, A0 ⪯ A, and so A |= T as well.

Exercise 9.36. A is saturated.

Note that any type in Sn(T) is already realized in A1.
To be saturated however, we need to talk about types with arbitrary finite parameters
from the model A.
The key point is that given a finite ā from A, they already appear in some An. In this
case the type can be viewed as a type with parameters in An, and by construction is is
realized in An+1.

Finally, why can we find a sequence as in (⋆)? That is, given Ai, why can we find an
elementary extension Ai+1 realizing all types with parameters in Ai?

This is true by Lemma 9.23, as there are only countable many such types!
Why are there only countably many such types?

Note that T = Th(Ai) and by assumption Sn(T) is countable for every n.
However here we also consider types with parameters.

Recall that if p is an n-type with k parameters then it is also an n+ k type.
Since Sn+k(T) is countable, we conclude that there are only countable many n-types with
k parameters in Ai.

The set of all types with parameters in Ai can be written as the union over n and k
of this countable set, and therefore is countable, as a countable union of countable sets is
countable (twice). □

Exercise 9.37. Let T = Th(N, ·,+, 1, 0). Then S1(T) is not countable.

If there is no countable saturated model, we see that there are many many different
non-isomorphic models. In particular in this case I(T) is infinite.

141A MATHEMATICAL LOGIC I 67

Lemma 9.38. Let T be a complete theory. Suppose that Sn(T) is uncountable for some
n. Then I(T) is infinite. In fact I(T) is uncountable.

Proof. It suffices to prove the following: given countably many models of T , A1,A2, ...,
we need to find a model A |= T so that A is not isomorphic to either A1,A2, ...

By assumption there is some k so that Sk(T) is uncountable. For notational simplicity,
let us assume that S1(T) is uncountable.

Recall that isomorphic models realize the same types. Since we have so many types,
we will find A which realizes types which are not realized by any of A1,A2, ...

For i = 1, 2, ..., let Pi = {p ∈ S1(T) : p is realized in Ai}. Since Ai is countable, then
each Pi is countable.
In particular

⋃
i Pi is countable, and therefore not all of S1(T).

Fix some p ∈ S1(T) so that p /∈
⋃

i Pi.
Let A |= T be a countable model which realizes p. Then S is not isomorphic to Ai for

any i. □

Corollary 9.39. Let T be a complete theory. Suppose that there is no countable saturated
model for T . Then I(T) is infinite. In fact I(T) is uncountable.

Proof. By the previous theorem, if there is no countable saturated model, there is some k
so that Sk(T) is uncountable. □

Recall that we are going towards a proof of Vaught’s theorem, that if T is a complete
theory in a countable signature S then I(T) is never 2.
In particular, we may assume that T does have a countable saturated model (since other-
wise I(T) is infinite, and therefore not 2).

So, at the very least, in this case we identified one special model for T .

9.3. Small models. We now identify the small models of a theory as those in which types
are not realized.

We need to be a little careful however. Some types are always realized.
Take for example A = (N, <), T = Th(A). Let p = tp(0) = {φ(x) : A |= φ(0)}.

p is infinite. However, there is a single formula ψ(x) that really captures the essence of all
of p.
Specifically, let ψ(x) = ¬(∃y)(y < x), saying that x is the minimal element in the order.

Claim 9.40. For any φ(x) ∈ p, T |= (∀x)(ψ(x) → φ(x)).

Proof. T is just the theory of A = (N, <). In this structure, the only x satisfying ψ(x) is
0 ∈ N. Moreover, by definition of p, for any φ(x) ∈ p, A |= φ(0).
So (∀x)(ψ(x) → φ(x)) is true in A, and therefore is in T . □

Note also that ψ(x) ∈ p, and (∃x)ψ ∈ T .
So any model B of T must have some b ∈ B satisfying ψ(x), which would imply that it
realizes the entire type p.

Definition 9.41. Let T be a complete theory, p an n-type, and ψ(x) a formula so that
(∃x)ψ ∈ T (“ψ is consistent with T”). Say that ψ(x̄) isolates the type p if for any
φ(x̄) ∈ p,

(∀x1)...(∀xn)(ψ(x̄) → φ(x̄)) ∈ T.

68 ASSAF SHANI

Note that if p is a complete type (and T is not contradictory), then it must be that
ψ(x̄) ∈ p. (Otherwise, its negation would be in p, and we would get (∀x̄)(ψ → ¬ψ) in T .)

Say that the type p is isolated if there is some formula isolating it.

Lemma 9.42. Let T be a complete theory, p an n-type which is isolated. Then p is
realized in any model of T .

Proof. Let A |= T . Fix ψ(x̄) isolating p.
Since ψ(x̄) ∈ p, (∃x1)...(∃xn)ψ(x̄) ∈ T , so A |= (∃x1)...(∃xn)ψ(x̄).

Fix ā = a1, ..., an in A so that A |= ψ(ā).
For any φ(x̄) ∈ p, by assumption, (∀x1)...(∀xn)(ψ(x̄) → φ(x̄)) is in T (and so true in A).
We conclude that for any φ(x̄) ∈ p, A |= φ(ā). That is, ā realizes p in A. □

So, isolated types are always realized. We will define a model as small if these are the
only types it realizes.

Definition 9.43. Let T be a complete theory, A |= T . (T = Th(A).) Say that A is
atomic if for any ā = a1, ..., an ∈ A, the type p = tp(ā) is an isolated type.

Again, such ”smallest model” does not necessarily exist. If it does exist, it is unique.

Theorem 9.44. Suppose A and B are countable atomic models with A ≡ B. Then A ≃ B.

Proof. Again this is very similar to proofs we have done before.
Suppose we have ā = a1, ..., an in A, b̄ = b1, ..., bn in B, so that ai 7→ bi is a “partial

isomorphism”. Given any a ∈ A we want to find some b ∈ B so that sending a to b will
“extend this partial isomorphism”.

We look at p = tp(a/ā), and want to find b ∈ B with p = tp(b/b̄).
In the saturated case, we used the fact that all types are realized in B. In particular p

is realized, no matter what p is.
Here it is the opposite: since A is small, the type p is “trivial”, in the sense that it must

be realized in any model. In particular it is realized in B.
More precisely: let p = tp(ā⌢a).

By assumption, p is isolated, since A is atomic.
Fix ψ(x̄, x) ∈ p isolating p.

Let φ(x̄) = (∃x)ψ(x̄, x).
Then A |= φ(ā).
By assumption, B |= φ(b̄). (This is the step that is very similar to what we have done
before. This is an inductive assumption.)
In particular, there is some b ∈ B so that B |= ψ(b̄, b).

Finally, recall that p is isolated by ψ(x̄, x). (Here it is important that A ≡ B!)
We conclude that (b̄, b) realizes the type p, as we wanted. □

An almost identical proof, which we skip here, gives the following:

Theorem 9.45. Let T be a complete theory. Suppose A is an atomic model of T . Then
for any model B of T there exists an elementary embedding f from A to B.

So we may think of an atomic model as some base layer “appearing” in all models of T .
Back to the question: given a theory T , when does an atomic model (“a smallest model”)

exists?

141A MATHEMATICAL LOGIC I 69

Suppose A is an atomic model. That means, for example, that for any a ∈ A, tp(a) is
isolated.
We may suspect that all types in S1(Th(A)) are isolated.
However, that is not necessarily the case. (For example, the model C from Pset 5 is in
fact atomic, but there is some isolated type, which is just not realized.)

Remark 9.46. Suppose A is some structure, ā = a1, ..., an in A, and assume that tpA(ā)
is isolated. Given 1 ≤ i1 < ... < ik ≤ an, let b1 = ai1 , ..., bk = aik , b̄ = b1, ..., bk. Then
tpA(b̄) is isolated as well.

Proof. For notational simplicity, let us consider the following case. Fix a, b ∈ A and
assume that tpA(a, b) is isolated. We prove that tpA(a) is isolated as well.

By assumption, there is a formula ψ(x, y) so that for any formula φ(x, y),

if A |= φ(a, b) then A |= (∀x)(∀y)(ψ → φ).

The latter implies that A |= (∀x)((∀y)ψ → (∀y)φ).
What we need to do is to find a formula θ(x) so that for any formula ζ(x),

if A |= ζ(a) then A |= (∀x)(θ → ζ).

Let θ(x) = (∀y)ψ. Fix ζ(x) so that A |= ζ(a). We may view ζ as ζ(x, y). Then A |=
ζ(a, b). In fact, A |= (∀x)(ζ ↔ (∀y)ζ) (the interpretation does not depend on the “dummy
variable”).

By the assumption, we conclude that (∀x)(θ → ζ) holds in A, as required. □

There is much to say about atomic models, and non-isolated types. You can find more
in [Marker,Hodges].

For now, the following will be useful to prove Vaught’s theorem.

Theorem 9.47. Fix a countable signature S and a complete theory T . Assume that there
is a countable saturated model for T . Then there is a countable atomic model for T .

The generality of this result is quite surprising. These questions, of finding a “largest
countable model” (a model that every other one embeds into it), or “a smallest countable
model” (a model which embeds into any other one), are quite natural, given some theory
T . No matter which complete theory you are working with, if you can find a saturated
model, then there is also an atomic one. (They may be isomorphic, some times.)

Remark 9.48. Another way to phrase the theorem: suppose A is a saturated structure.
Then Th(A) has an atomic model. (May or may not be isomorphic to A.)

Proof sketch of Theorem 9.47. We will repeat the construction of a Henkin model, with
additional conditions, so that the final model is in fact atomic.

Recall that we add new constant symbols S+ = S ∪ {c0, c1, c2, ...} and build a theory
T+ for S+ which satisfies all the Henkin conditions.
We construct a model A+ for T+ whose universe is precisely {c1, c2, ...} (a quotient of it).

In this model, for any formula φ(x1, ..., xn), A+ |= φ(cA
+

1 , ..., cA
+

n) if and only if φ[c1, ..., cn] ∈
T+.

By an earlier remark, it suffices to make sure that for arbitrary large n, tpA
+
(c1, ..., cn)

is isolated. Note that tpA
+
(c1, ..., cn) is in Sn(T).

70 ASSAF SHANI

We will make sure that these types are isolated by making sure that they are not not
isolated.

Given some type p ∈ Sn(T), if p is a non isolated type then we will want to find some
ψ(x1, ..., xn) in p so that ψ fails for c1, ..., cn. That is, so that ¬ψ[c1, ..., cn] ∈ T+.

We will simply add this to our infinite tree construction, so that any infinite branch in
the final tree will satisfy this extra assumption:

If p ∈ Sn(T) is not isolated, then there is some ψ in p so that ¬ψ[c1, ..., cn] ∈ T+.

There is some additional “book-keeping” to do. This book-keeping is still possible since
we only have countably many types to worry about!

On top of that, it was important that all of our “add this” steps do not make the theory
we are constructing so far (the finite branch) inconsistent. We need to show:

Claim 9.49. Let ζ1, ..., ζk be S+ sentences so that T ∪ {ζ1, ..., ζk} is consistent (there is
no proof of contradiction). Let p ∈ Sn(T) be a non-isolated type.

Then we may find some ψ ∈ p so that T ∪{ζ1, ..., ζk}∪{¬ψ[c1, ..., cn]} is still consistent.

Proof. We may assume that the new constant symbols appearing in ζ1, ..., ζk are contained
in c1, ..., cn. (Otherwise, we may replace p with a type q ∈ Sl(T) for a larger l, so that q
extends p.)
Let x̄ = x1, ..., xn, c̄ = c1, ..., cn.
Fix formulas θ1(x̄), ..., θk(x̄) so that ζi = θi[c̄].

What does it mean for T ∪ {ζ1, ..., ζk} ∪ {¬ψ[c1, ..., cn]} to be inconsistent?
That there is a proof of contradiction T ∪ {θ1[c̄], ..., θk[c̄]} ∪ {¬ψ[c̄]} ⊢⊥.
In other words, T ∪ {θ1[c̄] ∧ ... ∧ θk[c̄] ∧ ¬ψ[c̄]} ⊢⊥.
That is, T ⊢ ¬(θ1[c̄] ∧ ... ∧ θk[c̄] ∧ ¬ψ[c̄]).
Recall that ¬(ϕ1∧¬ϕ2) is equivalent to ¬ϕ1∨¬¬ϕ2, which is equivalent to ¬ϕ1∨ϕ2, which
is equivalent to ϕ1 → ϕ2.

In conclusion: T ⊢ (θ1[c̄] ∧ ... ∧ θk[c̄]) → ψ[c̄].
By the completeness theorem, this is equivalent to T |= (θ1[c̄] ∧ ... ∧ θk[c̄]) → ψ[c̄].
By Pset 4, question 5, this is equivalent to T |= ∀x̄((θ1 ∧ ... ∧ θk) → ψ).

So, not being able to add ψ to the theory we are building up (in S+), precisely corre-
sponds to the ψ “being isolated” by the formula θ1 ∧ ... ∧ θk.

Finally, since p is assumed to be not isolated, then can find some ψ which is “not isolated
by θ1 ∧ ... ∧ θk”. So this ψ works for the claim. □

□

Having “all types isolated” does happen, for example in (Q, <). More generally, this
happens if and only if I(T) = 1, in which case there is a saturated model and an atomic
model, and they are in fact equal.

Theorem 9.50. Fix a countable signature S and let T be a (satisfiable) complete theory.
The following are equivalent.

(1) I(T) = 1, that is, for any two models A,B |= T , A and B are isomorphic.
(2) For all n, any type in Sn(T) is isolated.
(3) Sn(T) is a finite set for all n.

141A MATHEMATICAL LOGIC I 71

Proof. (1) =⇒ (2).
Assume I(T) = 1 (all countable models are isomorphic to one another). In particular,
there exists a saturated model B |= T . (Otherwise, I(T) is infinite.)
Therefore there also exists an atomic model A |= T .
By assumption, A ≃ B.

Since B is saturated, any type p ∈ Sn(T) is realized in B.
Therefore every type is realized in A.
Since A is atomic, the types realized in A are all isolated.
So every type is isolated.

(2) =⇒ (1)
Assume that every type is isolated. Let A,B be a models of T .
By assumption, both A and B must be atomic.
By the uniqueness of an atomic model, A ≃ B.

Remark 9.51. Suppose p1(x), ..., pk(x) are isolated types in S1(T). Let ψ1(x), ..., ψk(x)
be formulas isolating them.

Consider the sentence (∀x)(ψ1 ∨ ... ∨ ψk). Is it in T?
If it is in T , then p1, ..., pk are precisely all types in S1(T)! That is, S1(T) = {p1, ..., pk}.

Otherwise, if p1, ..., pk are not all 1-types, then (∃x)(¬ψ1 ∧ ... ∧ ¬ψk) is in T .

(2) =⇒ (3).
Assume that every type is isolated.
Assum for a contradiction that Sn(T) is not finite, for some n.
For notational simplicity, let us assume that S1(T) is not finite.

So we have may list S1 as p1, p2, p3, ..., all different complete 1-types.
Fix a formula ψi which isolates the type pi.
Expand S by a new constant symbol, S+ = S ∪ {c}, and consider the theory T+ =
T ∪ {¬ψi[c] : i = 1, 2, ...}.

First note that T+ is not satisfiable, since p1, p2, ... lists all 1-types in S1(T).
Indeed, if A+ is an S+-structure satisfying T+, let A be its reduct to S.
Then A |= T . In particular, for any a ∈ A, tpA(a) must be in S1(T).

Let a = cA
+
. Since A+ |= T+, it follows that ψi(a) fails in A, for each i. Therefore

tpA(a) ̸= pi for each i. A contradiction.
Finally, we show that T+ is finitely satisfiable, leading to a contradiction (by the com-

pactness theorem).
Given a finite T0 ⊆ T+, T0 is contained in T ∪ {¬ψ1[c], ...,¬ψk[c]} for some finite k.
To show that this theory is satisfiable, we need to show that there is a model for T in
which (∃x)(¬ψ1 ∧ ... ∧ ¬ψk) holds.
By the remark above, this is true in any model of T .

(3) =⇒ (2).
Again for notational simplicity let us work with S1(T). Assume that S1(T) is finite. We
want to show that every p ∈ S1(T) is isolated.

Fix p1, p2, ..., pk a list of all 1-types in S1(T).
Since they are distinct, we may find for i < j a formula θi,j(x) so that θi,j ∈ pi yet
¬θi,j ∈ pj .

72 ASSAF SHANI

For j < i define θi,j = ¬θj,i. Define

φi(x) =
∧
j ̸=i

θi,j .

By asssumption, each θi,j is in pi, so φi is in pi.
We claim that φi isolates pi.

For any model A for T , for any a ∈ A, if A |= φi(a), then tpA(a) is not pj for j ̸= i.
Since tpA(a) must be one of p1, ..., pk(by assumption), it will necessarily be pi.

That is, for any A |= T , for any a ∈ A, if A |= φi(a) then A |= ψ(a) for all ψ ∈ p.
In particular, for any ψ in p, T |= (∀x)(φi → ψ). So φi isolates ψ.

□

Collecting what we have seen so far, here are some things we can say about the countable
models of a (satisfiable) complete theory T by looking at the types Sn(T):

• If Sn(T) is uncountable for some n, then I(T) is uncountable: there are uncount-
ably many non-isomorphic models of T . (“Very chaotic behavior”).

• If Sn(T) is countable for each n, then we may identify two special countable models:
a saturated one and an atomic one.

• Sn(T) is in fact finite (for every n) if and only if the saturated and atomic models
are isomorphic to one another. In this case I(T) = 1.

9.4. Proof of Vaught’s theorem. Recall Vaught’s theorem:

Fix a countable signature S and a complete theory T . Then I(T) ̸= 2.
In other words, if we may find two non-isomorphic models B, C of T , then there is a third

model A |= T which is not isomorphic to either B or C.
First, if I(T) is infinite, there is nothing to prove. We may therefore assume that T

has a saturated model B and an atomic model C. (If either does not exists, then I(T) is
uncountable.)
If B ≃ C, then I(T) = 1, so again, we are done.

Assume that B ̸≃ C (that is, I(T) ̸= 1).
Then there is some n so that Sn(T) is not finite, and has a non-isolated type in it.
For notational simplicity, let us assume that S1(T) is infinite, and so there is a non-isolated
type p in S1(T).

Since B is saturated, p is realized in B. Let b ∈ B be a realization, tpB(b) = p.

Let c be a new constant symbol. Expand B to B+ by cB
+
= b. Let T+ = Th(B+) (the

S+-theory of B+, where S+ = S ∪ {c}).
Note that B+ is still a saturated model (this time for T+). (A type with parameter d̄

for B+ can be viewed as a type with parameter (d̄, b) for B. Since B is saturated, this type
is realized.)
In particular, T+ has a saturated model, therefore it has an atomic model.

Note that {φ[c] : φ(x) ∈ p} ⊆ T+. So any model of T+ realizes the type p. Specifically,
the interpretation of the constant symbol c always realizes the type p.

Let A+ be an S+-structure, A |= T+ an atomic model.
Let A be the reduct of A+ to S.

Claim 9.52. A is not isomorphic to either B or C.

141A MATHEMATICAL LOGIC I 73

First, the type p is realized in A, by a = cA
+
. So A is not isomorphic to C (C is atomic,

and p is isolated, so p is not realized in C).
What about A and B?

The idea is that if they are isomorphic, then I(T+) = 1.
However, this would mean that S1(T

+) is finite.
However, every type in S1(T) (which is infinite) extends to a type in S1(T

+). A contra-
diction!

More formally:
Since S1(T) is infinite, so is S1(T

+).
By the theorem, there is some type q+ ∈ S1(T

+) which is not isolated.
In particular q+ is not realized in A.

We may view q+ as a 1-type q with parameter a = cA
+
inA. (Let q(x) = {θ(x, y) : θ(x)[c] ∈ q+}).

So q is a 1-type with parameter, in A, which is not realized in A.
In other words, the model A is not saturated.
It follows that A is not isomorphic to B.

Some thoughts:
- Why does the proof not work to find a 4’th model?
- Try to think of what the above construction looks like in our example with B = (Q\{0}, <
, 1, 12 , ...) and C = (Q+, <, 1, 12 , ...).

10. What’s next?

If you are particularly interested in model theory: at this point you should be able to
pick up any graduate textbook on model theory6. Two examples are [Marker,Hodges]. In
Section 11 you can find a few concrete starting points.
On our Canvas page you may find some further suggested very advanced topics. For those
mostly some further reading is necessary beforehand.

10.1. Math 141B is offered in the Fall! The material of 141B is focused on Godel’s
incompleteness theorem and related topics, specifically notions of complexity / computabil-
ity.

Ever since Section 9 (types) our setup was as follows: we considered an arbitrary com-
plete theory T and studied its models. This is the very basis for “model theory”. Also, to
some extend this is what we do in many math classes, just for a very particular theory T .

For the majority of our concrete examples, the complete theory T was fairly well un-
derstood.

• For T = Th(Q, <), T is in fact equal to Con(DLO), just the formal consequences
of the (finitely many) DLO axioms.

• For T = Th(Q, <, 1, 12 , ...), T is in fact equal to Con(DLO∪{cn+1 < cn : n = 1, 2, ...}).
In this case, there are infinitely many “basic axioms”, but this is a very “simple
collection of axioms”: it is clear how to determine which sentence is an axiom (if
it is of the form cn+1 < cn...).

6Slight caveat: some more background on infinite cardinalities will be very useful for most material
beyond what we have seen in this course.

74 ASSAF SHANI

• For T = Th(C, 0, 1, ·,+), it turns out that T = Con(ACF0), the consequences of
the axioms of “an algebraically closed field of characteristic 0”. (We did not prove
this however.) Here there are infinitely many axioms, but very simply to describe.

• Let T = Th(N, 0, 1,+, ·). This is of course a very interesting theory! Essentially
for any statement in number theory, one wants to know if it is in T or not.

Question 10.1. Can we write some axioms θ1, θ2, ..., so that T = Th(N, 0, 1,+, ·) is
precisely the consequences of {θ1, θ2, ...}?

We can of course take any enumeration of T ... but that doesn’t seem to be meaningful.
[It does not really help us understand whether any particular question in number theory
is true or false... since we need to already know this in order to decide whether to put this
statement in the enumeration or not.]

So the question should be: can we describe a reasonable list of axioms?
What is reasonable?
For example, finite is reasonable. But we already saw some reasonable infinite collections
of axioms.

A (reasonable) intuitive definition for “reasonable” is as follows:
suppose you can write a computer program which takes as input a sentence ϕ, and outputs
“YES” if this ϕ is one of our axioms, and outputs “NO” if it is not.
For example, for the list of sentences cn+1 < cn, it is clearly doable.

In 141B we will see that it is impossible to find such “reasonable axiomatization” for
number theory.

Theorem 10.2. Suppose T0 = {θ1, θ2, ...} is a “reasonable” (computable) list of axioms.
Then Con(T) is not Th(N, 0, 1,+, ·).

In particular the collection of “number theoretic truths” Th(N, 0, 1,+, ·) itself “is not
computable”!

Part of the developments in 141B will be to define what “computable” means.
The intended meaning will always “what a computer can do”.
The formalization of this concept is the basics for complexity theory, (in mathematics as
well as in computer science).

It is worth mentioning that when Godel developed all these things, almost a 100 years
ago, there were no computers.
At the time, just arguing that there is any reasonable notion of “computable” was highly
non-trivial!
The development of algorithms, computers, and computer science heavily relies on Godel’s
work.

Back to the topic: suppose you try to axiomatize number theory using a “reasonable”
computable list of axioms T0 = {θ1, θ2, ...}, so that each θi is a true (known) statement in
number theory.
One such reasonable collection of axioms are the axioms of Peano Arithmetic (will be
discussed thoroughly in 141B).
If you believe the discussion above, then Con(T0) is not Th(N, 0, 1,+, ·).
In this case it is necessarily a strict subset, Con(T0) ⊊ Th(N, 0, 1,+, ·).
In particular Con(T0) is not a complete theory. This is a part of the incompleteness

141A MATHEMATICAL LOGIC I 75

theorem: any “reasonable list” of axioms ends up being not complete: there is always
some θ so that neither θ nor ¬θ is a logical consequence of T0.

Given a particular list of axioms, you may ask what is this θ, that refuses to be decided
by our axioms? The most common phrasing of the incompleteness theorem is as follows:

Suppose T0 is a “reasonable” list of number-theoretic axioms. Then there is a sentence θ
which “says” that “T0 is a consistent theory” (has no formal contradiction), and neither

θ nor ¬θ are a logical consequence of T0.

That is:

A theory cannot prove its own consistency!

There is much to say here. For example, how can a sentence in the language +, ·, 0, 1
talk about something being consistent or not? There is a lot of coding to do. Again this
is an important part of the technical developments in 141B, and an important tool in the
study of complexity / computability.

11. Topics for further reading

Below are some topics for further optional readings, depending on your interest. For
these topics the notes provides a reference which you are in a position to read.

Feel free to ask about any one of these!
(Another list of more (very) advanced topics for further reading will be updated on

Canvas. For some of these advanced topics, some of these optional reading topics will be
a first step.)

• We discussed in Pset 6 (not for submission) that the reals R can be “extended by
an infinitesimal”.
Much like the infinite Ramsey theorem was simpler than the finite one (omitting
the need of “for all h there is N”), one can use this infinitesimal to provide simpler
definitions of limits, continuity and differentiability of funcitons. (Avoiding some
“alternating quantifiers”. Recall Pset 2 question 3(1).)
You can read about this “non-standard analysis” in [Enderton, Section 2.8].

• Characterizing elementary equivalence ≡ in terms of winning strategy in finite
length games.
See reference in page 30.

• Fraisse limits: given a collection of finite objects (such as all finite linear orders,
or all finite graphs), when can we make sense of a “limit object”? The ordered
rational numbers (Q, <) and the random graph are examples of such limit objects.
See reference on page 31

• Quantifier elimination: when formulas “are equivalent to” quantifier-free formulas.
This happens, for example, when dealing with algebraically closed fields, or DLOs.
This is another instance when substructures are necessarily elementary substruc-
tures, as we have seen for DLOs.
See references in Remark 5.6 on page 32.

References

[Enderton] Herbert B. Enderton - A Mathematical Introduction to Logic
[Woodin-Slaman] Notes by Professor W. Hugh Woodin and Professor Theodore A. Slaman
[Marker] David Marker - Model Theory: An Introduction

76 ASSAF SHANI

[Hodges] Wilfrid Hodges - Model Theory

