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Abstract

A portion of the global wealth portfolio is directed towards a safe and liquid reserve asset,

which recently has been the US Treasury bond. Our model links the determination of reserve

asset status to relative fundamentals and relative debt sizes, by modeling two countries that

issue sovereign bonds to satisfy investors’ reserve asset demands. A sovereign’s debt is more

likely to be the reserve asset if its fundamentals are strong relative to other possible reserve

assets, but not necessarily strong on an absolute basis. Debt size can enhance or detract from

reserve asset status. If global demand for the reserve asset is high, a large-debt sovereign which

offers a savings vehicle with better liquidity is more likely to be the reserve asset. If demand for

the reserve asset is low, then large debt size is a negative as it carries more rollover risk, leading

to a riskier vehicle for saving. When global demand is high, countries may make fiscal/debt-

structuring decisions to enhance their reserve asset status. These actions have a tournament

feature, and are self-defeating: countries may over-expand debt size to win the reserve asset

tournament. Coordination can generate benefits. We use our model to study the benefits of

“Eurobonds” – i.e. a coordinated common Europe-wide sovereign bond design. Eurobonds

deliver welfare benefits only when they make up a sufficiently large fraction of countries’ debts.

Small steps towards Eurobonds may hurt countries and not deliver welfare benefits.
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1 Introduction

US government debt has been the world’s reserve asset for over half a century. German government

debt is the reserve asset within Europe. US and German debt appear to have high valuations relative

to the debt of other countries with similar fundamentals, measured in terms of debt or deficit to

income ratios. Moreover, as fundamentals in the US and Germany have deteriorated, these high

valuations have persisted. Finally, as evident in the financial crises over the last five years, during

times of turmoil, the value of these countries’ bonds rise relative to the value of other countries’

bonds in a “flight to quality.”

This paper develops a model that helps understand these facts and think about what drives

the value of a reserve asset. We study a model with many investors and two countries, each which

issues government bonds. The investors have a pool of savings that they must invest in government

bonds – there are no alternative savings vehicles. Thus the bonds of one, or possibly both of the

countries, will hold these savings and serve as a reserve asset. However, the debts are subject to

rollover risk. The countries differ in their fundamentals, which measures their ability to service

their debt and factors into their rollover risk; and debt size, which proxies for the financial depth or

liquidity of the country’s debt market. Our model links fundamentals and debt size to the valuation

and equilibrium determination of the reserve asset.

An important assumption is that there are no savings vehicles other than the countries’ sovereign

debts. That is, all savings needs are satisfied by sovereign debt that is subject to rollover risk. There

is no “gold” in the model, nor are there any corporations/banks that are able to honor commitments

of repaying debts. Alternatively, the model can be interpreted as one where such vehicles do exist,

but their supplies are small relative to the reserve asset needs of investors. Thus, substantially all

of the world’s reserve asset needs must be satisfied by debt that is subject to rollover risk.

In the model, an investor’s valuation of a bond depends on the number of other investors who

purchase that bond. If only a few investors demand a country’s bond, the bond auction fails and

the country defaults on the bond. For a country’s bonds to be safe, the number of investors who
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invest in the bond must exceed a threshold, which is decreasing in the country’s fundamentals (i.e.,

its fiscal surplus) and increasing in the size of the debt . Our modeling of rollover risk is similar to

Cole and Kehoe (2000). Investor actions are complements – as more investors invest in a country’s

bonds, other investors are incentivized to follow suit. Valuation has a coordination aspect which we

consider to be an important feature of the economics of a reserve asset.

Besides the above strategic complementarity, the model also has a strategic substitutability

force, as is common in models of competitive financial markets. Once the number of investors who

invest in the bonds exceeds the threshold required to rollover debts, then investor actions become

substitutes. Beyond the threshold, more demand for the bond drives up the bond price, leading to

lower returns. Our model links the debt size to this strategic substitutability: for the same investor

demand, a smaller debt size leads to a smaller return to investors. In other words, countries with

lower financial depth are at a disadvantage in accommodating investors’ demand for a reserve asset.

The model predicts that relative fundamentals more so than absolute fundamentals are an im-

portant component of debt valuation. Relative fundamentals matter because of the coordination

aspect of valuation. Investors expect that other investors will invest in the country with better

fundamentals, and thus relative valuation determines which country’s bonds is the reserve asset.

This prediction helps understand the observations we have made regarding the valuation of US debt

in a time of deteriorating fiscal fundamentals. In short, all countries’ fiscal conditions have deterio-

rated along with the US, so that US debt has maintained and perhaps strengthened its reserve asset

status. The same logic can be used to understand the value of the German Bund (as a reserve asset

within Europe) despite deteriorating German fiscal conditions. The Bund has retained/enhanced

its value because of the deteriorating fiscal conditions of other Euro area countries.

The model also predicts that debt size is an important determinant of reserve asset status. If the

global demand for reserve assets is high, then large debt size enhances reserve asset status. Consider

an extreme example with large debt country and a small debt country – in fact, infinitesimally small

debt. If investors coordinate on this small debt as the reserve asset, then the return on the reserve

asset will be infinitesimal. That is the quantity of world demand concentrating on a small float
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of bonds will drive bond prices up to a point that investors’ incentives in equilibrium will be to

coordinate investment in the large debt. On the other hand, if global demand for reserve assets

is low, then investors will be concerned that the large debt will not attract sufficient demand to

rollover the debt. That is, when funding conditions are tight, rollover risk for a large debt size is

high. In this case, investors will tend to coordinate on the small debt size as the reserve asset.

Our model offers some guidance on when the US may lose its reserve asset status. Many

academics have argued that we are and have been in a global savings glut, which in the model will

correspond to a high global demand for reserve assets. In this case, the US is likely to continue its

reserve asset status unless US fiscal fundamentals deteriorate significantly relative to other countries,

or if another sovereign debt can compete with the US Treasury in terms of size. Eurobonds seem

like the only possibility of the latter, although there is considerable uncertainty whether such bonds

will exist and will have better fundamentals than the US debt. However, if the savings glut ends

and the world moves to a low demand for reserve assets, then our model predicts that an alternative

high fundamentals country with a relatively low supply of debt may become the reserve asset. The

German Bund is a leading example of such an asset.

The size effect of our model also identifies a novel contagion channel. In the high savings regime,

a larger debt size of the large debt country adversely affects the small debt country by increasing the

small country’s probability of default and its expected bond yield. This is because the expansion

of the supply of the reserve asset creates safe “parking spots” for funds that may otherwise have

been invested in small country debt. From 2007Q4 to 2009Q4, the supply of US Treasury bonds

increased by $2.7 trillion (the money stock increased another $1.3 trillion). Our model hence hints a

causal link from the increase in US Treasury bond supply/Fed QE and the eruption of the European

sovereign debt crisis in 2010.

We use our model to study incentives to change debt size, when doing so may enhance reserve

asset status. We study a case where two countries have a “natural” debt size, determined for example

by their GDP, but can deviate from its natural debt size by some adjustment cost. Two interesting

cases emerge. When countries are roughly symmetric – similar natural debt size – and when global
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demand for reserve assets is high, countries will engage in a rat race to become the reserve asset.

Starting from the natural debt sizes, and holding fixed the size decision of one country, the other

country will have an incentive to increase its debt size since the larger debt size can confer a reserve

status. But then the first country will have an incentive to respond in a similar way, and so on so

forth. In equilibrium, both countries will expand in a self-defeating manner beyond their natural

debt size. This prediction of the model can help to shed some light on the expansion of relatively

safe stocks of debt in the US (GSE debt) and Europe (sovereign debt) in the build-up to the crisis.

These expansions have ultimately ended badly.

The model identifies a second case, when countries are asymmetric and one country is the natural

“top dog.” In this case, the larger debt country will have an incentive to reduce debts to the point

that balances rollover risk and retaining reserve asset status, while the smaller country will have an

incentive to expand its debt size. The model is suggestive that asymmetry leads to better outcomes

than symmetry.

We use our model to investigate the benefits of creating “Eurobonds.” We are motivated by

the Eurobond proposals that have been floated over the last few years (see Claessens, Mody and

Vallee, 2012, for a review of various proposals). A shared feature of the many proposals is to create

a common Europe-wide reserve asset. Each country receives proceeds from the issuance of the

“common bond” which is meant to serve as the reserve asset, in addition to proceeds from the sale

of an individual country-specific bond. By issuing a common Euro-wide reserve asset, all countries

benefit from investors’ need for a reserve asset, as opposed to just one country (Germany) which

is the de-facto reserve asset in the absence of a coordinated security design. Our model, in which

the determination of the reserve asset is endogenous, is well-suited to analyze these issues formally.

Suppose that countries issue α share of common bonds and 1−α share as individual bonds. We ask,

how does varying α affect welfare, and the probability of safety for each country? Our main finding

is that welfare is only unambiguously increased for α above a threshold. Above this threshold,

the common-bond structure enhances the safety of both common bonds and individual bonds, and

all these bonds develop some reserve asset status. Thus, a higher α makes both countries safer.
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However, below the threshold, welfare can be increasing or decreasing, depending on the assumed

equilibrium; and one country may be made worse off while another may be made better off by

increasing α. Thus we conclude that a successful Eurobond proposal requires a significant amount

of coordination and fiscal union.

LITERATURE REVIEW: TO BE COMPLETED

2 Model

2.1 The Setting

Consider a two-period model with two countries, indexed by i, and a continuum of homogeneous

risk-neutral investors, indexed by j. At date 0 each investor is endowed with one unit of consumption

good, which is the numeraire in this economy. Investors invest in the bonds offered by these two

countries to maximize their expected date 1 consumption, and there is no other storage technology

available. This latter restriction is important to the analysis as will be clear.

There is a large country, called country 1, and a small country, called country 2. We normalize

the size of the large country to be one (i.e., s1 = 1), and denote the size of the small country by

s2 ≡ s ∈ (0, 1]. Each country sells bonds at date 0 promising repayment at date 1. The country size

determines the total face value (in terms of promised repayment) of bonds that each country sells:

the large (small) country offers 1 (s) units of sovereign bonds. Hence the aggregate bond supply is

1 + s. All bonds are zero coupon bonds.

The aggregate measure of investors, which is also the aggregate demand for bonds, is 1 + f ,

where f > 0 is a constant parameterizing the aggregate savings need. To save, we assume that

investors place market orders to purchase sovereign bonds. In particular, since purchases are via

market orders, the aggregate investor demand does not depend on the equilibrium price.1 Denote

by pi the equilibrium price of the bond issued by country i. Since there is no storage technology
1Market orders avoid the thorny theoretical issue of investors using the information aggregated by the market

clearing price to decide which country to invest in, a topic extensively studied in the literature of Rational Expectation
Equilibrium.
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available to investors, all savings of investors go to buy these sovereign bonds. This implies via the

market clearing condition that

s1p1 + s2p2 = p1 + sp2 = 1 + f.

Country i has fundamentals denoted θi, which can be interpreted as the country’s fiscal surplus.

The surplus is proportional to country size, i.e., for country i it is siθi. We assume that each country

has an existing debt obligation, assumed to be equal to the country size si.2 The country has total

resources consisting of fundamentals siθi and the proceeds from newly issued bonds sipi,

siθi + sipi.

We assume that a country defaults if and only if

siθi + sipi︸ ︷︷ ︸
total funds available

< si︸︷︷︸
debt obligations

.

which we rewrite as,

sipi < si(1− θi).

If the country defaults at date 0, there is zero recovery and any investors who purchased the

bonds of that country receive nothing.3 If the country does not default, then each investor in that

country receives one at date 1. For simplicity, there is no default possibility at date 1, e.g., this

assumption can be justified by a sufficiently high fundamental in period 1.

We note that our model of sovereign debt features a multiple equilibrium crisis, in the sense of
2One can think of the timing, as discussed in the text, as si is past debts that must be rolled over. This is a

rollover risk interpretation, where we take the past debt as given. Here is another interpretation. The bonds are
auctioned at date 0 with investors anticipating repayment at date 1. The date 0 proceeds of sipi are used by the
country in a manner that will generate siθi + sipi at date 1 which is then used to repay the auctioned debt of si.

3For the situation of positive recovery, see discussion in Remark3.
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Cole and Kehoe (2000). If investors conjecture that other investors will not invest in the debt of a

given country, then pi is low which means the country is more likely to default, which rationalizes

the conjecture that other investors will not invest in the debt of the country.

We follow the global games approach to link equilibrium selection to fundamentals. We assume

that there is a publicly observable world-level fundamental index θ lying in the interval (0, 1). Our

analysis focuses on a measure of relative strength between country 1 and country 2, which we denote

by δ̃. Specifically, conditional on the relative strength δ̃, the fundamentals of these two countries

satisfy

1− θ1 = (1− θ) exp
(
−δ̃
)

; (1)

1− θ2 = (1− θ) exp
(

+δ̃
)
. (2)

Recall that 1 − θi is the funding need of a country. Given δ̃, the higher the θ, the greater the

surplus of both countries and therefore the lower their funding need. And, given θ, the higher the

δ̃, the better are country 1 fundamentals relative to country 2, and therefore the lower is country

1’s relative funding need.4 Finally, the above specification implies that the funding need for each

country is always positive.

We assume that the relative strength of country 1, δ̃, follows a uniform distribution

δ̃ ∼ U
[
−δ, δ

]
(3)

where U
[
−δ, δ

]
denotes the uniform distribution over the interval

[
−δ, δ

]
. For much of the analysis

we set δ < ln 1+f
s(1−θ) , which ensures that for the worse case scenario, financing need of either country

exceeds the total savings 1 + f . This gives us the usual dominance regions when the fundamentals

take extreme values.

As we will use the global games technique to pin down the unique threshold strategy equilibrium,

4The scale of 1 − θ and exponential noises eδ̃ in (1) and (2) help in obtaining a simple close-form solution. The
Appendix A.1 considers an additive specification θi = θ + (−1)i δ̃ and solves the case for σ > 0; we show that the
main qualitative results hold in that setting.
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we assume that the country 1 relative strength δ̃ is not publicly observable. Instead, each investor

j ∈ [0, 1] receives a private signal

δj = δ̃ + εj ,

where εj ∼ U [−σ, σ] and εj are independent across all investors j ∈ [0, 1]. Following the global

games literature a la Morris and Shin (2003) we will focus on the limit case where noise σ → 0.

2.2 Equilibrium Characterization and Properties

We focus on symmetric threshold equilibria in this section. More specifically, we assume that all

investors adopt the same threshold strategy in which each investor purchases country 1 bonds if

and only if his private signal about country 1’s relative strength is above a certain threshold, i.e.

δj > δ∗; otherwise he purchases country 2 bonds. The corner portfolio decisions are for simplicity

and are consistent with risk neutrality.

Deriving the equilibrium threshold. In equilibrium, the marginal investor who receives the

threshold signal δj = δ∗ must be indifferent between investing his money in either country. Based

on this signal, the marginal investor forms belief about other investors’ signals and hence their

strategies. Denote by x the fraction of investors who receive signals that are above his own signal

δj = δ∗, and as implied by threshold strategies will invest in country 1. It is well-known (e.g., Morris

and Shin, 2003) that in the limit of diminishing noise σ → 0, the marginal investor forms a “diffuse”

view about other investors’ strategies, in that he assigns a uniform distribution for x ∼ U [0, 1].

Given that there is a fraction x of investors who purchase the bonds of country 1, the total funds

going to country 1 and 2 are (1 + f)x and (1 + f) (1− x), respectively. The resulting bond prices

are thus

p1 = (1 + f)x and p2 =
(1 + f)x

s
.

We now calculate the expected return from investing in bond i, Πi.
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Expected return from investing in country 1. Given x and its fundamental θ1, country 1

does not default if and only if

p1 − 1 + θ1 = (1 + f)x− 1 + θ1 ≥ 0⇒ x ≥ 1− θ1

1 + f
. (4)

This is intuitive: country 1 does not default only when there are sufficient investors who receive

favorable signals about country 1 and place their funds in country 1’s bonds accordingly. The

survival threshold 1−θ1
1+f is lower when the country 1 fundamental, θ1, is higher and when the total

funds available for savings, f , are higher.

Of course, the country 1 fundamental 1− θ1 = (1− θ) e−δ̃ in (1) is uncertain. We take the limit

as σ → 0, so that the signal is almost perfect and the threshold investor who receives a signal δ∗

will be almost certain that5

1− θ1 = (1− θ) e−δ∗ . (5)

Hence, in the limiting case of σ → 0, plugging (5) into (4) we find that the large country 1 survives

if and only if

x ≥ 1− θ1

1 + f
=

(1− θ) e−δ∗

1 + f
. (6)

Here, either higher average fundamentals θ or a higher threshold δ∗ make country 1 more likely to

not default.

Now we calculate the investors’ return by investing in country 1. Conditional on survival, the

realized return is
1

p1
=

1

(1 + f)x
;

while if default occurs the realized return is 0. From the point of view of the threshold investor with
5In equilibrium, θ1 depends on the realization of x, which is the fraction of investors with signals above δ∗. Given

that the signal noise εj is drawn from a uniform distribution over [−σ, σ], we have

x = Pr
(
δ̃ + εj > δ∗

)
=
δ̃ + σ − δ∗

2σ
⇒ δ̃ = δ∗ + (2x− 1)σ.

which implies that θ1 = θ + (1− θ)
(

1− e−δ
∗−(2x−1)σ

)
. Taking σ → 0 we get (5).
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signal δ∗, the chance that country 1 survives is simply the integral w.r.t. to the uniform density dx

from (1−θ)e−δ∗

1+f to 1:

Π1 =

ˆ 1

(1−θ)e−δ∗

1+f

1

(1 + f)x
dx =

1

1 + f

(
ln

1 + f

1− θ
+ δ∗

)
.

The higher the threshold δ∗, the greater the chance that country 1 survives, and hence the higher

the return by investing in country 1 bonds.

Expected return from investing in country 2. Denote the measure of investors that are

investing in country 2 by x′ ≡ 1 − x, which also follows a uniform distribution over [0, 1]. If the

investor instead purchases country 2’s bonds, he knows that country 2 does not default if and only

if

sp2 − s+ sθ2 = (1 + f)x′ − s+ sθ2 ≥ 0⇔ x′ ≥ s (1− θ2)

1 + f
, (7)

Country 2 survives if the fraction of investors investing in country 2, x′, is sufficiently high. The

threshold is lower if the country is smaller, fundamentals are better, and the total funds available

for savings are higher.

Similar to the argument in the previous section, in the limiting case of almost perfect signal

σ → 0, country 2 fundamental θ2 in (7) is almost certain from the perspective of the threshold

investor with signal δ∗ (recall (2)):

1− θ2 = (1− θ) eδ∗ . (8)

Plugging equation (8) into equation (7), we find that country 2 survives if and only if

x′ ≥ s (1− θ) eδ∗

1 + f
. (9)

Relative to (6), country size s plays a role. All else equal, the lower size s and the smaller country

2, the more likely that the country 2 survives.
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Given survival, the investors’ return of investing in country 2, conditional on x′, is

1

p2
=

s

(1 + f)x′
; (10)

while the return is zero if country 2 defaults. As a result, using (10), the expected return from

investing in country 2 is

Π2 =

ˆ 1

s(1−θ)eδ∗

1+f

s

(1 + f)x′
dx′.

=
1

1 + f
· s︸︷︷︸
payout

 − ln s︸ ︷︷ ︸
survival prob.

+ ln
1 + f

1− θ
− δ∗︸ ︷︷ ︸

country 2 fundamental


Here, “country 2 fundamental” essentially comes from turning off the size effect by setting s = 1.

Then, we see that this term is the same as for country 1.

We decompose the source of the country 2 return in three parts. The third part “country 2 fun-

damental” is the most transparent: for the threshold investor who observes aggregate fundamental

θ and receives a signal δ∗ about the relative strength between country 1 and country 2, ln 1+f
1−θ − δ

∗

represents the country 2 fundamental – that is, when setting s = 1, this is what remains, analogous

to country 1. The first part, “payout”, and the second part, “survival prob”, are affected by country

size. The first part s indicates that the total bond payment is of size s; all else equal, the smaller the

country size the lower the return, as can be seen in (10). The second part − ln s, which is decreasing

in s, captures the effect of a country’s size on its survival probability. This is because all else equal,

a smaller country is more likely to survive for a given amount of investment in its bonds, driving

up the total return, as can be seen in (9).

Expected return of investing in country 1 versus country 2. Figure 1 plots the return

to investing in each country as a function of x (x′) which is the measure of investors investing in

country 1 (country 2), from the perspective of the marginal investor. Consider the solid green curve
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Figure 1: Returns of the marginal investor when investing in country 1 (country 2) as a function
of x (x′). The return to investing in country 1 is in green solid line, while the return to investing in country
2 is in red dashed line. The figure assumes δ∗ = 0 so that the marginal investor believes that both countries
have the same fundamentals. The bonds issued by the large country 1 only pay when x > 1−θ

1+f while country

2’s bonds only pay when x′ > s(1−θ)
1+f . The return to country 1’s bonds falls to 1

1+f when x = 1, while for
country 2’s bonds the return falls more rapidly to s

1+f when x′ = 1.

first which is the return to investing in country 1. For x below the default threshold 1−θ
1+f , the return

is zero. This default threshold is relatively high, since country 1 is large and hence it needs a large

number of investors to buy bonds to ensure a successful auction. Across the threshold 1−θ
1+f , investor

actions are strategic complements – i.e., if a given investor knows that other investors are going to

invest in country 1, the investor wants to follow suit. Past the threshold, the return falls as the

face value of bonds is constant and investors’ demand simply bids up the price of the bonds. In

this region, investor actions are strategic substitutes. The marginal investor’s expected return from

investing in country 1 is the integral of shaded area beneath the green solid line.

The dashed red curve plots the return to investing in country 2, as a function of x′ which is the

measure of investors investing in country 2. The default threshold, which is s(1−θ)
1+f , is lower for this

country ( 1−θ
1+f ) than for country 1 given that country 2 only auctions off a small number of bonds.
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When δ∗ = 0, i.e., the marginal investor with signal δ∗ = 0 believes that both countries share the

same fundamentals, the return to investing in country 2 is 1
1−θ . This is the same as the threshold

return to investing in country 1, as shown in Figure 1. While country 2 has a lower default threshold

which implies a smaller strategic complementarity effect, past the threshold the return to investing

in country 2 falls off quickly. That is, the strategic substitutes effect is more significant for country 2

than country 1. This is because country 2 has a small bond issue and hence an increase in demand

for country 2 bonds increases the bond price (decreases return) more than the same increase in

demand for country 1 bonds. We see this most clearly at the boundary where x = x′ = 1, where

the return to investing in the large country 1 is 1
1+f , while the return to investing in country 2 is

s
1+f .

To sum up, because the large country auctions off more bonds, it needs more investors to

participate to ensure no-default. However, the very fact that the large country sells more bonds

makes the large country a deeper financial market that can offer a higher return on investment.

This tradeoff – size features more rollover risk but provides a more liquid savings vehicle – is at the

heart of our analysis.

Equilibrium threshold δ∗ The equilibrium threshold δ∗ is determined by the indifference con-

dition for the threshold investor between investing in these two countries, i.e.,

0 = Π1 −Π2 =
1

1 + f

(
ln

1 + f

1− θ
+ δ∗

)
− s

1 + f

(
− ln s+ ln

1 + f

1− θ
− δ∗

)
.

Solving for the equilibrium threshold signal δ∗ yields (recall that s ∈ (0, 1])

δ∗ = −1− s
1 + s︸ ︷︷ ︸

negative, liquidity

× z +
−s ln s

1 + s︸ ︷︷ ︸
positive, rollover risk

. (11)

where we define

z ≡ ln
1 + f

1− θ
> 0.
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Here, z measures aggregate funding conditions, which is greater if either more aggregate funds f

are available or there is a higher aggregate fundamental θ. The “savings glut” which many have

argued to characterize the world economy for the last decade is a case where z is high.

From (11) we see that there are two effects of size. The first term is negative (for s ∈ (0, 1))

and reflects the liquidity benefit that accrues to the larger country, making country 1 safer all else

equal. The second term is positive and reflects the rollover risk for country 1, whereby a larger size

makes country 1 less safe. The benefit term is modulated by the aggregate funding condition z. We

next discuss implications of our model based on the equation (11).

2.3 Model Implications

2.3.1 Probability of default and reserve asset

The equilibrium threshold δ∗ tells us about the ex-ante likelihood of default in country 1 and

country 2. That is, suppose there is an ex-ante stage before signals are drawn. Then the probability

that country 1 is safe is the probability that the country 1’s relative strength is above δ∗, i.e.

Pr
(
δ̃ > δ∗

)
. Thus the safety of country 1 is decreasing in the threshold δ∗, while the safety of

country 2 is increasing in δ∗. Also, in the benchmark case with equal country sizes (s = 1), we have

δ∗ = 0 so that it is equally likely that country 1 or country 2 is safe (recall that we assume that δ̃

is distributed around zero symmetrically).

The following proposition gives the properties of the equilibrium threshold δ∗ (s, z), as a function

of country 2’s relative size s and the aggregate funding condition z.

Proposition 1 We have the following results for the equilibrium threshold δ∗ (s, z).

1. The equilibrium threshold δ∗ (s, z) is decreasing in the aggregate funding conditions z = ln 1+f
1−θ ,

i.e., ∂
∂z δ
∗ (s, z) < 0. Hence, the probability that country 1’s bonds become the reserve asset is

higher if the aggregate fundamental θ or aggregate saving f is higher.

2. The equilibrium threshold δ∗ (s, z) ≤ 0 for all s ∈ (0, 1], if and only if z ≥ 1. Hence, when

the aggregate funding z ≥ 1, the bonds issued by the larger country 1 are more likely to be the
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Figure 2: Equilibrium threshold δ∗ as a function of country 2 size s. The left panel is for the case of
strong aggregate funding conditions with z = 1, and the right panel is for the case of low aggregate funding
conditions with z = 0.2.

reserve asset than those issued by the smaller country 2.

3. When s→ 0 the equilibrium threshold δ∗ (s, z) approaches its minimum, i.e., lims→0 δ
∗ (s, z) =

infs∈(0,1] δ
∗ (s, z) = −z < 0. This implies that all else equal, country 1 has the highest likelihood

of survival when country 2 is smallest.

Proof. Result (1.) follows because of ∂
∂z δ
∗ (s, z) = −1−s

1+s < 0, and Pr
(
δ̃ > δ∗

)
is decreasing in z.

To show result (2.), note that when z = 1 we have δ∗ (s, z = 1) = s−s ln s−1
1+s < 0 for s ∈ (0, 1]. This

inequality can be shown by observing 1) [s− s ln s− 1]
′
> 0 and 2) [s− s ln s− 1]s=1 = 0. Result

(3.) holds because

δ∗ (s, z) = −1− s
1 + s

z +
−s ln s

1 + s
> −1− s

1 + s
z > −z,

where the last inequality is due to −1−s
1+sz being increasing in s for z > 0.

We illustrate these effects in Figure 2. The left panel of Figure 2 plots δ∗ as a function of s for

the case of z = 1, which corresponds to strong aggregate funding conditions with abundant savings

and/or good fundamentals. In this case, the equilibrium threshold δ∗ (s) is always negative, and is

monotonically increasing in the small country size s. For small s close to zero, the large country is

safest, and this probability falls towards 0.5 as s rises towards 1. The probability is highest when

s = 0, because in this case country 2 does not exist as an investment alternative. Then because

all investors have no choice but to invest in country 1, the bonds issued by country 1 is always the
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reserve asset, minimizing its default probability. If we assume that the aggregate savings 1 + f are

enough to cover country 1’s financing shortfall 1 − θ1

(
δ̃
)
even for the worst realization of δ̃ = −δ

then the Pr
(
δ̃ > δ∗

)
will equal one in this case. This s = 0 case offers one perspective on why

Japan has been able to sustain a large debt without suffering a rollover crisis. Since many of the

investors in Japan are so heavily invested in Japanese government, eschewing foreign alternative

investments, Japan’s debt is safe.

The right panel in Figure 2 plots δ∗ for a case of weak aggregate funding conditions (z = 0.2),

with insufficient savings and/or low fundamentals. Consistent with the first result in Proposition 1

we see that in this case the large country can be at a disadvantage. For medium levels of s (around

0.4), investors are concerned that there will not be enough demand for the large country bonds,

exposing the large country to rollover risk. As a result, investors are more likely to coordinate on

the small country’s debt as the reserve asset, making the large country relatively more likely to

default. For small s, the size disadvantage of the small country becomes a concern: the probability

of the large country being safe rises as s goes towards zero (the third result in Proposition 1). For s

large, we are back in the symmetric case and the probability of safety goes towards half. Comparing

the right panel with z = 1 to the left panel with z = 0.2 highlights that the large country’s debt size

is a clear advantage only when the aggregate funding conditions are strong; as the pool of savings

shrink, and in equilibrium interest rates rise, the large debt size triggers rollover risk fears so that

investors coordinate on the small country as the reserve asset.

2.3.2 Relative fundamentals

Our model emphasizes relative fundamentals as being a central ingredient in debt valuation. To

clarify this point, consider a standard model without coordination elements and without the reserve

asset saving need. In particular, suppose that the world interest rate is R∗ and consider any two

countries in the world with surpluses given by θ1 and θ2. Suppose that investors purchase these

countries’ bonds for pisi and receive repayment of si min (θi, 1). Then,
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p1 =
E[min (θ1, 1)]

1 +R∗
and p2 =

E[min (θ2, 1)]

1 +R∗
,

so that bond prices depend on fundamentals, but not particularly on relative fundamentals θ1− θ2.

In contrast, in our model when the country 1’s relative fundamentals are high δ̃ > δ∗, bonds issued

by country 1 attract all the savings so that

p1 = 1 + f and p2 = 0. (12)

Similarly, if the country 1’s relative fundamentals are low δ̃ < δ∗, investors only invest in bonds

issued by country 2 so that

p1 = 0 and p2 = 1 + f. (13)

Valuation in our model becomes sensitive to relative fundamentals, as investors are endogenously

coordinating to buy bonds issued by relatively stronger country.

The importance of relative fundamentals helps us to understand why, despite deteriorating US

fiscal conditions, US Treasury bond prices have continued to be high: In short, all countries’ fiscal

conditions have deteriorated along with the US, so that US debt has maintained and perhaps

strengthened its reserve asset status. The same logic can be used to understand the value of the

German Bund (as a reserve asset within Europe) despite deteriorating German fiscal conditions.

The Bund has retained/enhanced its value because of the deteriorating general European fiscal

conditions.

Remark 2 We have analyzed a case where θ reflects the overall fundamentals of the global economy,

and the relative fundamental δ̃ is “almost perfectly” observable by investors, thus discussing safety

of the two countries in terms of the realization of δ̃. In practice, it common knowledge that US or

Germany have stronger fundamentals than many other countries. We can easily modify our model

to capture this effect, by specifying the surpluses of countries to be
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1− θ1 = (1− θ) exp
(
−δ̃ −∆

)
, and 1− θ2 = (1− θ) exp

(
+δ̃ + ∆

)
,

where ∆ is a component of the relative fundamental that is common knowledge. The equilibrium

threshold now becomes

δ∗ = −1− s
1 + s

z +
−s ln s

1 + s
−∆.

Consistent with intuition, common knowledge that a country has better fundamentals makes the

country’s debt more likely to be the reserve asset.

Remark 3 Admittedly, the zero valuation of the non-reserve asset in equations (13) and (12) is

unrealistic. The zero is because we assume that the bond recovery in default is zero. If we introduce

a small but positive recovery in default that is increasing in the country i’s surplus, say βθi with

β > 0, then even the non-reserve asset would carry a positive value. In equilibrium, similar to the

case of β = 0, the reserve asset will carry an extra value because of its higher relative fundamentals.

One could carry out a formal analysis for this case; the only caveat is that we need to allow for

strategies that are non-monotone in the investor’s signal to derive the equilibrium, similar to the

one discussed in Section 2.5.

2.3.3 Size and aggregate funding conditions

Our model highlights the importance of debt size in determining reserve asset status, and its in-

teractions with the aggregate funding conditions. In the high savings regime, which the literature

on the global savings glut has argued to be true of the world in recent history (see, e.g., Bernanke,

2005, Caballero, Farhi, Gourinchas, 2007, and Caballero and Krishnamurthy, 2009), higher debt size

increases reserve asset status. The US is the world reserve asset in part because it has maintained

large debt issues that can accommodate the world’s reserve asset demands.

These predictions of the model also offer some insight into when the US Treasury bond may be
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displaced as reserve asset. If the world continues in the high savings regime, the US will only be

displaced if another country can offer a large debt size and/or good relative fundamentals. This

seems unlikely in the foreseeable future. On the other hand, if the world switches to the low savings

regime, it is possible that another country with a smaller debt size and good fundamentals, such as

the German Bund, will take on the reserve asset role.

The size effect of our model also identifies a novel contagion channel. In the high savings regime,

increasing the debt size of the large debt country reduces δ∗ and thus increases the probability of

default and expected bond yield of the smaller country.6 We can see this from Figure 2, left panel

with z = 1. Suppose that we decrease the relative size of country 2, s, away from 1; it is equivalent to

increasing the size of the large country’s debt. We see that the default probability of small country,

which is just one minus the default probability of the large country, goes up; this comparative

static result will be derived formally in equation (15) later. Linking this observation to data, from

2007Q4 to 2009Q4, the supply of US Treasury bonds increased by $2.7 trillion (the money stock

increased another $1.3 trillion). Our model suggests that this increase should have increased default

probabilities of other country’s debts. That is, our model suggests a causal link from the increase

in US Treasury bond supply/Fed QE and the eruption of the European sovereign debt crisis in

2010. Intuitively, the expansion of US debt supply created safe “parking spots” for funds that may

otherwise have been invested in European sovereign debt.

The sovereign debt contagion channel is a novel prediction for which there is no systematic

empirical evidence. However, there is a closely related contagion channel for which there is evidence.

Let us reinterpret the small country debt of the model as the short-term debt issued by a private

bank that can be used to store value, but is subject to a coordination/rollover problem (i.e., bank

runs). Then our model suggests that as the supply of country 1 sovereign debt rises, the safety of

the private bank debt should fall. Krishnamurthy and Vissing-Jorgensen (2013) provide evidence

of this sort of crowding out, documenting a positive relation between the supply of US government
6The yield on the large country debt is ambiguous because the direct effect of increasing debt size, for fixed f ,

would cause yields to rise, but since the probability of default falls, there is a countervailing effect that reduces bond
yields.
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debt and the yields on private short-term bank debt.7

2.4 Switzerland, Denmark and gold

There are no savings vehicles in the model other than the countries’ sovereign debts. That is, all

savings needs are satisfied by sovereign debt that is subject to default risk. There is no “gold” in the

model, nor are other companies, banks or other governments that are able to honor commitments

to repay debts. In practice such assets do exist. Switzerland and Denmark have been prominent in

the news recently because of safe-haven flows into these countries, perhaps because these countries

can commit to repay their relatively small outstanding supply of bonds. It is easy to accommodate

this factor into the model.

Suppose that there exists a quantity of full-commitment sovereign bonds. The supply of these

bonds is s, that is, these bonds pay in total s at the final date. Investors invest f − f̂ in these

bonds, with a return of s

f−f̂
. Let us focus on the symmetric case with s = 1 and δ∗ = 0. Investing

in sovereign bonds of country 1 or country 2 depending on the signal δ̃ gives a return of 1
1+f̂

as

the small noise assumption implies that investors are perfectly able to pick the “winner”. Thus in

equilibrium it must be that the full-commitment bond also offers a return of 1
1+f̂

, which then implies

that
s

f − f̂
=

1

1 + f̂
⇒ f̂ =

f − s
1 + s

.

We assume that the supply of full-commitment bonds s satisfies s < f so that f̂ > 0. We then can

solve our model following exactly the same steps, only with f redefined as f̂ . Thus, the model can

be interpreted as one where alternative savings vehicles do exist, but their supplies are such that

substantially most of the world’s reserve asset needs must be satisfied by debt that is subject to
7The model is suggestive of further links between government debt and private bank debt. We would expect

that the yields on non-government-backed private bank debt (e.g., large time deposits) would especially rise relative
to government-backed bank debt (e.g., checking deposits). Government-backed bank debt would rise in safety with
increases in US government debt, if such increases lead to an increase in the reserve status of US government debt.
Plausibly, banks would respond by increasing the supply of government-backed debt relative to non-government-
backed debt. Krishnamurthy and Vissing-Jorgensen (2013) confirm this prediction in the data. The model also
suggests a motive for increasing the backing of bank deposits during periods of rising US government debt, to avoid
a contraction of the banking system. To investigate these issues thoroughly our model needs to be extended to
accommodate a banking system with many banks, which we intend to do in future work.
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rollover risk.8

Denmark and Switzerland have recently restricted their supplies of safe bonds. The result has

been that the prices of their bonds have risen, with interest rates in both countries falling below

zero. We can also see this in our model. Reducing s causes f̂ to rise, and hence the price of safe

bonds rises.

2.5 Non-monotone Strategies and Joint Safety Equilibria

We have restricted the agents’ strategy space to threshold strategies that take values at the corner,

i.e., invest in either country 1 or country 2. We conjecture, but do not have a proof yet, that the

equilibrium with threshold-corner strategies constructed above will survive as the unique symmet-

ric equilibrium if we expand the strategy space to monotone strategies. Specifically, denote the

probability (or fraction) of investment in country 1 by φ (δi) ∈ [0, 1]; the agent’s strategy is called

monotone if φ (δi) is monotonically increasing in his signal δi of the country 1’s fundamental.

However, we do know that once we allow agents to choose among non-monotone strategies,

then for a higher z, it is possible to construct equilibria where both countries are safe given certain

realizations of the relative fundamental signal δ̃ (while one country fails if δ̃ is too low or too high).

We construct this non-monotone equilibrium (using “oscillating strategies”) in Appendix A.2.

Under oscillating strategies agents invest in country 2 for low δi, then invest in country 1 given

better signals, but go back to investing in country 2 for even higher signals. This strategy profile is

driven by the strategic substitutes effect in our model, as it serves to equalize returns from investing

when both countries are safe. Indeed, in the constructed equilibria with non-monotone strategies,

non-monotonicity occurs only in the region where both countries are safe given the realization of

fundamental δ̃ and equilibrium investment strategies. In this region, knowing that both countries
8The total government debt of Switzerland in early 2015 was $127bn. Central bank liabilities were nearer $500bn,

having grown significantly with the Europe crisis and the Swiss decision to maintain their exchange rate vis-a-vis the
Euro. Total government debt in Denmark was $155bn. Total central bank holdings of gold are approximately $1.2tn,
although this amount is largely backing for government liabilities, rather than privately investable gold. It is difficult
to get a clear sense of the quantity of gold held privately as an investment, but it is likely not larger than the central
bank holdings of $1.2tn. The most liquid gold investment are gold ETFs. Total capitalization of US gold ETFs was
$39bn in early 2015. As a comparison, the total supply of Treasury bonds plus central bank liabilities (reserves, cash,
repos) in early 2015 was over $16tn.
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will be safe, investors who are indifferent oscillate between investing in country 1 and country 2

depending on their private signal realizations. Note that the fundamental δ̃ is no longer payoff

relevant for safe countries (recall that without default the payoff of bonds is capped at one). Hence,

the private signal is no longer payoff relevant, and this oscillation can be viewed as a randomization

scheme to equalize returns. This is because every agent (say with a signal δi) in this region knows

that other agents whose private signals span an interval of 2σ are investing in both countries in the

right proportion, leading to equalized returns in both countries.

Though seemingly exotic, it is interesting that equilibria with non-monotone strategies lead to

the economically plausible situation that when funding conditions in the world are plentiful (high

z), both countries will be safe and there is a joint reserve asset. This possibility cannot emerge in

the case we have analyzed where agents play monotone threshold strategies.

Importantly, we stress that all key qualitative properties in Proposition 1 derived under the

threshold strategy equilibria are robust to considering the non-monotone strategy equilibria, with

small modifications. The next proposition summarizes the results, which are parallel to Proposition

1.

Proposition 4 We have the following results for the equilibrium with oscillating strategies.

1. The survival probability of the larger country 1 (hence the probability of country 1 bonds being

the reserve asset) increases with the aggregate funding conditions z. However, a higher z also

increases the survival probability of the smaller country 2.

2. For sufficiently favorable aggregate funding conditions z ≥ z where z is derived in the appendix,

the equilibrium with oscillating strategies exists. In this class of equilibria, the bonds issued by

the larger country 1 are more likely to be the reserve asset than the bonds issued by the smaller

country 2.

3. All else equal, the larger country 1 has the highest likelihood of survival when the size of country

2 goes to zero, i.e. s→ 0.
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Regarding the first result, recall that in the monotone threshold equilibria studied in the main

text, a higher z increases the survival probability of the larger country 1 and at the same time

decreases the survival probability of the smaller country 2. This is because only one country sur-

vives in the monotone threshold equilibria. In contrast, in the oscillating non-monotone strategy

equilibria, both counties may survive, and thus improved aggregate funding conditions makes both

countries safer. The second result of Proposition 4 reinforces that in Proposition 1, i.e., under

sufficiently favorable aggregate funding conditions so that the non-monotone strategy equilibrium

exists, the bonds of the larger country are more likely to be the reserve asset than the bonds of the

smaller country. The third result is identical to that of Proposition 1.

3 Endogenous Reserve Asset Size

The preceding analysis suggest that there are costs and benefits of debt size. We now investigate

this issue formally, considering incentives to alter debt size.

3.1 Incentives and Costs of Altering Debt Size

We suppose that the countries have natural debt sizes of s∗1 and s∗2, which we will think of as

determined by local economic and fiscal conditions. For example, countries with a higher GDP will

naturally have a larger stock of debt outstanding. A country can choose to alter the size of its debt,

but incurs some adjustment cost. For example, if country 1 increases its debt size to S1 it must

increase the surplus θ proportionately, via increase in the tax base, to support the larger debt issue.

We assume that increasing the debt size to Si raises the surplus from θi to θi
Si
s∗i

. Suppose

that countries face an adjustment cost c(Si − s∗i ) which is increasing and convex in Si − s∗i , with

c(0) = 0, c′(0) = 0. Then country 1 chooses S1 to maximize (focusing again on monotone threshold

strategies),

−δ∗ (S1, S2)︸ ︷︷ ︸
benefit of reserve asset status

− c(S1 − s∗1)︸ ︷︷ ︸
adjustment cost

. (14)
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This objective can be understood as follows. The second term is the cost of adjustment. The

first term captures the benefit of adjustment, i.e., the country is able to increase the probability of

placing its debt and avoid default. Suppose that there is a constant loss associated with default, then

the benefit is proportional to the survival probability, Pr
(
δ̃ > δ∗

)
. Given our uniform distribution

assumption of δ̃, Pr
(
δ̃ > δ∗

)
is linear in −δ∗ (S1, S2). Thus, equation (14) is country 1’s objective

function with an appropriate renormalization of the cost function. Likewise for country 2, the

objective is

δ∗ (S1, S2)− c(S2 − s∗2)

where we note that the probability of placing country 2’s debt is increasing in δ∗ (S1, S2) (and linear

in δ∗ (S1, S2) given the uniform distribution of δ̃).

We solve for δ∗(S1, S2) following the same analysis as in Section 2.2. The marginal investor with

signal δ∗ receives the following return from investing in country 1:

Π1 =

ˆ 1

S1(1−θ)e−δ
∗

1+f

S1

(1 + f)x
dx =

S1

1 + f

(
− lnS1 + ln

1 + f

1− θ
+ δ∗

)
,

while the return from investing in country 2 is

Π2 =

ˆ 1+f−S2(1−θ)e
δ∗

1+f

0

S2

(1 + f) (1− x)
dx =

S2

1 + f

(
− lnS2 + ln

1 + f

1− θ
− δ∗

)
.

Setting Π1 = Π2 and solving, we find that the equilibrium threshold as a function of sizes of the

two countries is

δ∗ (S1, S2) =
S2 − S1

S1 + S2
z +

S1 lnS1 − S2 lnS2

S1 + S2
. (15)

where again z ≡ ln 1+f
1−θ measures the strength of savings/fundamentals. When S1 = 1, we recover

the equilibrium threshold for our base model in (11). When S1 = S2, the threshold is zero regardless
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of z, and each country is equally likely to be the reserve asset.

Next consider the benefit of increasing country size. Introduce the function h(S1, S2; z), which

is defined as the marginal impact of S1 on δ∗ (S1, S2):

h(S1, S2; z) ≡ ∂δ∗ (S1, S2)

∂S1
=

1

(S1 + S2)2
[S1 + S2(lnS1 + lnS2 + 1− 2z)] (16)

Due to symmetry, the (negative) derivative of δ∗ with respect to S2 is

−∂δ
∗ (S1, S2)

∂S2
= h(S2, S1; z) =

1

(S1 + S2)2
[S2 + S1(lnS1 + lnS2 + 1− 2z)] .

As a result, the first order conditions for endogenous debt sizes satisfy,

h(S1, S2; z) = c′(S1 − s∗1) and, h(S2, S1; z) = c′(S2 − s∗2).

Next we analyze the property of h(S1 = s∗1, S2 = s∗2; z).

3.2 Equilibrium Characterization and “Phase Diagram”

We illustrate the solution in Figure 3. We first note that if there is no cost of changing size, then

the equilibrium solves

h(S1, S2; z) = h(S2, S1; z) = 0.

The equilibrium is symmetric. Define the solution in this case as S(z) = S1 = S2, and solving we

find that:

1 + lnS(z) = z ⇒ S(z) = ez−1.

On Figure 3 we plot the phase diagram where S1 = s∗1 and S2 = s∗2 are below S(z). The

solid black curve corresponds to the set of points where h(S1, S2; z) = 0; that is, these are points

S1 and S2 where changing S1 has no effect on δ∗. The dashed red curve corresponds to the set

26



Figure 3: Diagram of incentives to alter size of debt

of points where h(S2, S1; z) = 0; that is, these are points where changing S2 has no effect on δ∗.

These two curves are symmetric around the 45-degree line and cross at the point
(
S(z), S(z)

)
. The

following lemma shows when country sizes are relatively small with max (S1, S2) < S(z), the locus

of h(S1, S2; z) = 0, which is the black curve in the figure, has S1 > S2. This implies that the black

curve lies below the 45-degree line. The result is reversed for the red curve which is the locus of

−∂δ∗(S1,S2)
∂S2

= h(S2, S1; z) = 0 and is symmetric around the 45-degree line.

Lemma 1 When max (S1, S2) < S(z), the locus of h(S1, S2; z) = 0 has S1 > S2..

Proof. We show that for h(S1 = S2 + ε, S2; z) = 0 to hold we must have ε > 0. Using (16) we have:

h(S1 = S2 + ε, S2; z) = ε+ S2(ln(S2 + ε)− lnS2) + 2S2(1 + lnS2 − z) = 0.

When S2 < S(z), the last term 2S2(1 + lnS2 − z) on the LHS is negative. To have h = 0, we must

have that ε > 0, since conditional on S2 the sum of the first two terms is zero when ε = 0 and

increasing in ε. Q.E.D.

Intuitively, for any given level of S2, starting from the 45-degree line country 1 has a strictly
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positive incentive to expand its debt size to enhance its reserve asset status, since c′ (0) = 0. This

is due to the size benefit, illustrated in the left panel of Figure 2. This explains why along the solid

black curve with zero expansion incentive we must have S1 > S2. However, country 1 does not want

its debts to become too large, because as illustrated by the right panel of Figure 2, becoming too

large triggers rollover risk fears that may lead investors to coordinate on the smaller country’s debt

as the reserve asset. The black curve with h(S1, S2; z) = 0 balances these two effects.

Now suppose that the initial country sizes (s∗1, s
∗
2) lies to the right of the black curve, i.e.,

h(S1 = s∗1, S2 = s∗2; z) > 0. Then in equilibrium country 1 will choose an S1 < s∗1 (exactly how

much less depends on the cost function). Likewise, for any S1 if s∗2 is above the red curve, then

country 2 will choose an S2 < s∗2. For points inside the solid black and dashed red curves, both

countries want to expand. The arrows on Figure 3 indicate the direction, as in a phase diagram, in

which countries will change debt size given a natural size of (s∗1, s
∗
2).

There are three regions of interest in Figure 3. Region A (“RAT RACE”) corresponds to a

case where countries’ debts are similar in size – so a roughly symmetric case. We see that in this

case both countries will increase the size of their debts. This is driven by the reserve asset effect:

there is an externality whereby the larger country has a better reserve asset position, and countries

compete to become the reserve asset by increasing their debt sizes. Of course, this competition to

gain reserve asset status is ultimately self-defeating. Take the fully symmetric case where s∗1 = s∗2

and thus δ∗ = 0 in equilibrium. The Nash equilibrium results in countries increasing debt sizes

beyond their natural sizes in a rat race to become the reserve asset, while both would be better off

and save adjustment costs if they coordinate not to expand. Region B and B′ (“TOP DOG”) are

cases with asymmetric country sizes. Take region B (as B′ follows the same logic). Here country

1 is large and country 2 is relatively small. In this case, country 1 is the top dog and not worried

about losing its reserve asset status, and is primarily concerned about rollover risk. In this region

country 1 chooses to contract its debt size, while country 2 expands, hoping to gain some reserve

status.9

9For natural sizes beyond S(z), i.e. max (S1, S2) > S(z), there is a region (not shown in Figure 3) outside A that
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3.3 Funding Conditions and Incentives for Expansion

By using the fact that ∂h(·,·;z)
∂z < 0 in (16), we can show that the region A—which is the area inside

the solid black curve and the dashed green curve—expands unambiguously as the aggregate funding

condition z rises. This result has interesting implications, as it suggests that countries, once facing

an environment with better aggregate funding conditions, are drawn into the rate race where they

compete to offer the reserve asset.

This comparative static offers a unique perspective on the expansion of relatively safe debt

supplies in the period preceding the 2007 financial crisis. In the US, the government agencies,

Fannie Mae and Freddie Mac, initiated a program (“Benchmark Notes”) in 1998 whose purpose was

to offer debt that could compete with US Treasury bonds as a large and liquid savings vehicle. Of

course, the expansion of such agency debt stocks ultimately resulted in the bailouts of Fannie Mae

and Freddie Mac by the US government, suggesting that welfare would have been improved without

these programs, or if the US Treasury had coordinated the debt sizes of the Agencies along with

that of the rest of the federal government. In Europe, the expansion of sovereign debt after the

formation of the Euro can similarly be seen as a rat race to serve as the reserve asset within Europe.

This rat race has also ended badly.

The figure offers a further prediction which may be comforting in today’s world of high US

government debt. Suppose that the world economy was in region A prior to the financial crisis, but

has since transitioned to region B, where US government debt is the top dog. This transition is in

keeping with the fact that the amount of US Treasury competitors has fallen since the crisis. The

model suggests that the US then has an incentive to shrink its debt.

4 Coordination and Security Design

There can be gains from coordination. The results of the last section suggest that countries may be

better off by coordinating to limit the size of their debt in some circumstances. In this section, we

covers the 45-degree line, in which both countries have incentives to shrink. There, the debt sizes are relative large
compared to the aggregate funding conditions, and the rollover risk concerns drive both countries to issue less debt.
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extend this analysis and characterize the benefits to coordinating through security design. We are

motivated by the Eurobond proposals that have been floated over the last few years (see Claessens,

Mody and Vallee, 2012, for a review of various proposals). A shared feature of the many proposals

is to create a common Europe-wide reserve asset. Each country receives proceeds from the issuance

of the “common bond” which is meant to serve as the reserve asset, in addition to proceeds from

the sale of an individual country-specific bond. By issuing a common Euro-wide reserve asset,

all countries benefit from investors’ need for a reserve asset, as opposed to just the one country

(Germany) which is the de-facto reserve asset in the absence of a coordinated security design. Our

model, in which the determination of the reserve asset is endogenous, seems well-suited to analyze

these issues formally. We are unaware of other similar models or formal analysis of this issue.

We return to the model with exogenous sizes, fixing s1 = 1 and s2 = s. The two countries issue

a common bond of size α (1 + s) as well as individual country bonds of size (1− α)si. Suppose the

equilibrium price for the common bonds is pc. Let si
s1+s2

be the share of proceeds from the common

bond issue that flows to country i, so that country i receives

si
1 + s

pcα (1 + s) = siαpc

from the common bond auction. Country i issues individual bonds of size (1− α) si at endogenous

price pi so that total proceeds to country i are,

si(αpc + (1− α)pi).

We model the bond auction as a two-stage game. In the first-stage, countries auction the

common bonds and investors pay a total of f − f̂ to purchase these bonds, so that in equilibrium,

f − f̂ = (1 + s)αpc (17)

In the second stage, the investors use their remaining funds of 1 + f̂ to purchase individual country
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bonds. After both auctions, each country makes its default decision.

Country i avoids defaults whenever,

si(αpc + (1− α)pi) + siθi > si, (18)

which is a straightforward extension of the earlier default condition to include the common bond

proceeds. We assume that default affects all of the country’s obligations. The country defaults

fully on its individual bonds and defaults on its portion of common bonds, so that investors in

common bonds receive repayments only from any countries that do not default. We are currently

investigating alternative structuring where common bonds are senior to individual country bonds,

but the results are too preliminary to include in this draft.

We conjecture and verify the following solution.

Proposition 5 There are two equilibria, a “maximum joint safety” equilibrium and a “minimum

joint safety” equilibrium. In both equilibria, the determination of the reserve asset depends on α as

follows:

1. α ∈ [0, α]: There exists a threshold δ∗ (α). If δ̃ > δ∗ (α), then country 1 is the reserve asset,

while if δ̃ < δ∗(α) country 2 is the safe asset.

2. α ∈ [α, 1]: Both countries satisfy (18) for δ̃ ∈ [δL(α), δH(α)] so that both debts are safe, whereas

for δ̃ outside this interval, one country violates (18) and defaults and the other country’s debt

is the reserve asset.

Furthermore, the two equilibria are defined as follows:

1. In the “maximum joint safety” equilibrium, α = α0 which solves δL(α0)=δH(α0);

2. In the “minimum joint safety” equilibrium, α = α1 which solves δ∗(α1) = 0,

with α1 > α0.

31



Figure 4 illustrates the statement of the proposition for a case of s = 0.5 (left panel) and s = 0.25

(right panel), both for z = 1. Focusing on the left panel, the black solid line plots δ∗ for α ∈ [0, α1].

We have that δ∗ is less than zero for this case because z = 1 corresponding to the high savings cases

we have illustrated in earlier graphs. At α = α1 we have that δ∗ equals zero. The dashed-lines in

the figure indicate the upper/lower bounds of the realizations of δ̃ in order for the economy to be in

the joint safety region where both countries’ debts are reserve assets. We see that this joint safety

region begins at α = α0, and expands as a function of α. Intuitively, increasing α shares some of

the safety benefits of the large country with the small country and hence allows the small country

to be safer given realizations of δ̃. The two possible equilibria overlap between α0 and α1.

In the right panel we consider a case of s = 0.25. We note that the joint safety is a possibility

even for α = 0, provided that the δ̃ realizations are sufficiently negative (i.e., country 2 is realized

to have sufficiently strong fundamentals than country 1). It is still the case that increasing α makes

country 2 safer, expanding the joint safety region and increasing δ∗ towards zero. Increasing α

makes country 1 less safe in the minimum joint safety region, while it makes country 1 more safe

(i.e. δL falls) in the maximum joint safety region.

The main result that emerges from our analysis in this section, and which is evident in the figure,

is that increases in α only create Pareto gains (when gains are thought of in terms of increasing

country safety) when α > α1. In this case, increases in α raise the safety of both country 1 and

country 2. For α < α1 and in the minimum safety equilibrium, increases in α reduce safety of

one country while increasing safety of the other country. We illustrate this result further when we

discuss welfare.

4.1 Case 1: Minimum joint safety

We first solve for an equilibrium where only one country is safe. This equilibrium is a small variant

on the equilibrium we have derived so far involving threshold strategies. We will find the largest α

so that this threshold equilibrium can exist, which then defines α = α1.

We work backwards from the second stage. In the second stage, investors have 1+ f̂ to purchase
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Figure 4: δ∗, δH , δL for the case of s = 0.5 and s = 0.25, as a function of α

individual country bonds. Consider the marginal investor with signal δ∗ who considers that a

fraction x of investors have signals exceeding his. Country 1 does not default if,

αpc + (1− α)p1 + θ1 > 1

Since, f − f̂ = (1 + s)αpc by (17)and (1− α)p1 = x(1 + f̂), we rewrite this condition as,

f − f̂
(1 + s)

+ x(1 + f̂) + θ1 > 1⇒ x ≥
1− θ1 − 1

1+s(f − f̂)

1 + f̂

We again take the limit as σ → 0 and set (1 − θ1) = (1 − θ)e−δ∗ . Additionally, noting that the

return to the marginal investor in investing in country 1 is 1−α
(1+f̂)x

if the country does not default

(and zero recovery in default), we integrate over returns when the country does not default to find,

Π1 =
1− α
1 + f̂

ln

 1 + f̂

(1− θ) e−δ∗ − 1
1+s

(
f − f̂

)
 .

When f̂ = 0, this equation is equal to the previously derived profit equation.

We repeat the same steps for the profits to investing in country 2 and find,

Π2 =
s (1− α)

1 + f̂
ln

 1 + f̂

s (1− θ) eδ∗ − s
1+s

(
f − f̂

)
 .
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We solve for the threshold in the same way as before:

Π1 = Π2 ⇒ δ∗(f̂ , α) (19)

Next we consider the stage 1 game and derive f̂ . Under the assumed equilibrium where only

one country becomes the reserve asset and does not default, the return to investing in the common

bond is,

1

f − f̂

[ˆ δ∗

−δ̄
αs
dδ

2δ̄
+

ˆ δ̄

δ∗
α
dδ

2δ̄

]
.

The denominator in the front is the total amount of funds invested in the common bond, while

the term in parentheses is the repayment on the common bonds in the cases of repayment only by

country 2 and repayment only by country 1. The returns to keeping one dollar aside and investing

in individual country bonds is,

1

1 + f̂

[ˆ δ∗

−δ̄
(1− α)s

dδ

2δ̄
+

ˆ δ̄

δ∗
(1− α)

dδ

2δ̄

]
.

Again, the denominator in the front is the total amount of funds invested in individual bonds, while

the term in parentheses is the repayment on individual bonds in the cases of repayment only by

country 2 and repayment only by country 1. Note the similarity between these last two expressions.

The similarity arises because along the nodes of country 2 defaulting or country 1 defaulting, the

payoffs, state-by-state, to common bonds and individual bonds are αsi and (1 − α)si. Since the

return from investing in common bonds in stage one of the game and waiting and investing in

individual bonds in stage 2 must be equal, we have that:

α

f − f̂
=

1− α
1 + f̂

which we can solve for f̂ to give,
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f − f̂ = α (1 + f) (20)

so that

pc =
f − f̂

α (1 + s)
=

1 + f

1 + s
. (21)

We combine equation (19) and (20) to solve for δ∗(α).

We next consider the bound α1 We have assumed that only one country becomes the reserve

asset, while the other country does not default. However, inspecting (18) we see that as α rises,

since pc > 0, it may be that even a country that receives zero on its individual bonds will be able

to avoid default. That is, the proceeds from the common bond, which is the reserve asset, provides

a default cushion for the weaker country. In this case, it is possible that neither country defaults

on its bonds, invalidating our equilibrium assumption that one country defaults for sure.

For each realization of δ, define

θdef (δ) ≡ min [θ1 (δ) , θ2 (δ)]

as the fundamental of the country with the worse realization of fundamentals. Take the best value

of this worse realization of fundamentals, which occurs when δ = δ∗, since even at a slightly higher

higher value than this realization one country narrowly beats the other country to become the

reserve asset. Now we have constructed an equilibrium in which the beaten country defaults. But

is this actually an equilibrium? For this realization, the beaten country defaults if,

θdef (δ∗) + αpc < 1 ⇐⇒ α
1 + f

1 + s
< 1− θdef (δ∗) ⇐⇒ α ≤ 1 + s

1 + f
[1− θdef (δ∗ (α))] .

Then α1 solves the equation,

α1 =
1 + s

1 + f
[1− θdef (δ∗ (α1))]

Let us investigate the slope δ∗α (0). We see from the graphs that there are situations in which
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δ∗α (0) < 0 so that the large country gains when a small fraction of common bonds are issued. The

intuition is the following. Equalizing returns, and realizing that f̂ = f − α (1 + f), we see that

increasing α decreases the available funding for individual bonds. When we look at the returns, we

are comparing

ln

 1 + f̂

(1− θ) e−δ∗ − 1
1+s

(
f − f̂

)
 vs s ln

 1 + f̂

s (1− θ) eδ∗ − s
1+s

(
f − f̂

)


We see there are two effects. In the denominator, a higher α leads to a lower f̂ , which means there

is less money left over for individual bonds as common bonds divert some of the funding. Size

doesn’t matter for the numerator as we are in a “winner takes all” equilibrium for individual bonds.

This is the funding effect. The denominator also changes, however, as α > 0 introduces common

bond proceeds f−f̂
1+s per common bond sold. We see that these common bonds are scaled by the size

of the country as common bonds are issued proportional to country size. Common bond proceeds

make a country safer, all else equal. Thus, this is the safety effect. For small s, most of the common

bond proceeds accrue to the large country. This can lead to a situation in which the large country

becomes even safer as δ∗ adjusts downward.

4.2 Case 2: Maximum joint safety

We now construct an equilibrium in which both countries can be safe. Given this equilibrium, we

will compute the minimum value of α for which this equilibrium exists. As we show, this minimum

value, denoted α0, will generally be less than α1. This overlap implies that at least two equilibria

exist for some parameters of the model, as described in the Proposition.

The possibility that both countries may be safe means that our equilibrium construction using

threshold strategies is no longer possible. In a region where both countries are known to be safe

(recall we consider the limit where σ → 0), investors must be indifferent between investing in the

two countries, choosing strategies so that in equilibrium the return on both countries’ bonds are

equal. This “joint safety” region prevails for realizations of δ̃ ∈ [δL, δH ]. Outside this interval we
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are back to the case where the signals are so strong that only one country survives. We now focus

on deriving the boundary between these regions given by functions δL(α) and δH(α). Given these

functions we can solve for the boundary α0 , which occurs when δL(α0)=δH(α0) and the joint safety

region vanishes.

We depart from monotone threshold strategies. Let us conjecture a non-monotone strategy

whereby investment in country 1 and in country 2 alternate on discrete intervals of length kσ and

(2− k)σ, with k ∈ (0, 2). We will refer to this strategy as the oscillating strategy. The investor

strategy is φ (y) ∈ {0, 1} which is investment in country 1:

φ (y) =



0, y < δL

1, y ∈ [δL, δL + kσ] ∪ [δL + 2σ, δL + (2 + k)σ] ∪ [δL + 4σ, δL + (4 + k)σ] ∪ ...

0, y ∈ [δL + kσ, δL + 2σ] ∪ [δL + (2 + k)σ, δL + 4σ] ∪ [δL + (4 + k)σ, δL + 6σ] ∪ ...

1, y > δH

(22)

In the limit as σ approaches zero, these strategies resemble mixed strategies, so that over any

interval strictly inside [δL, δH ] the probability of investing in each country is such that bond returns

are equalized.

4.2.1 Fraction of agents in investing in country 1

Consider a region on which all investors know that both countries are safe. In this case, the total

investment in country 1 and 2 has to be
(

1 + f̂
)

1
1+s and

(
1 + f̂

)
s

1+s , respectively, as otherwise

one country will offer strictly higher (expected) returns than the other country. Take an agent with

signal δ. Let us introduce the function ρ (δ), which is the expected proportion of agents investing

in country 1 given (own) signal δ. Then, given the assumed strategy for all agents and given that

we are in the region where both countries are safe,

ρ(δ) =

ˆ δ+2σx

δ−2σ(1−x)

φ (y)

2σ
dy =

kσ

2σ

37



We choose k so that,

ρ(δ) =
1

1 + s
⇐⇒ k =

2

1 + s
(23)

The last equality arises because in equilibrium the proportion must be constant and equal to 1
1+s

in order to have returns equalized across the two safe bonds.

For any value of δ and x, the proportion of agents investing in country 1 is given by

ρ (δ, x) =

ˆ δ+2σx

δ−2σ(1−x)

φ (y)

2σ
dy =



0, δ + 2σx < δL

δ+2σx−δL
2σ δ + 2σx ∈ (δL, δL + kσ)

1
1+s , δH − (2− k)σ > δ > δL + kσ

(24)

We see that ρ (δ, x) is strictly increasing in x in the vicinity of δL, and flat everywhere else. Note

further that

ρ (δL, x) =


x, x ∈

[
0, 1

1+s

]
1

1+s , x ∈
(

1
1+s , 1

] (25)

where we observe that ρ (δL, x) is less than or equal to 1
1+s .

4.2.2 Lower boundary δL

Let Πi (δ) be the expected payoff of investing in country i for a given agent with signal δ. In the

completely safe case, investors were indifferent between both strategies because both paid exactly

the same in all states of the world. This is not the case at δL, as the countries (at least in the eyes of

the agent) are not always safe. Thus, the country with perceived default risk (at δL this is country

1) will need to offer a higher return conditional on survival to be attractive to the agent. Consider

now the agent with signal δL. In his eyes, the return from investing only in country 2 (i.e. φ = 0)

is given by

Π2 (δL) =

ˆ 1

0

s(
1 + f̂

)
(1− ρ(δL, x))

dx (26)
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where we integrate over all x as country 1 is safe regardless of x. Thus, substituting in for ρ (δL, x),

we have

Π2 (δL) =
s

1 + f̂

[ˆ 1
1+s

0

1

1− x
dx+

ˆ 1

1
1+s

1
s

1+s

dx

]
=

s

1 + f̂

[
ln

1 + s

s
+ 1

]
<

1 + s

1 + f̂
(27)

where we used s ln 1+s
s < 1. Here, we see that the payoff to investing in country 2 is lower than

the expected payoff that would have realized if both countries were safe. This comes about because

more people (in expectation) invest in country 2, and less people invest in country 1. This, of course,

means that the expected payoff (conditional on survival) of investing in country 1 bonds is higher.

The minimum proportion of agents investing in country 1 that are needed to make country 1

safe if the true state of the world is δ solves,

θ1 (δ) + αpc +
(

1 + f̂
)
ρmin1 (δ) = 1 ⇐⇒ ρmin1 (δ) =

1− θ1 (δ)− αpc
1 + f̂

Define xmin (δL) as the solution to ρ (δL, x) = ρmin1 (δL). Given equation (25), we have that,

xmin (δL) =
1− θ1 (δL)− αpc

1 + f̂
(28)

The expected return of investing in country 1 given one’s own signal δL and the strategies φ (y)

of other agents is given by,

Π1 (δL) =

ˆ 1

xmin(δL)

1(
1 + f̂

)
ρ(δL, x)

dx

=
1

1 + f̂

[ˆ 1
1+s

xmin(δL)

1

x
dx+

ˆ 1

1
1+s

1

1/ (1 + s)
dx

]

=
1

1 + f̂

[
ln

1

1 + s
− lnxmin (δL) + s

]

39



Indifference requires that

Π2 (δL) = Π1 (δL)

⇐⇒ s

1 + f̂

[
ln

1 + s

s
+ 1

]
=

1

1 + f̂

[
ln

1

1 + s
− lnxmin + s

]
⇐⇒ s ln

1 + s

s
= ln

1

1 + s
− lnxmin (δL)

⇐⇒ xmin (δL) = exp [s ln s− (1 + s) ln (1 + s)] (29)

We combine our two equations for xmin (δL), (28) and (29), to find an equation that determines δL:

exp {s ln s− (1 + s) ln (1 + s)} =
1− θ1 (δL)− αpc

1 + f̂
(30)

We see that σ does not appear, and thus this solution is independent of signal noise. Since, 1 −

θ1 (δ) = (1− θ) exp (−δ), we further have,

ss

(1 + s)(1+s)
=

(1− θ) e−δL − αpc
1 + f̂

which gives

δL = − ln

{
1

1− θ

[(
1 + f̂

) ss

(1 + s)(1+s)
+ αpc

]}
(31)

For δ̃ < δL, only country 2 is safe.

4.2.3 Upper boundary δH

The derivation of the upper boundary δH is analogous. We have

ρ (δ, x) =

ˆ δ+2σx

δ−2σ(1−x)

φ (y)

2σ
dy =


1

1+s , δ − 2σ (1− x) < δH − (2− k)σ

δ+2σx−δH
2σ δ − 2σ (1− x) ∈ [δH − (2− k)σ, δH ]

(32)
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so that

ρ (δH , x) =


1

1+s , x < 1
1+s

x, x ∈
[

1
1+s , 1

] (33)

Consider now the agent with signal δH who is considering investing in country 1. In his eyes,

the return from investing only in country 1 (i.e. φ = 1) is given by

Π1 (δH) =

ˆ 1

0

1(
1 + f̂

)
ρ(δH , x)dy

dx

where we integrated over all x as country 2 is always safe in the vicinity of δH . Thus, plugging in,

we have

Π1 (δH) =
1

1 + f̂

[ˆ s
1+s

0

1

1− x
dx+

ˆ 1

s
1+s

1
1

1+s

dx

]
=

1

1 + f̂
[ln (1 + s) + 1] <

1 + s

1 + f̂
(34)

where we used ln (1 + s) < s for s > 0.

The default condition for country 2 is

sθ2 (δ) + sαpc +
(

1 + f̂
)

[1− ρmax2 (δ)] = s ⇐⇒ [1− ρmax2 (δ)] = s
1− θ2 (δ)− αpc

1 + f̂

where ρmax2 (δ) is the maximum amount of people investing in country 1 so that country 2 does not

default. Let us assume for the moment that at δH , we have [1− ρmax2 (δH)] < s
1+s , that is country

2 would survive even if less than s
1+s of investors invest in it. Define xmax (δH) as the solution to

ρ (δH , xmax) = ρmax2 (δH). Given equation (33), we have that,

1− xmax (δH) = s
1− θ2 (δH)− αpc

1 + f̂
(35)
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The return to investing in country 2 is,

Π2 (δH) =

ˆ xmax(δH)

0

s(
1 + f̂

)
(1− ρ(δH , x))dy

dx

=
s

1 + f̂

[ˆ 1
1+s

0

1

1− 1
1+s

dx+

ˆ xmax(δH)

1
1+s

1

1− x
dx

]

=
s

1 + f̂

[
1

s
+ ln

s

1 + s
− ln (1− xmax (δH))

]

Indifference requires

Π1 (δH) = Π2 (δH)

⇐⇒ 1

1 + f̂
[ln (1 + s) + 1] =

s

1 + f̂

[
1

s
+ ln

s

1 + s
− ln (1− xmax (δH))

]
⇐⇒ ln (1− xmax (δH)) = ln s− 1 + s

s
ln (1 + s)

⇐⇒ 1− xmax (δH) =
s

(1 + s)
1+s
s

(36)

Combining the expressions for xmax (δH) from (35) and (36), we solve,

δH = ln

{
1

1− θ

[
1 + f̂

(1 + s)
1+s
s

+ αpc

]}
(37)

For δ̃ > δH , only country 1 is safe.

4.2.4 α > 0 and stage 1 asset allocation.

Let us now consider the stage 1 asset allocation, that is, the determination of f̂ and pc = f−f̂
α(1+s)

(there are α (1 + s) units of common bonds, and there is f − f̂ money invested in them). Consider

an α > 0. Then, we know that the expected returns from investing in common bonds in stage 1

and investing in individual country bonds in stage 2 have to be equalized. The return to investing
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in individual bounds is

Ri = (only country 2) + (joint survival) + (only country 1) (38)

=

ˆ δL

−δ

(1− α) s

1 + f̂

dδ

δ − δ
+

ˆ δH

δL

(1− α) (1 + s)

1 + f̂

dδ

δ − δ
+

ˆ δ

δH

(1− α)

1 + f̂

dδ

δ − δ
(39)

=
1− α
1 + f̂

[ˆ δL

−δ
s
dδ

δ − δ
+

ˆ δH

δL

(1 + s)
dδ

δ − δ
+

ˆ δ

δH

dδ

δ − δ

]
(40)

and the expected return for common bonds is given by

Rc =
α

f − f̂

[ˆ δL

−δ
s
dδ

δ − δ
+

ˆ δH

δL

(1 + s)
dδ

δ − δ
+

ˆ δ

δH

dδ

δ − δ

]
(41)

Note the similarity between these last two expressions. The similarity arises because along the

nodes of country 2 defaulting or country 1 defaulting, the payoffs, state-by-state, to common bonds

and individual bonds are αsi and (1− α)si. Thus,

α

f − f̂
=

1− α
1 + f̂

⇐⇒ f − f̂ = α (1 + f) ⇐⇒ 1 + f̂ = (1− α) (1 + f) (42)

and,

αpc =
f − f̂
1 + s

= α
1 + f

1 + s
(43)

We can now solve out for the thresholds. Plugging the expression for αpc into (31) and (37), we

find,

δH = z + ln

{
1

1 + s

[(
1

1 + s

) 1
s

(1− α) + α

]}
(44)

δL = −z − ln

{
1

1 + s

[(
s

1 + s

)s
(1− α) + α

]}
(45)

We now establish results concerning the existence of the oscillating equilibrium.
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Proposition 6 For a given z, define α0 as the solution zHL (α0) = z where

zHL (α) = ln (1 + s)− 1

2

{
ln

[(
s

1 + s

)s
(1− α) + α

]
+ ln

[(
1

1 + s

) 1
s

(1− α) + α

]}

Then, the oscillating equilibrium exists for α > α0. Furthermore, we have δ∗ (α0) = δH (α0) =

δL (α0) as well as δ∗α (α0) < 0.

There is a smooth transition from δ∗ to the oscillating equilibrium as α crosses α0 in that the

thresholds δ∗, δH , δL all coincide at α = α0. Furthermore, this transition occurs at a point at which

δ∗ (α) is decreasing in α, implying that it occurs at a point at which the large country gains safety

from increasing α.

4.3 Welfare

Suppose that default results in a deadweight cost equal to the debt size of the defaulting country.

That is, default, by country 1 results in deadweight cost of one, while default of country 2 results in

deadweight cost of s. For each value of α define q1, q2 and q12 as the probabilities that country 1,

country 2 and both countries are safe. Then aggregate welfare, summed across both countries and

bondholders is,

W (α) = Ŵ − (1− q1 − q12)− s(1− q2 − q12)

where Ŵ is a constant independent of α.

Welfare is only affected by the incidence of default given that default is a deadweight cost and

all other transactions involve transfers between parties. The deadweight cost of default is equal to

size, and hence the last two terms on the right of this expression are the deadweight costs due to

country 1 default and country 2 default, respectively.

Figure 5 plots welfare as a function of α when z = 1. The left panel plots the case of s = 0.5

while the right panel plots that of s = 0.25. In both cases we see that welfare is increasing in α along

maximum joint safety equilibrium, when the equilibrium exists. This is because in the joint safety

44



0.2 0.4 0.6 0.8 1.0
α

-0.75

-0.70

-0.65

-0.60

-0.55

-0.50

W
s=0.5_z=1.

α0 α1

0.2 0.4 0.6 0.8 1.0
α

-0.60

-0.55

-0.50

-0.45

W
s=0.25_z=1.

α1

Figure 5: Welfare for the case of s = 0.5 and s = 0.25, as a function of α
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Figure 6: δ and welfare for the case of s = 0.5, z = 0.5, as a function of α

equilibrium, increasing α increases the safety of the common bonds and the safety of individual

bonds. In the region where α > α0, if equilibrium is in the minimum safety equilibrium, we see that

welfare is decreasing in α. This reflects an effect that if equilibrium is threshold where only one

country survives, the increase in α transfers some reserve asset status from country 1 to country 2

and hence decreases the safety of country 1 (the initial reserve asset), thereby reducing welfare.

Figure 6 plots the equilibrium determination of δ∗ and the joint safety region as well as welfare

for a case where z = 0.5. In this small z case, the small country is the reserve asset when α = 0.

Increasing α undercuts the small country’s reserve asset status, until above α0, there is the possibility

of the joint safety region. We see that welfare is increasing in α even when α < α0. This is because

the large country gains some reserve asset status as α rises (i.e., δ∗ falls), thus reducing the rollover

risk of the large country’s debt, and since default of the large country is assumed to involve larger
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deadweight costs, welfare is improved.

Common bonds unambiguously increase welfare only when they are large enough in size. A

small step towards a fiscal union can be worse than no step. Earlier in this section we showed that

only in the case where α > α1 do increases in α increase both countries’ safety. We thus conclude

that for Euro bonds to work they need to be large enough.

5 Conclusion

TO BE WRITTEN
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A Appendix

A.1 Additive Fundamental Structure
We have considered the specification of 1 − θi = (1− θ) exp

(
(−1)i δ̃

)
for country i’s fundamental. We now show

that results are qualitatively similar with the alternative additive specification

θ1 = θ + δ̃, and θ2 = θ − δ̃.

As x = Pr
(
δ̃ + εj > δ∗

)
= δ̃+σ−δ∗

2σ
⇒ δ̃ = δ∗ + (2x− 1)σ, we know that

θ1 = θ + δ̃ = θ + δ∗ + (2x− 1)σ

θ2 = θ − δ̃ = θ − δ∗ − (2x− 1)σ

Given x, the large country 1 survives if and only if

p1 − 1 + θ1 = (1 + f)x− 1 + θ + δ∗ + (2x− 1)σ ≥ 0⇔ x ≥ 1− θ − δ∗ + σ

1 + f + 2σ

which implies the expected return from investing in country 1 is

Π1 =

ˆ 1

1−θ−δ∗+σ
1+f+2σ

1

(1 + f)x
dx =

1

1 + f
ln

1 + f + 2σ

1− θ − δ∗ + σ
.

For country 2, the bond is paid back if

(1 + f)x′ − s+ sθ2 = (1 + f)x′ − s+ s [θ − δ∗ − (2x− 1)σ] ≥ 0

⇔ x′ ≥ s (1− θ + δ∗ − σ)

1 + f + 2sσ

which implies an expected return of

Π2 =

ˆ 1

s(1−θ+δ∗−σ)
1+f+2sσ

s

(1 + f)x′
dx′ =

s

1 + f
ln

1 + f + 2sσ

s (1− θ + δ∗ + σ)

As a result, the equilibrium threshold δ∗ is pinned by by the indifference condition

ln
1 + f + 2σ

1− θ − δ∗ + σ
= s ln

1 + f + 2sσ

s (1− θ + δ∗ + σ)
.

Letting σ → 0 we obtain

ln
1 + f

1− θ − δ∗ = s ln
1 + f

s (1− θ + δ∗)
. (A.1)

We no longer have close-form solution for δ∗ in (A.1), as δ∗ shows up in both sides. However, the solution is unique
because LHS (RHS) is increasing (decreasing) in δ∗. Finally, to ensure δ∗ < 0 so that the larger country 1 is relatively
safer, we require the same sufficient condition of z = ln 1+f

1−θ > 1 in this alternative specification.

A.2 Equilibrium with Non-monotone Strategies
We now construct an equilibrium in which 1) agents take non-monotone strategies, and 2) both countries could be
safe when the ex post realizations of δ̃ fall into an interval [δL, δH ] where δL and δH are endogenously determined.
Given this equilibrium, we will compute the minimum value of z = z for which this equilibrium exists.

The possibility that both countries may be safe means that our equilibrium construction using threshold strategies
is no longer possible. In a region where both countries are known to be safe (recall we consider the limit where σ → 0),
investors must be indifferent between the two countries, choosing strategies so that in equilibrium the return on both
countries’ bonds are equal. This “joint safety” region prevails for realizations of δ̃ ∈ [δL, δH ]. Outside this interval,
i.e., δ̃ ∈ [−δ̄, δL) ∪ (δH , δ̄], we are back in the case where the signal is so strong that only one country is safe.

We will deriving the boundaries δL and δH as functions of z, i.e., δL(z) and δH(z). Given these functions we can
solve for the minimum z , which occurs when δL(z)=δH(z) and the joint safety region vanishes.

We conjecture the following non-monotone strategy whereby investment in country 1 and in country 2 alternates
on discrete intervals of length kσ and (2− k)σ, with k ∈ (0, 2). The investor i’s strategy given his private signal δi
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is φ (δi) ∈ {0, 1}:

φ (δi) =


0, δi < δL

1, δi ∈ [δL, δL + kσ] ∪ [δL + 2σ, δL + (2 + k)σ] ∪ [δL + 4σ, δL + (4 + k)σ] ∪ ...
0, δi ∈ [δL + kσ, δL + 2σ] ∪ [δL + (2 + k)σ, δL + 4σ] ∪ [δL + (4 + k)σ, δL + 6σ] ∪ ...
1, δi > δH

(A.2)

As we will show shortly, the non-monotone oscillation occurs only when both countries are safe, where the equilibrium
requires proportional investment in each safe country to equalize returns across two safe bonds. Clearly, k determines
the fraction of agents in investing in country 1 when oscillation occurs, to which we turn next.

A.2.1 Fraction of agents in investing in country 1
Consider the region where all investors know that both countries are safe. In this case, the total investment in country
1 and 2 has to be 1+f

1+s
and s(1+f)

1+s
, respectively, otherwise one country will offer strictly higher returns than the other.

Take an agent with signal δ; introduce the function ρ (δ), which is the expected proportion of agents investing in
country 1 given (own) signal δ. Then, given the assumed strategy for all agents and given that we are in the region
where both countries are safe,

ρ(δ) =

ˆ δ+2σx

δ−2σ(1−x)

φ (y)

2σ
dy =

kσ

2σ
.

We choose k so that,

ρ(δ) =
1

1 + s
⇐⇒ k =

2

1 + s
(A.3)

The last equality arises because in equilibrium the proportion must be constant and equal to 1
1+s

in order that returns
are equalized across the two safe bonds.

Recall that x denotes the fraction of agents with signal realizations above the agent’s private signal δ; and x
follows a uniform distribution on [0, 1]. For any value of δ and x,

ρ (δ, x) =

ˆ δ+2σx

δ−2σ(1−x)

φ (y)

2σ
dy =


0, δ + 2σx < δL
δ+2σx−δL

2σ
, δ + 2σx ∈ (δL, δL + kσ)

1
1+s

, δH − (2− k)σ > δ > δL + kσ

(A.4)

We see that ρ (δ, x) is strictly increasing in x in the vicinity of δL, and flat everywhere else. When we evaluate δ at
the marginal agent with signal δ = δL, we have

ρ (δL, x) =


0, x = 0

x, x ∈
(

0, 1
1+s

)
1

1+s
, x > 1

1+s

(A.5)

where we observe that ρ (δL, x) is less than or equal to 1
1+s

.

A.2.2 Lower boundary δL

Let Vφ (δ) be the expected payoff of strategy φ ∈ {0, 1} when given signal δ. In the completely safe region discussed
above (for δ exceeding δL sufficiently), investors were indifferent between both strategies because both paid exactly
the same in all states of the world. This is not the case for agent with the threshold signal δL: as the agent knows
investors with signal below is always investing in country 2, country 1 is perceived default risk. We now calculate the
return of investing in either country, from the perspective of the boundary agent δL.

For the boundary agent δL, the return from investing only in country 2 (i.e. φ = 0) is given by

Π2 (δL) =

ˆ 1

0

s

(1 + f) (1− ρ(δL, x))
dx (A.6)

where we integrate over all x as country 2 is safe regardless of x. Thus, plugging in, we have

Π2 (δL) =
s

1 + f

[ˆ 1
1+s

0

1

1− xdx+

ˆ 1

1
1+s

1
s

1+s

dx

]
=

s

1 + f

[
ln

1 + s

s
+ 1

]
<

1 + s

1 + f
. (A.7)
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where we used s ln 1+s
s
< 1. Here, we see that payoff to investing in country 2 is lower than the expected payoff that

would have realized if both countries were safe. This reflects the strategic substitution effect: because more people
(in expectation) invest in the safe country 2, the return in country 2 is lower.

Now we turn to investment return for country 1. Since country 1 has default risk, we need to calculate the cutoff
x = xmin so that country 1 becomes safe if there are x > xmin measure of agents receiving better signals. To derive
xmin, we first solve for ρmin1 (δ), which is the minimum proportion of agents investing in country 1 that are needed
to make country 1 safe given fundamental δ. We have

θ1 (δ) + (1 + f) ρmin1 (δ) = 1 ⇐⇒ ρmin1 (δ) =
1− θ1 (δ)

1 + f

Define xmin as the solution to ρ (δL, x) = ρmin1 (δL). Given equation (A.5), we have that,

xmin =
1− θ1 (δL)

1 + f
. (A.8)

The expected return of investing in country 1 given one’s own signal δL and the conjectured strategies φ (·) of everyone
else is given by,

Π1 (δL) =

ˆ 1

xmin

1

(1 + f) ρ(δL, x)
dx =

1

1 + f

[ˆ 1
1+s

xmin

1

x
dx+

ˆ 1

1
1+s

1

1/ (1 + s)
dx

]

=
1

1 + f

[
ln

1

1 + s
− lnxmin + s

]
. (A.9)

The the boundary agentδL must be indifferent between investing in either country, i.e., Π2 (δL) = Π1 (δL).
Plugging in (A.6) and (A.9), we have

s

1 + f

[
ln

1 + s

s
+ 1

]
=

1

1 + f

[
ln

1

1 + s
− lnxmin + s

]
⇐⇒ xmin =

ss

(1 + s)1+s
. (A.10)

We combine our two equations for xmin, (A.8) and (A.10), and use 1− θ1 (δL) = (1− θ) exp (−δL), to obtain:

ss

(1 + s)1+s
=

(1− θ) exp (−δL)

1 + f
.

Recall z = ln 1+f
1−θ ; we have

δL (z) = −z + (1 + s) ln (1 + s)− s ln s (A.11)

A.2.3 Upper boundary δH

The derivation is symmetric to the above. We have

ρ (δ, x) =

ˆ δ+2σx

δ−2σ(1−x)

φ (y)

2σ
dy =


1

1+s
, δ − 2σ (1− x) < δH − (2− k)σ

δ+2σx−δH
2σ

δ − 2σ (1− x) ∈ (δH − (2− k)σ, δH)

1, δ − 2σ (1− x) > δH

(A.12)

so that

ρ (δH , x) =


1

1+s
, x < 1

1+s

x, x ∈
(

1
1+s

, 1
)

1, x = 1

(A.13)

Consider now the agent with signal δH who is considering investing in country 1. In his eyes, the return from
investing only in country 1 (i.e. φ = 1) is given by

Π1 (δH) =

ˆ 1

0

1(
1 + f̂

)
ρ(δH , x)dy

dx =
1

1 + f
[ln (1 + s) + 1] <

1 + s

1 + f
,

where we integrated over all x as country 1 is always safe in the vicinity of δH .
The default condition for country 2 is

sθ2 (δH) + (1 + f) [1− ρmax2 (δH)] = s ⇐⇒ 1− ρmax2 (δH) = s
1− θ2 (δH)

1 + f
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where ρmax2 (δ) is the maximum amount of agents investing in country 1 so that country 2 does not default. Assume,
but later verify, that at δH we have 1 − ρmax2 (δH) < s

1+s
, that is, country 2 would survive even if less than s

1+s
of

investors invest in country 2. Define xmax (δH) as the solution to ρ (δH , xmax) = ρmax2 (δH); (A.13) implies that

1− xmax (δH) = s
1− θ2 (δH)

1 + f
. (A.14)

As a result, the return to country 2 is,

Π2 (δH) =

ˆ xmax(δH )

0

s

(1 + f) (1− ρ(δH , x))dy
dx =

s

1 + f̂

[ˆ 1
1+s

0

1

1− 1
1+s

dx+

ˆ xmax(δH )

1
1+s

1

1− xdx

]

=
s

1 + f

[
1

s
+ ln

s

1 + s
− ln (1− xmax (δH))

]
Indifference at the boundary agent δH requires Π1 (δH) = Π2 (δH), which yields 1−xmax (δH) = s

(1+s)
1+s
s

. Combining

this result with (A.14) and 1− θ2 (δH) = (1− θ) exp (δH), we solve,

δH (z) = z − 1 + s

s
ln (1 + s) (A.15)

A.2.4 Verifying the equilibrium
We now verify the interior agents δ ∈ (δL, δH) have the appropriate incentives to play the conjectured strategy.
We just showed that the investor with signal δ = δL is indifferent; and similar to the argument in the threshold
equilibrium, it is easy to show that agents with δ < δL find it optimal to invest in country 2. Consider an investor
with signal δ = δL + kσ. Regardless of his relative position (as measured by x) in the signal distribution, this agent
knows that a proportion 1

1+s
of investors invest in country 1, thus making it safe for sure. Further, he knows that

a proportion s
1+s

of investors invest in country 2, also making it safe. Therefore, this agent knows that (i) both
countries are completely safe and that (ii) investment flows give arbitrage free prices. He is thus indifferent, and so
is every investor with δL + kσ < δ < δH − (2− k)σ.

We now consider the investors with δ ∈ (δL, δL + kσ)? We know that country 2 will always survive, and thus we
have

Π2 (δ) =

ˆ 1

0

s

(1 + f)
´ δ+2σx

δ−2σ(1−x)
1−φ(y)

2σ
dy
dx.

Note that for any x with x ≥ − δ−δL−kσ
2σ

we are in the oscillating region; for x below we are in the increasing part.

Let ε ≡ δ−δL
2σ
∈
(

0, 1
1+s

)
so that so that δ = δL + 2σε. Thus, we have

1− ρ (δ, x) =

ˆ δ+2σx

δ−2σ(1−x)

1− φ (y)

2σ
dy =

1− ε− x, x ∈
(

0, 1
1+s
− ε
)
,

s
1+s

, x ∈
(

1
1+s
− ε, 1

)
.

(A.16)

Then, we have

Π2 (δ) =
s

1 + f

[ˆ 1
1+s
−ε

0

1

1− ε− xdx+

ˆ 1

1
1+s
−ε

1
s

1+s

dx

]
= Π2 (δL) +

s
(
ln (1− ε) + 1+s

s
ε
)

1 + f

For investment in country 1, we know that, since δ > δL, we have ρmin1 (δ) < ρmin1 (δL). First, note that

ρ (δ, x) =

ˆ δ+2σx

δ−2σ(1−x)

φ (y)

2σ
dy =

ε+ x, x ∈
(

0, 1
1+s
− ε
)

1
1+s

, x ∈
(

1
1+s
− ε, 1

)
Let xmin (δ) be the measure of investors with higher signals than δ so that country 1 is safe. Since ρmin1 (δ) = 1−θ1(δ)

1+f
,

xmin (δ) is the lowest x ∈ [0, 1] such that

ρ (δ, x) = ε+ x ≥ ρmin1 (δ) .
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Thus, we have

xmin (δ) = xmin (δL + 2σε) = max

{
1− θ1 (δL + 2σε)

1 + f
− ε, 0

}
. (A.17)

The expected investment return from country 1 is

Π1 (δ) =

ˆ
x:ρ(δ,x)≥ρmin1 (δ)

1

(1 + f)
´ δ+2σx

δ−2σ(1−x)
φ(y)
2σ

dy
dx

= Π1 (δL) +
1

1 + f
[lnxmin (δL)− ln [ε+ xmin (δL + 2σε)] + (1 + s) ε]

Thus, to show that Π1 (δL + 2σε) ≥ Π2 (δL + 2σε), we need to show that the following inequality holds for ε ∈(
0, 1

1+s

)
:

g (ε) ≡ lnxmin (δL)− ln [ε+ xmin (δL + 2σε)]− s ln (1− ε) ≥ 0. (A.18)

First, by using lnxmin (δL) = s ln s−(1 + s) ln (1 + s) and xmin
(
δL + 2σ 1

1+s

)
= 0, we know the above inequality

holds with equality at both end points ε = 0 and ε = 1
1+s

, i.e., g (0) = g
(

1
1+s

)
= 0. Second, it is easy to show that

there exists a unique ε∗ such that
1−θ1(δL+2σε∗)

1+f
= ε∗, at which point (A.17) binds at zero. We further note that at

ε = 0 we have 1−θ1(δL)
1+f

> 0. Thus, in (A.17) we have ε∗ > 0 and for ε ∈ (0, ε∗) we have xmin (δ) = 1−θ1(δL+2σε)
1+f

−ε > 0,

and for ε ∈
[
ε∗, 1

1+s

]
we have xmin (δ) = 0. Plugging in and taking derivative with respect to ε, we have

∂

∂ε
ln [ε+ xmin (δL + 2σε)] =


−2σθ′1(δL+2σε)

1−θ1(δL+2σε)
, ε ∈ (0, ε∗)

1
ε

, ε ∈
[
ε∗, 1

1+s

]
Then, for (A.18), we have g (ε) first rises and then drops:

g′ (ε) =


2σθ′1(δL+2σε)

1−θ1(δL+2σε)
+ s

1−ε > 0 , ε ∈ (0, ε∗) ,

− 1
ε

+ s
1−ε = (1+s)ε−1

1−ε < 0 , ε ∈
[
ε∗, 1

1+s

]
.

Combined with g (0) = g
(

1
1+s

)
= 0 we know that g (ε) > 0, ∀ε ∈

(
0, 1

1+s

)
, i.e., Thus, on ε ∈

(
0, 1

1+s

)
the investors

strictly want to invest in country 1.
Finally, we need to pick σ appropriately so that there exists some natural number N > 1 so that 2Nσ = δH − δL.

For this particular choice of σ = σ̂, the limiting case of zero signal noise can be achieved when we take the sequence
of σn = σ̂/n for n = 1, 2, .....

A.2.5 Equilibrium properties
First, with joint safety, the probability of survival for country 1 (or the probability of its bonds being the reserve
asset) is not longer one minus the probability of survival of country 2. Using δ̃ ∼ U

(
−δ, δ

)
, the probability of country

1 survival is

Pr (country 1 safe) =
δ − δL

2δ
=
δ + z − (1 + s) ln (1 + s) + s ln s

2δ
, (A.19)

and the probability of country 2 survival is

Pr (country 2 safe) =
δH + δ

2δ
=
δ + z − 1+s

s
ln (1 + s)

2δ
.

As a result, the bonds issued by country 1 are more likely to be the reserve assets than that issued by country 2 if
the following condition holds:

s ln s− (1 + s) ln (1 + s) +
1 + s

s
ln (1 + s) = s ln s+

(
1

s
− s
)

ln (1 + s) > 0. (A.20)
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In the proof of Proposition 7 we show this condition always holds.10

Obviously, the above equilibrium construction requires that δL (z) < δH (z). Since δL (z) in (A.11) is decreasing
in z while δH (z) in (A.15) is increasing in z, this condition δL (z) < δH (z) holds if z > z so that δL (z) = δH (z)
which gives z:

−z + (1 + s) ln (1 + s)− s ln s = z − 1 + s

s
ln (1 + s)⇒ z =

1

2

[(
2 + s+

1

s

)
ln (1 + s)− s ln s

]
Proposition 7 We have the following results for the equilibrium with non-monotone strategies.

1. The lower equilibrium threshold δL (s, z) is decreasing in z, ∂
∂z
δL (z) < 0. Hence, the probability that the larger

country 1 is the reserve asset (given in (A.19)) is higher if the aggregate fundamental θ or aggregate saving f
is higher. However, the probability of country 2’s bonds being the reserve asset is also increasing with z.

2. When the aggregate funding conditions z is sufficiently high so that z > z, the larger country 1 is more likely
to be the reserve asset than the smaller country.

3. All else equal, country 1 has the highest likelihood of survival when country 2 size goes to zero s→ 0.

Proof. The first result is obvious. For the second result we need to show that F (s) ≡ s2 ln s+
(
1− s2

)
ln (1 + s) > 0

holds for s ∈ (0, 1). It is clear that F (0) = 0 while F (1) = 0. Simple algebra shows that

F ′ (s) = 2s ln s− 2s ln (1 + s) + 1,
1

2
F ′′ (s) = ln s− ln (1 + s) + 1− s

1 + s
= ln

(
s

1 + s

)
+ 1− s

1 + s
.

Let y = s
1+s

<∈ (0, 1); then because it is easy to show ln y + 1 − y < 0 (due to concavity of ln y), we know that
F ′′ (s) < 0. As a result, F (s) is concave but F (0) = F (1) = 0. This immediately implies that F (s) > 0, which is
our desired result. The third claim follows because − (1 + s) ln (1 + s) + s ln s is decreasing in s.

10We have considered survival, which can be either sole survival or joint survival. If we focus on sole survivals only,
i.e., the bonds of country j are the only reserve asset, the condition is exactly the same. This is because

Pr (only country 1 survive) =
−δH + δ

2δ
=
δ − z + 1+s

s
ln (1 + s)

2δ
,

Pr (only country 2 survive) =
δL + δ

2δ
=
δ − z + (1 + s) ln (1 + s)− s ln s

2δ
.

As a result, Pr (only country 1 survive) > Pr (only country 2 survive) if and only if

1 + s

s
ln (1 + s)− (1 + s) ln (1 + s) + s ln s > 0,

which is exactly the same as (A.20).
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