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1 Introduction

At the heart of the 25-year old endogenous growth literature is the basic premise that innovation

and technological progress are engines of long-run economic growth (e.g., Romer (1990), Aghion

and Howitt (1992)). Due to data limitations, however, evidence from longer time horizons

is missing from this literature even though innovations from history such as light bulbs, air

conditioners and storage batteries have tremendous influence on the way we currently live,

consume, and produce (Gordon (2016)). Learning from the creators of these types of inventions

has the potential to shed light on several current debates in the innovation and growth literatures.

An abundance of modern data has helped to inform theoretical perspectives on key aspects of

the growth process including the impact of firm entry and exit, reallocation, the role of cities,

the distribution of talent, and the relationship between inequality, social mobility, innovation

and growth (e.g., Klette and Kortum (2004), Akcigit and Kerr (2016), Acemoglu et al. (2015),

Hsieh and Moretti (2015), Hsieh et al. (2013), Jones and Kim (2014), Aghion et al. (2015a)).

This paper develops a number of facts about the environment in which many of the essential

technologies that we use today were created, the life cycle of inventors who developed these

inventions and how innovation affected economic inequality and social mobility. We construct

a large-scale micro-level historical dataset on inventors that can be mapped to both state and

county-level economic aggregates and to socio-economic variables on individuals.

We use comprehensive data covering United States patents geocoded to the level of individual

inventors and data matching inventors in patent records to Federal Censuses from 1880 to 1940.

Typically such data has only been available historically for specific sub-samples of inventors

(e.g., Lamoreaux and Sokoloff (1999)), superstar inventors (e.g., Khan and Sokoloff (2004)) or

for broader populations in modern time periods (Aghion et al. (2015b), Bell et al. (2015)). The

new data allow us to examine who became an inventor and the types of environments that were

most conducive to innovation during a critical period of US economic growth.

While the present paper presents numerous new facts about long run growth and innovation

in the United States since the late nineteenth century, it is not unique in its goal. Kaldor

(1961) presented six stylized facts around which the theory of economic growth developed.

Jones and Romer (2010) updated Kaldor’s facts to reflect the subsequent fifty years of data,

providing the empirical foundations for modern growth theory. Both papers have facilitated

informed discussion and permitted important breakthroughs in our understanding of the process

of economic growth. Our paper has a similar goal in mind: to establish the fundamental facts

regarding the process of innovation and its relationship to long run growth.

As an overview of the underlying innovation data, Figure 1 (Panel A) plots the time-series of

log patents filed at the USPTO. It shows that innovative activity (proxy measured by patenting)

has been growing over time. In keeping with the predictions of the large theoretical literature

highlighting the central role of technological progress in endogenous growth we find a positive

association between our innovation measures and output growth over the long run.

Panel B shows that at the beginning of our time period most inventors in the US developed

technologies outside the boundaries of firms with the rising share of patents assigned over time
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Figure 1: Long-Run History of Total Patents Filed in the USPTO

Panel A: Total Patents Panel B: Share of Corporate Patents
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Notes: Panel A: Excluding the exceptional years around World War II (1930-1950), a regression of annualized
5-year GDP per capita growth rates on log patents yields a coefficient of 0.639, which is statistically different from
0 at the 10% level. The correlation between these five year growth rates and log patents is 0.3915. Correlation
between log patents and log GDP per capita (levels) is 0.8897, while the estimated linear relationship between
the two is 0.7511 (with heteroskedasticity robust standard error 0.0325). Panel B: The share of US patents
assigned at their grant date proxies for the amount of corporate patenting. Sources: USPTO, Maddison, Bureau
of Economic Analysis, Klein (2013).

reflecting the development of R&D labs inside the modern corporation (Mowery and Rosenberg

(1999)). The time period we cover is central to recent debates on innovation and growth. Indeed,

we analyze the years that Gordon (2016) associates with the second industrial revolution, which

produced major innovations like electricity and the motor vehicle. We also span the 1930s, which

Field (2003) identifies as the most innovative decade of the twentieth century.

Roadmap We analyze the innovation process through the experiences of inventors over their

life cycles. Some famous case studies can be useful to motivate our approach. Born to a poor

family in rural Ohio, Thomas Edison (1847-1931) faced tight financing constraints in his early

career. He ultimately relocated to New Jersey, building the Menlo Park Lab in 1876, a pioneering

research laboratory where creative inventors could collaborate to develop new technical ideas.

To develop his technologies further Edison accessed capital from a group of financiers, including

J.P. Morgan. The investment bank Drexel, Morgan & Co. (which later became J.P. Morgan &

Co.) provided loans, acted as a financial intermediary for Edison’s firm, and provided wealth

management (Brunner and Carr (2007)). Edison was granted 1,093 US patents. His experience

suggests the importance of access to external finance, population density and human interactions

in the innovation process. Edison’s career also exemplifies social mobility and the potential for

strong financial returns to innovation.

As another example, Nikola Tesla (1856-1943), a Serbian immigrant, demonstrates the con-

tribution of international migration to US technological progress. Tesla was granted 112 US

patents, the timing of which also illustrates how productivity could change over the life cycle of

an inventor’s career. 64 of Tesla’s patents (57% of the total) were granted within a decade of

his arrival in America in 1884 at age 28, where he worked at the Edison Machine Works in New
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York (Carlson (2013)). But his patenting rate attenuated sharply later on. He acquired just 16

patents (14% of the total) after he was age 45. Tesla held uncommon personal preferences. He

believed that private relationships detracted from productive research time, and never built a

family. His decision not to marry shows that inventors faced trade-offs when it comes to time

allocation.

As a final example, Melvin De Groote (1895-1963), one of the most prolific inventors in US

history, received two degrees in Chemical Engineering. His highly-educated background was

crucial for turning his creativity into valuable innovations. De Groote was granted 925 US

patents, mostly developing novel methods to separate crude oil emulsion into its oil and water

components.1 De Groote moved from his state of birth in West Virginia to various places in the

US where innovative firms were located.2

The above case studies hint that myriad factors, such as immigration, social mobility, access

to finance, human interactions, education, time allocation, might spur innovation. Our new

dataset can document these patterns in a systematic fashion, and thereby inform theories of

endogenous growth. To organize our exposition, we set forth a very simple model of innovation.

Consider a firm or agent deciding its investment in costly innovation activity. The agent can

choose the probability p of discovering a new invention in order to maximize its expected profits.

That is, the agent solves

max
p

{
p · Π(Macro factors,Micro Factors)− C(p|Micro Factors,Macro Factors)

}
where Π(·) is a function returning the expected profit the firm can receive if it successfully

innovates. This payoff function will depend on both surrounding micro and macro factors,

such as personal income or local market size. Likewise C(p|·) represents the cost choosing

an innovation probability p given the micro and macro factors that could impact the cost of

innovation, such as education or the cost of borrowing. Naturally, there may be many factors

that affect the costs and benefits of innovation. To address these systematically, we provide a

framework to consider the innovation process, outlined in Figure 2.

As a broad summary of our approach, we first establish a link between innovation and growth

at the state level, and then consider the environment in which an inventor operates. We examine

various characteristics of the inventors’ state of residence including population density, financial

development, geographical connectedness and social structure (measured using data on slave-

owning families and religiosity). For our macro-level analysis we first present state-level results;

we then perform checks for robustness of the findings at the county level.

Next we examine the basic demographic facts of inventors: their life cycle, education, and

migration decisions. For example, we examine the family background of inventors, which may

affect both the costs and benefits of innovation through factors such as relaxed credit constraints,

1De Groote is also noted as an innovator in food processing. For example, his inventions for extracting flavor
from vanilla beans without using alcohol as a solvent were important to the production of ice cream.

2De Groote was a consultant or employee to numerous corporations including Hachmeister Lind Chemical of
Pittsburgh, Procter and Gamble in Cincinnati, and Petrolite Corporation in Webster Groves, Missouri where
he was Vice President and Director of Research.
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Figure 2: Roadmap of the Analysis
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or improved social networks, among others. We then provide evidence on the private rewards

to innovation by studying the wages of successful inventors from labor income data in the

1940 Census. Finally, we investigate the societal consequences of innovation by establishing the

correlation between patenting activity and income inequality or social mobility at the state level.

Our analysis uncovers the following stylized facts about the process of innovation and tech-

nological development during the golden age of US economic growth and beyond:

Regional Facts

Fact 1. More inventive states and sectors grew faster on average.

Fact 2. Densely-populated states were more inventive.

Fact 3. Financially-developed states were more inventive.

Fact 4. Geographically-connected states were more inventive.

Fact 5. States associated with slavery were less inventive but religiosity is not robustly

correlated with inventiveness.

Personal Facts

Fact 6. Inventors were more educated on average and were most productive between the

age of 36 and 55.

Fact 7. Inventors were positively selected through exit early in their careers, but were

less productive and more likely to exit late in their careers.

Fact 8. The patents of new inventors received more citations on average, and were

more likely to be in the top decile of the citations distribution.

Fact 9. Inventors delayed marriage and had fewer children.

Fact 10. Inventors were more likely to have migrated from their state of birth. They

moved to states that were more conducive to innovation.

Family Background

Fact 11. Father’s income was correlated with becoming an inventor. This effect disap-

pears once child’s education is controlled for.
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The Return to Innovation

Fact 12. Successful patentees had substantially higher labor income, even controlling for

demographics, occupation, and education.

Fact 13. Inventor’s income was highly correlated with the quality of invention measured

by patent citations.

Inequality and Social Mobility

Fact 14. Broad measures of income inequality, such as 90/10 ratio, Gini coefficient,

were negatively correlated with innovation.

Fact 15. However, the top-1% income share has a U-shaped relationship with innovation.

Fact 16. Innovation was strongly positively correlated with social mobility.

More specifically, our analysis of regional facts begins by identifying the relationship between

innovation and long-run economic growth, as postulated by the active endogenous growth lit-

erature. We study the relationship between innovation and long-run growth across states over

100 years between 1900 and 2000. Our results show that the link has been strongly positive

and economically sizable. Estimates suggest that if two states had the same initial GDP per

capita in the beginning of the period and one state innovated four times more than the other

(Massachusetts vs Wyoming, for instance), this could lead to 30% higher GDP per capita in the

innovative state after 100 years. We verify a positive relationship in the data at the sectoral

level. We also use an instrumental variables approach exploiting an historical shift in innovation

activity during World War II to show that these estimates could be causal.

Our analysis of the characteristics of innovative states sheds important light on the macroe-

conomic environments where inventors operated. We find that innovative regions were more

densely populated, were more financially developed, and were better connected to other parts

of the country by transport links. We also test the extent to which the social structure of re-

gions was correlated with their inventiveness given the notion that societal attitudes towards

innovation affects “openness” to technological disruption (e.g., Florida (2002), Acemoglu et al.

(2014)). We find that states associated with high levels of slave ownership before the Civil War

were less inventive. Although we find some evidence of a negative relationship between religios-

ity and inventiveness, it is not as robust as that found for modern time periods (Benabou et al.

(2013) and Benabou et al. (2015)). We relate these findings to large theoretical and empirical

literatures in macroeconomics. In particular we highlight the modern drivers of innovation and

long run economic growth which retain their importance in a historical context, and show which

factors exhibit different patterns in recent and historical data.

We then transition from the macro environment to the micro-level. We find that inventors

were not uneducated amateurs; rather they were typically highly-educated individuals and were

most productive between ages 35-55. We report a range of summary statistics, indicating, for

example, that the vast majority of inventors were white males.

To investigate personal characteristics further we benchmark the profile of inventors using

different groups and sub-groups of the US population. First, we find that, just like individuals

in other high-skill occupations, inventors tended to postpone marriage relative to the average
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low-skill person in the population. Second, we find that inventors were significantly more likely

to have migrated from their state of birth than both high-skill and low-skill persons. Third, we

document that conditional on moving, inventors tended to relocate to more densely-populated

and better financially-developed places.

Due to the richness of our patent data, where we can track inventors longitudinally, we also

present novel life cycle facts. We find that inventors produced their highest quality inventions

(measured by patent citations) early in their careers and that the early exit of low productivity

inventors led to positive selection. Moreover, we find that the probability of exit was high

as inventors faced obsolescence later in their careers. We relate these central findings to the

empirical literature on productivity and firm dynamics (e.g., Haltiwanger (2012)) and theoretical

models in which firm entry and exit play important roles in the growth development process

(e.g., Acemoglu et al. (2015), Jovanovic (1982) and Hopenhayn (1992)).

We add to our analysis of career patterns by investigating the family background of inventors

which reveals important differences between the extensive and intensive margins. While we find

that some inventors gained privileged access into a career as an inventor, this effect operated only

in the upper tail of the father income distribution. Entry was quite democratic, in keeping with

the argument that rapid innovation and growth in the US economy at this time was facilitated

by open intellectual property rights institutions (Khan (2009)). On the intensive margin we find

no effect of father’s income on patent productivity or quality.

Innovation is a process where inventors invest in costly effort ex ante in the expectation of

gaining ex post returns, financial or otherwise (e.g., Stern (2004)). Yet, the financial returns

to inventors in particular are rarely measurable even for modern time periods (e.g., Astebro

(2003)). Subject to some limitations associated with the income data from the 1940 Census,

(which we discuss in Section 2) we show that inventors had high incomes, even after controlling

for their observable characteristics. We find that inventors had three times higher labor income

on average. Indeed, inventors had a steeper earnings profile over their life cycle. Fully 73% of

inventors were in the top decile of the overall income distribution. We identify strong returns to

the quality of innovation: inventors with higher citation-adjusted patents received higher wage

income.

Finally, in a key component of our analysis, we study regional income dynamics as an out-

come measure in relation to prior-period patenting activity. We focus on various measures of

inequality: the 90/10 ratio, the Gini coefficient and the top-1% income share. We also construct

a measure of social mobility using information in the 1940 Census that focuses on the fraction

of those with a low-skill father who themselves have a high-skill occupation. We find that inno-

vative regions in the US had lower income inequality measured as the 90/10 ratio or the Gini

coefficient, yet the top income share features a U-shaped relationship with state innovation. In

general we find that the most innovative states had higher levels of social mobility.

Overall, our analysis uses novel historical microdata linked to regional aggregates to provide

key macro and micro-level facts to inform critical questions in the study of technological progress

and long-run economic growth. The remainder of the paper is organized as follows. Section 2

outlines our data, Section 3 presents the empirical results. Section 4 codifies our findings in
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relation to existing studies, and Section 5 concludes. Appendices A to D provide a detailed

description of the data we use, our matching methodology and additional robustness checks.

2 Data Construction

Patents, Technology Areas and Citations

Patents are a commonly used measure of innovation in the empirical literature on technological

change. A patent entry shows the name and address of an inventor: it shows the surname, first

name, middle initial(s) where relevant, state, city, county, and country of the applicant when the

patent was granted. For example, Figure 3 shows the famous USPTO patent 223,898 granted to

Thomas Edison in Menlo Park on January 27, 1880. Patents also represent transferable property

rights. If a patent was assigned to another individual or firm, the assignee is also recorded on

the document. Edison’s patent was unassigned at the grant date. As shown in Figure 1 (Panel

B) the share of patent assignments in the US grew over time.

Figure 3: Pages of USPTO Patent Number 223,898

We use a comprehensive collection of over 6 million US patents, which allows us to gain

unique insights into the characteristics of US inventive activity over longer time horizons, by

linking patents to both regional economic and social aggregates and by matching patents at

the inventor-level with information in the decennial Federal Censuses from 1880 to 1940. The

construction of the patent data are described in Appendix B.

In addition to the raw patent data we use two datasets to augment the information available

from the original patent documents. First, we use the USPTOs classification of patents to isolate
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the technology area of inventions. This classification is consistent over time because whenever a

new classification is introduced, existing patents are retroactively re-classified. Patents list sev-

eral technological components, and we observe main classes and subclasses for each invention.

Second, we use historical patent citations to identify the most influential technological develop-

ment. Our data include 3.8 million citations to patents granted between 1880 and 1940 from the

population of patents granted between February 1947 (when front page citations began to be

systematically recorded) and September 2008. Following Hall et al. (2001), we adjust citations

to account for bias due to truncation or aggregate fluctuations in citation propensity.3

Several aspects of patenting are worth highlighting in the context of our linkage between in-

ventors and the Census records. First, access to patenting was widespread. The cost of obtaining

a US patent was very low by international standards. Lerner (2002) estimates that in 1875 to

hold a patent to a full term of 17 years in the United States cost just 5% of the amount in the

United Kingdom, 11% of the UK amount in 1900 and 10% of the UK amount in 1925. Moreover,

inventors were actively encouraged to innovate and file for patents by the way the application

process was configured. They could mail documents to the US patent office in Washington, DC

through the extensive network of post offices connecting the country (Khan (2009), Acemoglu

et al. (2016a)). Inventors could also use a large network of intermediaries (patent agents and

lawyers) to administer the patenting process (Lamoreaux and Sokoloff (1999)).

Second, although patents could be sold because a market for technology had flourished since

the middle of the nineteenth century (e.g., Lamoreaux and Sokoloff (1999), Akcigit et al. (2016a))

the location of the original inventor is still recorded on the patent document. US patent law

stipulated that the “first and true inventor” be listed in the patent application even if the patent

was assigned to another individual or firm at its grant date. Even as the law of the of employee-

inventor evolved to make pre-invention employee assignment agreements legally enforceable, the

original inventor can be identified on the patent (Fisk (2009)).

Third, at least for the early years of our study the timing of a patent being filed by an applicant

and the timing of a patent grant—when we observe their location—were quite close. In 1880

an average of 170 days elapsed between the filing and grant date. In 1900 343 days elapsed.

For this time period there is a reasonable alignment between the patent grant year and when

an individual was observed in the Census year. By 1910, however, the average patent pendency

period was almost a year-and-a-half (536 days). In 1930 it had extended to over 1,000 days and

it was still over 800 days in 1940.4 We would therefore expect to see more measurement error

in our matching ceteris paribus for later years. In terms of the further link between the timing

of the idea behind an invention and its fruition Schmookler (1966) reports that it took about

one-and-a-half years for an invention by an independent inventor to be produced.

3Details of the citation adjustment are provided in Appendix B.1.
4By comparison, the average difference between a patent application and grant date for US patents granted

between 2008 and 2015 was 1,278 days.
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Census Data

The release of the complete-count Census data by the Minnesota Population Center (IPUMS)

provides an opportunity to examine a number of questions related to the historical development

of innovation in the United States. We use the decennial Censuses in 1880, 1900, 1910, 1920,

1930, and 1940.5 We start our patent-Census matching exercise in 1880 because that is the first

year a reasonable number of patent observations become available. Around 11,400 patents were

granted to inventors residing in the US in that particular year. We end in 1940 because that is

the latest Census available given the Census Bureau’s 72 year lag release rule.

We view these data analogously to modern studies using administrative records such as Bell et

al. (2015) who uncover major new facts about the nature of US innovation. Not only is it possible

to link the historical Census data with patent records (as we show below) but data on the entire

population permits analysis of inventor life cycles relative to other sub-groups of individuals—

for instance with different occupational skill levels. This type of systematic information across

large groups of individuals for the entire United States has never been available before for long

historical horizons. Nevertheless, although the Censuses present an especially useful source of

data, it is also worthwhile understanding some of the potential limitations.

First, the quality of the Census records varies over time. While the Census included quality

control procedures in an effort to ensure consistent enumeration, a lot depended on the way

the Censuses were generally administered. For example, the 1920 Census was conducted in the

winter (January 1st 1920) whereas the 1910 Census had been conducted in the spring (April

15th). Winter enumeration had a large effect on seasonal occupations like agricultural labor and

movement back and forth to cities. Although we show in Appendix C that our match rate is

lower for 1920 than for other years, the level of underenumeration is not sufficient to bias our

results. Dorn (1937) estimates underenumeration in the native white population (which would

be most relevant to the inventors in our dataset) of between 1% and 1.1%.

Second, beyond standard variables like the name and location of individuals, the information

contained in the Censuses varies widely over our period of interest. Although a number of

variables are commonly recorded across Census years such as age, race, gender and marital

status, in other instances variables are recorded in one year only to be dropped in another. As

an example, occupation is listed in 1880 but not in 1900 or 1910. Generally, a wider array

of variables are available in later years. Beginning in 1920, for instance, enumerators asked

specifically about education (school attendance) and home ownership.

Third, some variables are subject to measurement error. An advantage of the 1940 Census is

that it questioned individuals about income. Prior to the availability of these data, researchers

routinely imputed incomes by assigning individuals the median income in their reported occu-

pational category (e.g., Abramitzky et al. (2014)). But, the income data needs to be carefully

interpreted. Enumerators were instructed to report incomes of greater than $5,000 a year at

5For a full description of the Census datasets, the variables they contain, and our attempts to clean them, see
Appendix A. The 1890 Census was largely destroyed in a fire in 1921 and others records from this Census
were destroyed under intransigent Federal record management polices in place at the time. Only a limited
set of 1890 Census schedules survived.
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$5,000+. Hence, the data are “top-coded.” For example, Melvin De Groote, a superstar inventor

we profiled earlier in the paper, reports this level of income in the 1940 Census (average income

was $1,368). Furthermore, Petro (2016) finds that “if a farmer worked for himself and sold his

crops, he did not report that money” in the 1940 Census. By the same token we assume that

inventors selling their inventions would not have reported this as income.

Approach to Matching Patent and Census Records

The main challenge associated with matching inventors, as listed on patent documents, to in-

dividuals listed in the Census, is the absence of a unique identifier across datasets. The first

Social Security number was issued in 1936. Although a supplementary question was asked in

the 1940 Census about whether a person had a Social Security number, the number itself was

not recorded. Social Security numbers were not included in patent documents at the time.

In both the patent and Census datasets we observe variables denoting surname, first name,

initial, state, city and county. This vector of information provides a basis for our matching.

Of course, the challenge of matching observations without unique identifiers is self-evident.

For example, in their study of intergenerational occupational mobility, Long and Ferrie (2013)

tracked fathers and sons across the 1851 Census and the 1881 Census using the proximity of

the name and birth year. In a recent paper, Feigenbaum (2015) estimates intergenerational

income mobility using a machine-learning approach to match individuals from the 1915 Iowa

State Census and the 1940 US Federal Census. He matches on first name, surname, middle

initial, state of birth, and year of birth finding approximately a 59 percent match rate.

Unlike these prior studies we do not observe year of birth in the patent records, but we can

still limit the likelihood of matching “false positives” by restricting our analysis to only those

observations where we match precisely across a range of our matching variables. We proceed in

two steps. First, we adopt a “basic” matching approach where the criterion for matching is that

the inventor listed on the patent has the same first name and surname as the individual in the

Census, and lives in the same state. Naturally, this leads to repeated individuals in some cases.

Therefore, we next adopt a “refined” matching approach. In addition to the criterion in

our basic match we require additionally that individuals listed on the patent document and

individuals in the Census reside in the same county. Then, if there are still many observations

for a given inventor, we first check if there is an inventor which has the same middle initial in

both the patent and Census datasets, and we keep that inventor if there is a match. We then

keep only Census inventors who live in the same city or township as is listed on the patent

document, if one exists. Next, we ask if there is any matched inventor between 16 and 85 years

old. If so, we keep that inventor only. Finally, we repeat the age refinement, keeping only

matched inventors between 18 and 65 year old, if one exists. In other words, to be in our final

dataset requires that individuals match systematically on surname, first name, (where relevant

initial), state, and county. Although there are still data matching issues we cannot overcome—

for example, sometimes the Census uses registration areas (e.g., Precincts or Districts) rather

than cities, making it impossible for us to identify the right individual by location—overall our
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matching rates are encouraging. We match an average of 46 percent of patentees in the Census

with a high of 62 percent in 1880 and a low of 34 percent in 1920. A detailed description of the

matching process is provided in Appendix C.

Additional Data Sources

Finally, our analysis uses additional important datasets.

1. Demographics. Intercensal population estimates are provided by the Census Bureau.

We also use the Census data to construct measures of slave ownership (from the 1860

Census), and we construct measures of religiosity from the Census of Religious Bodies.

2. State-level Output. State output data is taken from the Bureau of Economic Analysis

(BEA) for 1929 through the present day. In addition, Klein (2013) provides estimates of

gross state products in 1880, 1890, 1900, and 1910 and Martin (1939) provides estimates

of state incomes from 1919 to 1938.6

3. Sector-level Output. Sector value added and full-time equivalent employment data

come from the BEA.7

4. Financial Development Measures. To establish proxies for financial development,

we use Federal Deposit Insurance Corporation (FDIC) data. The FDIC dataset, from

the University of Michigan’s ICPSR repository (number 0007) provides the number of

deposits, banks, and bank suspensions at a county level from 1920-1936.

5. Transportation Cost. Obtained from Donaldson and Hornbeck (2016).

6. Scientific Research and Development Contracts. In our instrumented growth re-

gressions (detailed below) we use data obtained from the Library of Congress on Office

of Scientific Research and Development (OSRD) contracts for technological development

efforts during World War II.

2.1 Summary Statistics

As a precursor to the main analysis we present descriptive statistics on our data, which we

discuss in more detail in subsequent sections. In keeping with our approach of examining US

innovation from macroeconomic and microeconomic perspectives, we structure these data to

characterize inventiveness at both the state and individual inventor levels.

In Table 1, we compare the most and least innovative 10 states on an average patents per

capita basis between 1880 and 1940 whereas in Table 2 we report the summary statistics for

all states. In Table 3, we present a statistical profile of inventors based on information in the

Censuses and we compare inventor characteristics with those of the population as a whole.

As Table 1 shows, the top most and least inventive states differed along numerous observable

dimensions. The top 10 inventive states were more populous and much more densely populated.

6These data were provided to us courtesy of Price Fishback.
7Downloaded from http://www.bea.gov/industry/gdpbyind data.htm. We use data between 1948 and 1986, as

the SIC codes change then. The match from USPTO classes to SIC codes is done using files provided by Bill
Kerr and assigns patent classes to the SIC code which manufactures the highest share of patents in that class.
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Table 1: The Characteristics of Inventive States

Top 10 Bottom 10
Inventive States Inventive States

Av. Population (000s) 2716 1437
Population Density (Pop per km2) 38.85 11.35
GDP per Capita 623.5 238.6
Av. Patents per 10,000 People 5.8 0.7
Av. Patents Granted 1571 96.94
Av. Inventors per 10,000 People 3.33 0.57
% Interstate Migrant 39.80% 19.96%
% International Migrant 20.64% 1.68%
Migrant Inventors per 10,000 Interstate Migrants 29.26 6.01
Migrant Inventors per 10,000 International Migrants 22.10 7.78
Percent White 96.2% 66.8%
Percent Black 2.8% 30.5%
% Over 35 Years Old 38.5% 27.7%
% Under 35 Years Old 61.5% 72.3%
No Schooling 2.88% 3.95%
Less Than High School 65.16% 74.69%
High School 20.77% 12.32%
Some College 6.25% 5.79%
4+ Years College 4.94% 3.24%
High Skill Occupation 9.3% 4.7%
Medium Skill Occ. 27.4% 19.3%
Low Skill Occ. 63.3% 75.9%
Employment Rate 54.69% 54.33%
Mean Wage Income 1140.7 681.4
Median Wage Income 947.6 459.4
Male Labor Force Participation 89.05% 88.21%
Female Labor Force Participation 33.31% 28.40%
% of Minorities with High Skill Job 2.85% 0.86%

Notes: Innovation measured as the average number of patents per capita between 1880 and 1940. The top 10
states are: California, Connecticut, Delaware, Illinois, Massachusetts, Nevada, New Jersey, New York, Ohio, and
Rhode Island. The bottom 10 states are: Alabama, Arkansas, Georgia, Mississippi, New Mexico, North Carolina,
North Dakota, Oklahoma, South Carolina, and Tennessee. Source: 1880 through 1940 Historical Census Data,
USPTO patent records.

Table 2: State-Level Summary Statistics

Mean Std. Dev. Min Max
Patents per 10,000: Average between 1880 and 1940 2.48 1.73 0.40 7.37
Patents per 10,000: Average between 1920 and 1930 2.79 2.04 0.40 11.21
Patents per 10,000: Average 1940-2004 1.93 1.31 0.33 7.39
% Living in Urban Area (1940) 47.60 15.35 22.58 82.55
% Living on Farm (1940) 23.63 13.30 2.00 57.41
Female LFP Rate (1940) 27.85 5.51 18.90 40.45
Percent of Families Owning Slaves (1860) 0.11 0.16 0.00 0.49
Deposits per Capita (1920) 277.08 133.52 0.00 785.67
Bank Failure Rate (1920) 1.83 2.27 0.00 9.46
Mean outgoing transport cost (1880) 10.80 2.72 7.84 18.13
90-10 Wage Income Ratio (1940) 12.30 2.98 6.93 18.00
Gini coefficient of wage income (1940) 0.44 0.04 0.38 0.53
Share of Wage Income Held by Top 1% (1940) 6.31 1.57 4.11 11.30
Percent with low-skill father who have high-skill occupation (1940) 2.14 0.85 0.47 4.32

Sources: Historical Census Data, USPTO patent records, FDIC, Donaldson and Hornbeck (2016).
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Indeed, the top 10 inventive states contained 11 (55%) of the largest 20 cities in the United

States in 1880 and 9 (45%) of the the largest 20 cities in 1940. By contrast, the bottom 10

inventive states contained none. The inventive states were distinctly more urban.

Additionally, the most inventive states had higher GDP per capita, and average and median

wage income suggesting a positive relationship between inventive activity and the level of eco-

nomic development. The population in the inventive states was also more educated, implying a

link between human capital and inventiveness. The most inventive states also had larger migrant

populations, especially international migrants, who accounted for about one-fifth of the popula-

tion in the top 10 inventive states but less than one-fiftieth of the population in the bottom 10

inventive states. The population of the most inventive states was largely white, whereas almost

a third of the population in the least inventive states were black. Notably, seven of the bottom

10 inventive states were associated with slavery in the antebellum era.

In terms of similarities, the states shared a largely common age structure. The employment

rate was almost exactly the same across these state groupings and both the male and female

labor force participation rates were roughly equivalent. However, the distribution of occupations

was different in that the inventive states contained a larger share of individuals with a high-skill

job. These states also appear to have been more “open” to external influences insofar as this

can be inferred from minorities being more likely to be employed in a high-skill job.

Table 3: The Characteristics of Inventors

Inventors Full U.S.
Percent White 97.9% 89.4%
Percent Black 1.8% 9.1%
Percent Male 97.9% 51.0%
Single 16.1% 27.7%
Married 80.2% 65.4%
Percent 19-25 8.4% 22.6%
Percent 26-35 23.8% 27.5%
Percent 36-45 31.0% 22.5%
Percent 46-55 24.1% 16.6%
Percent 56-65 12.7% 10.8%
Prob. Child: ≤ 35 yrs old 72.9% 80.0%
Prob. Child: > 35 yrs old 80.9% 89.7%
Av. # Children: ≤ 35 yrs old 1.9 2.3
Av. # Children: > 35 yrs old 3.2 4.7
Percent Interstate Migrant 58.8% 42.8%
Percent International Migrant 21.1% 17.4%
Percent Born in Great Britain 5.19% 3.46%
Percent Born in Germany 4.0% 2.67%
Percent Born in Other Europe 8.72% 8.27%
Percent Born in Canada 2.56% 1.73%
Percent Born in Other Countries 0.65% 1.24%
Percent Of Population 0.02% 99.98%

Notes: We use all matched census records to construct this table. Age, race, marital status, and migrant status
are reported for all years. Fertility is reported only in 1910 and 1940. Source: 1880 through 1940 Historical
Census Data, USPTO patent records.

Meanwhile, Table 3 shows inventors were more likely to be married, middle-aged, white males,

who had fewer children early and were migrants relative to the population as a whole. Figure
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4 highlights again that our data consists overwhelmingly of white male inventors. Our time

period roughly coincides with phases Goldin (2006) identifies (i.e., from the 1880s to the 1950s)

where women’s involvement in the labor market was generally restricted to positions like office

and clerical work. There were some exceptional female inventors, but not very many. For

example, Khan and Sokoloff (2004) found only one female inventor in their list of 400 superstar

US inventors listed in the Dictionary of American Biography who were born before 1886.

Figure 4: Patenting Behavior by Race

Panel A: Inventors per 10,000 Panel B: Patents per 10,000
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Notes: Figure plots the number of inventors (panel A) and patents (panel B) per 10,000 census individuals by
race, aggregating all census years together. Source: 1880 through 1940 Historical Census Data, USPTO patent
records.

Finally, the base of Table 3 shows that inventors represented a very small share of the pop-

ulation.8 Yet, when knowledge diffuses rapidly, inventors developing breakthrough inventions

can have a large influence on economic growth (e.g., Comin and Hobijn (2010)). During the

US golden age and major epochs of economic development more generally, the technological

ingenuity and innovative capabilities of the minority tended to matter the most (e.g., Mokyr

and Voth (2012), Squicciarini and Voigtlaender (2015)).

3 Empirical Analysis

3.1 Regional Facts

Following the road map outlined in Figure 2 we start by discussing the regional facts that we

observe in our data. In particular, we first exhibit the strong positive relationship between

innovation and economic growth at the state level. We then consider the relationship between

innovation and population density, financial development, geographic connectivity at the state

level, and social structure measured by association with slavery and religiosity. As checks on our

state-level results, where possible we carry out the analysis at the county level for robustness.

The county-level results are reported in subsections labeled “Robustness” within each fact.

8By comparison, in all years for which occupation data is reported in the Census, 0.46% of the working age
population was a doctor or a lawyer.
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Figures 5A and 5B illustrate the geography of inventiveness defined as patents and inventors

per 10,000 people in 1940. Both figures reveal concentrations of activity in rust-belt manufac-

turing areas, which mirrors the distribution of industrial activity at the time (Glaeser (2011)).

California also stands out as a center of innovation and this holds for most of the years we

observe. This is not caused by sparse population counts mechanically inflating the patent and

inventor counts. While Los Angeles ranked as the 36th largest city in the US in 1900, it was

ranked number 10 in 1920 and number 5 in 1940. Wyoming was innovative in several of our

snapshot years, perhaps because of developments related to the evolution of the Union Pacific

Railroad. However, as noted above, Wyoming under-performed relative to other states in GDP

per capita growth over the very long run. Figures A-6 and A-7 in Appendix D show that the

geographic patterns displayed in Figure 5 are remarkably stable across our six census years.

Figure 5: The Geography of Inventiveness

Panel A: Patents per 10,000 People Panel B: Inventors per 10,000 People

Notes: Figure maps the number of patents (panel A) or inventors (panel B) per 10,000 residents in each state of
the mainland US in 1940. Darker colors represent more inventive activity per resident. Patent data come from
the USPTO’s historical patent files, while population counts are calculated using the US Census. Appendix D
reports similar maps in different decennial census years.

Fact 1. More inventive states and sectors grew faster on average.

The long-standing endogenous growth literature builds on the premise that long-run growth

is driven by innovation and technological progress. Although this idea is intuitive, providing

empirical support for this premise has been challenging due to data limitations on historical

innovations. In fact, even though a large literature has studied the empirical determinants of

macro-level economic growth (e.g., Barro (1991)), to our knowledge no study has documented a

causal empirical relationship between innovation and growth for the US over the long run.

Figure 6 shows the basic correlation between a proxy measure of innovation (patents) and

economic growth. To account for scale effects we plot variables residualized against 1900 log

GDP per capita. The relationship is strongly positive.

Table 4 reports coefficients from growth regressions controlling for the long-run effects of initial

conditions and population density. The dependent variable in these regressions is the annualized

growth rate in state-level GDP per capita between 1900 and 2000. We find that the log of patents
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Figure 6: Innovation and Long-run Growth: US States between 1900-2000
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Notes: Figure plots the total number of patents granted to inventors in each state between 1900 and 2000 on the
horizontal axis, and the annualized growth rate in state GDP per capita between 1900 and 2000 on the vertical
axis. Both horizontal and vertical axes plot the variables of interest residualized against 1900 log GDP per capita,
to control for conditional convergence. Source: BEA Historical Regional Economic Accounts, and Klein (2013)

granted between 1900 and 2000 had a consistently positive and statistically significant effect in

columns 1 and 2. These results are robust in columns 3 and 4 to measuring the growth rate

using the approach established by Davis et al. (1996) in the employment literature that corrects

for any potential bias associated with transitory shocks to growth and mean reversion.9

Table 4: Innovation and Long Run Growth: US States between 1900-2000

Annualized Growth Rate DHS Growth Rate
(1) (2) (3) (4)

Log Patents 0.066∗∗∗ 0.054∗∗∗ 0.031∗∗∗ 0.026∗∗∗

(0.013) (0.012) (0.008) (0.007)
Initial GDP per Capita -0.877∗∗∗ -0.891∗∗∗ -0.324∗∗∗ -0.330∗∗∗

(0.036) (0.036) (0.025) (0.026)
Population Density 1.145∗ 0.517∗

(0.588) (0.304)

Observations 48 48 48 48
Mean Growth 2.154 2.154 1.552 1.552
Std. Dev. of Growth 0.417 0.417 0.159 0.159

Notes: Table reports estimated coefficients from a regression in which the dependent variable is the state-level
annualized growth rate in real GDP per capita from 1900-2000. White heteroskedasticity robust standard errors
reported in parentheses. DHS growth rate refers to the growth rate measure as proposed by Davis, Haltiwanger,
and Schuh. Output data provided by Klein (2013) and the Bureau of Economic Analysis. ∗,∗∗ ,∗∗∗ represent that
coefficients statistically differ from 0 at the 10%, 5%, and 1% level.

The economic magnitude of these estimates is especially informative. As an example, consider

Massachusetts (MA) versus Wyoming (WY). As shown in Figure 6, Massachusetts had 4 times

as many patents per capita than Wyoming during the twentieth century. Assume MA and WY

9Figure A-5 in appendix D shows that this strong positive relationship between long run growth and innovation
holds for historical output calculated using the methodology of Martin (1939).
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had the same initial GDP per capita in 1900 and identical population densities. Our estimated

coefficients imply that the gap between MA and WY would have increased dramatically as

illustrated in Figure 7. By the end of the century, MA would be 30% richer than WY just

because of the differences in their innovativeness.

Figure 7: GDP Per Capita Ratio: Massachusetts/Wyoming
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Sector-level Analysis

The positive relationship between innovation and output growth persists at the sector-level, as

shown in Figure 8.10

Figure 8: Innovation and Long-run Growth: 3-digit Sectors between 1948-1986

Panel A: Growth in Value Added Panel B: Growth in FTE Employees
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Notes: Figure plots industry-level annualized growth in value added (Panel A) and full-time-equivalent employees
(Panel B) against the log total patents used by the industry between 1948-1986, before the change of SIC code
definitions in 1987. Both horizontal and vertical axes are residualized against 1948 value added (Panel A) or
full-time-equivalent employees (Panel B). Each point represents a 2-digit SIC code, before the codes were changed
in 1987. Patent classes are matched to sectors using data provided by William Kerr [3-digit version comes from
Kerr (2008) and 4-digit comes from Acemoglu et al. (2016b)]. A patent class k is matched to an industry s if s
is the modal user of patents from k. Industry data provided by the Bureau of Economic Analysis.

10For details on the match between patent classes and industries, see Appendix B.2.
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Figure 8 plots industry-level annualized growth in value added (Panel A) and full-time-

equivalent employees (Panel B) against the log total patents used by the industry between

1948-1986, before the change of SIC code definitions in 1987. Both horizontal and vertical axes

are residualized against 1948 value added (Panel A) or full-time-equivalent employees (Panel B).

Each point represents a 2-digit SIC code.

In Table 5, we provide the regression coefficients of Figure 8 and confirm the results using

citation-weighted patent counts as our measure for innovation. The results highlight the strong

positive association between innovation and economic growth at the sector level.

Table 5: Innovation and Sectoral Growth

Dependent Variable: Value-Added FTE Employee
Growth (1948-1986) Growth (1948-1986)

(1) (2) (3) (4)

Log Patents (1948-1986) 0.679∗∗∗ 0.609∗∗∗

(0.191) (0.159)
Log Citations (1948-1986) 0.677∗∗∗ 0.617∗∗∗

(0.179) (0.149)
1948 Dependent Variable Value (1000s) -0.152 -0.142 -0.627 -0.595

(0.102) (0.095) (0.457) (0.420)

Observations 18 18 18 18
Mean of Dep. Var. 6.44 6.44 0.39 0.39
S.D. of Dep. Var. 1.61 1.61 1.45 1.45

Notes: Table reports estimated coefficients from a regression in which the dependent variable is the sector-level
annualized growth rate in value added (columns 1 and 2) and full-time-equivalent employees (columns 3 and 4).
Patent classes are matched to sectors using data provided by William Kerr [3-digit version comes from Kerr (2008)
and 4-digit comes from Acemoglu et al. (2016b)]. A patent class k is matched to an industry s if s is the modal
user of patents from k. Industry data provided by the Bureau of Economic Analysis. White heteroskedasticity
robust standard errors reported in parentheses. ∗,∗∗ ,∗∗∗ represent that coefficients statistically differ from 0 at
the 10%, 5%, and 1% level.

Instrumental Variables

We now attempt to identify a causal effect in our growth regressions using OSRD contracts for

wartime technological development as an instrument for innovation. Table 6 reports coefficients

from a regression of post-war state-level growth in GDP per capita for a four decade time horizon

(1947-1987) on state innovation levels immediately following World War II (1945-1950).11 We

report OLS estimates from this regression (columns 1, 2, 4, and 5) the corresponding IV estimates

using OSRD contracts as an instrument (columns 3 and 6) and the first stage regression of log

patents on the number of OSRD contracts (column 7).

The first stage relationship is strongly positive and interesting in its own right. Several studies

including Barro (1981) and Field (2008) show that general wartime spending had little impact

on economic growth and may have even crowded out private sector investment. Fishback and

Cullen (2013) find that “growth in per capita measures of economic activity [to 1958] showed

little relationship with per capita war spending” and Jaworski (2015) finds little effect of general

11The results are similar if we instead study the effect of patenting during the war, between 1940 and 1945.
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wartime spending on subsequent growth rates in the US South. These studies suggest that our

use of OSRD contracts as an instrument will not be invalidated by any correlated contempora-

neous response of GDP per capita to other forms of government-spending. Furthermore, OSRD

contracts were targeted towards technological development, whereas more general government

contract spending on combat-related equipment like aeroplanes and tanks or incidentals such as

clothing was not.

Our instrumental variables strategy requires that these contracts were correlated with inno-

vation, uncorrelated with omitted determinants, and only influenced state growth rates through

their effect on innovation. Note that if the OSRD contracted with only the best firms or aca-

demic institutions (which it did not), this would not be a violation of the exclusion restriction,

so long as initial location decisions were orthogonal to a state’s future growth rate. A brief

survey of the institutional setting for the OSRD along with quantitative tests lends support to

the credibility of our instrumentation approach.

Table 6: Innovation and Long Run Growth: OLS and IV between 1947-1987

Annualized Growth Rate DHS Growth Rate 1st Stage
OLS OLS IV OLS OLS IV OLS
(1) (2) (3) (4) (5) (6) (7)

Log Patents (1945-1950) 0.139∗∗∗ 0.113∗∗∗ 0.135∗∗∗ 0.044∗∗∗ 0.036∗∗∗ 0.044∗∗∗

(0.039) (0.041) (0.051) (0.012) (0.013) (0.016)
OSRD Contracts 0.734∗∗∗

(0.076)
Initial Log GDP per Capita -1.678∗∗∗ -1.777∗∗∗ -1.836∗∗∗ -0.512∗∗∗ -0.543∗∗∗ -0.563∗∗∗ -0.114

(0.229) (0.232) (0.247) (0.069) (0.070) (0.076) (0.612)
Population Density 1.397∗∗ 1.235∗∗ 0.435∗∗ 0.381∗∗ -0.339

(0.646) (0.583) (0.197) (0.176) (2.273)
Observations 48 48 48 48 48 48 48
Mean of Dep. Var. 2.501 2.501 2.501 0.909 0.909 0.909 7.257
Std. Dev. of Dep. Var. 0.439 0.439 0.439 0.134 0.134 0.134 1.413
F -Statistic 65.163

Notes: Table reports estimated coefficients from a regression in which the dependent variable is the state-level
annualized growth rate in GDP per capita from 1947-1987. White heteroskedasticity robust standard errors
reported in parentheses. DHS growth rate refers to the growth rate measure as proposed by Davis, Haltiwanger,
and Schuh. The IV estimates are two-stage least squares estimates using the number of OSRD contracts in each
state during World War II. ∗,∗∗ ,∗∗∗ represent that coefficients statistically differ from 0 at the 10%, 5%, and 1%
level.

The OSRD was established under President Roosevelt’s Executive Order in June 1941 and

operated until it was terminated in December 1947. It was headed by Vannevar Bush at the

Carnegie Institution of Washington. The OSRD was responsible for major innovations that

had an impact in wartime and beyond, including miniature electronics like the proximity fuse,

navigation systems, solid fuel rockets, detonators and most famously the basic science used in the

Manhattan Project (the Manhattan project was later transferred to the Manhattan District of

the Army Engineers). Because of its significant impact, the OSRD spurred federal involvement

in the development of US science and technology in the postwar years (Stephan (2014)).

The OSRD did not operate laboratories of its own; rather it contracted out the development of

inventions. This reflected a new way of mobilizing public funding for the development of scientific
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resources. During World War I scientists had worked at rudimentary laboratories established by

the government on an ad hoc basis, and there was a long-standing concern among scientists that

federal involvement in their activities would threaten creativity and intellectual independence.

As Mowery (2010, p.1227) comments, “the contractual arrangements developed by the OSRD

during World War II allowed the office to tap the expanded range of private sector and university

scientific and engineering capabilities that had developed during the interwar period.”

However, the OSRD did not know ex ante which firms or academic institutions would be

successful because “the OSRD had long insisted that it was not working on materials or methods

of wide use in industry” (NAS, 1964, p.28). In fact, due to uncertainty, the OSRD sometimes

contracted with multiple entities to solve the same problem. The OSRD spent $450 million

in total, about six and a half times the federal budget for science in 1940. Around this time

universities had been spending about $50 million on research of which around $6 million was

funded by the federal government to support mostly agriculture-related research (Payne, 1992,

p.145). The OSRD created a large boost to firm-level R&D. For example, Radio Corporation of

America invested heavily at its plants in Indiana and New Jersey (Chandler, 2001 p.27-28).12

We collected data on all contracts granted by the OSRD. We observe 1,717 contracts across

39 US States. The coverage of the OSRD contracts is wide. For example, Iowa State College

received 10 contracts and the University of New Mexico received 7 contracts. Firms and academic

institutions in the state of New York accounted for 30 percent of the total with the next largest

concentrations of contracts being in Massachusetts (13 percent) and Pennsylvania (11 percent).

The mean number of contracts per firm/academic institution is 4.3 and the median is 1. The

most prolific private firm in terms of contracting is the Western Electric Company with 107

contracts. The most prolific university is MIT which was granted 89 contracts.

Using these data, columns 3 and 6 of Table 6 reveal that the OLS coefficients are confirmed by

the IV estimates. To evaluate the validity of the exclusion restriction, we provide quantitative

tests of the instrument in Table 7. Specifically, we check if contract allocation is correlated

with pre-trend growth. A main concern would be that OSRD contracts simply proxy for states

that were already growing relatively rapidly. We do not find a statistically significant effect of

pre-period growth rates on contract allocation for a range of different time periods.

Finally, it is worth noting that the regression coefficients we have estimated in this section are

informative about time period effects and the nature of the channel through which innovation

influences economic growth. The effect we estimate at the state level (0.139 in Table 6) for the

period 1947-1987 is double the size of the effect we estimate at the state level (0.066 in Table

4) for the period 1900-2000. This difference is consistent with US technological leadership being

tightly linked to economic growth in the post World War II years (Nelson and Wright (1992)).

In turn, both coefficients in Table 6 and 4 are substantially smaller than the estimated aggregate

relationship between log GDP per capita and log patents from Figure 1 (0.64). When a new

12Procurement related contracts generally “allowed for work on a fixed price plus a reasonable profit for the
contractor” ((Payne, 1992)). In terms of rights to patents, the contractor generally retained these, though the
government was permitted to a royalty-free compulsory license from the contractor or to a patent buyout at a
reasonable price. If the contractor chose not to patent, the government retained the right to do so, and would
in turn grant the contractor a non-exclusive royalty free license to use the invention (Wellerstein, 2008).
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product or process is invented, the knowledge embodied in the innovation diffuses across the

economy, and is not confined by state borders. Because we do not take into account the positive

cross-state spillovers from successful innovations our state-level estimates (and IV estimates) will

likely understate the aggregate relationship between innovation and economic growth. Equally,

this spillover argument may also contribute to the larger coefficient on innovation at the sector

level in Table 5 than is found at the state level. While knowledge may easily diffuse across

geographies and generate important spillover effects across states, knowledge at the sector-level

may be more specialized, and less likely to influence other sectors directly.

Table 7: Testing for Selection Effects in OSRD Contracts

t = 1935− 1940 t = 1930− 1935
Growth Rate Annual DHS Annual DHS

(1) (2) (3) (4)
Real GDP Growth (t) 0.085 1.693 0.017 0.723

(0.172) (3.388) (0.100) (2.471)
Real GDP Growth (t− 1) -0.091 -2.119 0.118 2.592

(0.060) (1.489) (0.150) (3.182)
GDP per Capita (t− 1) 2.212∗ 2.259∗∗ 2.179∗ 2.283∗∗

(1.129) (1.120) (1.140) (1.126)
Population Density (t− 1) 10.794∗ 10.783∗ 11.546∗∗ 11.688∗∗

(5.753) (5.794) (5.120) (5.141)
Observations 48 48 48 48

Notes: Table reports coefficients from a regression in which the dependent variable is the dependent variable is
the the number of OSRD contracts in each state during World War II and the independent variables are pre-
trend growth rates, population density, and beginning of period GDP per capita. We consider growth rates from
1935-1940 (t) and 1930-1935 (t− 1) in columns 1 and 2, while in columns 3 and 4 we consider growth rates from
1930-1935 (t) and 1925-1930 (t − 1). White heteroskedasticity robust standard errors reported in parentheses.
DHS growth rate refers to the growth rate measure as proposed by Davis, Haltiwanger, and Schuh. ∗,∗∗ ,∗∗∗

represent that coefficients statistically differ from 0 at the 10%, 5%, and 1% level. Source: Bureau of Economic
Analysis, USPTO patent records.

Fact 2. Densely-populated states were more inventive.

We now seek to understand the environmental factors that determine whether a state is

particularly inventive. We first consider the relationship between urbanization and state-level

innovation. Table 1 shows population density was much higher in the most inventive states.

This finding is in line with two parallel literatures: First, a growing theoretical literature argu-

ing that human interaction is key for human capital accumulation and economic growth (e.g.,

Lucas (2009), Alvarez et al. (2013), Lucas and Moll (2014), Perla and Tonetti (2014)). Second,

the agglomeration literature has long argued that physical proximity promotes creativity, the

exchange of ideas and spillovers of knowledge capital among inventors (see Carlino and Kerr

(2015) for a survey). We also find that the top inventive states were associated with higher

levels of education and higher skilled occupations. Although inventor expropriation risk can

be higher in cities where competing inventors can more easily learn about ideas, these results
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are consistent with denser places being more likely to create positive externalities that lead to

sustained economic growth.

Figure 9 confirms the relationship between urbanization and innovation. Panel A plots the

percent of a state’s population that lives in an urban area in the 1940 census against the average

number of patents per capita granted in that state between 1940 and 2004. We see a robust

positive relationship between a state’s degree of urbanization and future inventive activity. This

relationship is significantly different from zero at the 1% level. A one standard deviation increase

in the percent of a population living in an urban area is associated with an increase in innovation

that is 41.5% of its mean. Because the Census adopts a low threshold for urbanization as

places that encompass at least 2,500 people, we repeated the analysis at different thresholds

with substantively the same result.13 Panel B repeats the same analysis using the fraction of

population living on a farm. It shows that average patents per 10,000 people between 1940 and

1960 was decreasing in the percent of the population living on a farm in 1940.

Figure 9: Population Density and Innovation

Panel A: Percent Living in Urban Area Panel B: Percent Living on Farm
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on a farm (Panel B) in the 1940 census and the average patents per capita between 1940 and 1960. Delaware
excluded as an outlier for visibility. Delaware excluded as an outlier for visibility. Source: 1940 Historical Census
Data, USPTO patent records.

Robustness. We now show that the positive link between population density and innovation

shown in Figure 9 holds at a finer level of aggregation. Table 8 report OLS estimates confirming

a statistically significant relationship between innovation and population density at the county-

level. To aid interpretation, we standardize the independent variables to have a zero mean and

unit standard deviation. Table 8 also shows that this estimated relationship is not entirely driven

by the sectoral composition of urban counties. Columns 2 and 4 control for the fraction of the

population working in agriculture or manufacturing and condition on state fixed effects. More

densely populated counties were also more inventive, even conditional on the county’s industry

mix and characteristics common to states. Conditional on our set of controls, a one standard

deviation in the percent of a county’s residents living in an urban area is associated with an

13In Figure 9 Panel A, the slope coefficient is 0.063. When we use a threshold of 5,000 people the coefficient is
0.061 and at 10,000 people the coefficient is 0.056. All are significantly significant at the 1% level.
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increase of 0.414 in patents per 10,000 residents.

Table 8: Population Density and Innovation: County-Level Results

(1) (2) (3) (4)

% Urban 0.817∗∗∗ 0.414∗∗

(0.139) (0.176)
% Living on Farm -0.858∗∗∗ -0.484∗∗

(0.096) (0.242)
% Agricultural Occupation -0.426∗∗∗ -0.391∗∗

(0.112) (0.163)
% Manufacturing Occupation -0.021 -0.142

(0.093) (0.107)

State Fixed Effects N Y N Y
Observations 3087 3062 3087 3062

Notes: Table reports coefficients from OLS regression of average patents per 10,000 between 1940 and 1960 on
various measures of a county’s urbanicity. All independent variables measured as of 1940 and standardized to have
0 mean and unit standard deviation. White heteroskedasticity robust standard errors reported in parentheses.
∗,∗∗ ,∗∗∗ represent that coefficients statistically differ from 0 at the 10%, 5%, and 1% level. Source: 1940 Historical
Census Data, USPTO patent records.

Fact 3. Financially-developed states were more inventive.

There is a vast literature relating access to capital and innovation. Cross-country growth re-

gressions have shown that higher levels of financial development are associated with faster rates

of economic growth (e.g., King and Levine (1993), Rajan and Zingales (1998)). Within the US

a range of evidence indicates capital availability mattered for innovation. For example, Lam-

oreaux et al. (2004) find that venture-style provision of capital dramatically reduced financing

constraints for inventors in Cleveland, an important Second Industrial Revolution city. Accord-

ing to Kortum and Lerner (2000) venture capital had a strong causal impact on patenting rates

in the US in the late twentieth century.

Modern financial markets are largely national in scope but were more local in the early twen-

tieth century. Because of legal constraints on the functioning of the banking sector, banks were

limited in their ability to operate across state lines and were often made up of unit banks that

serviced local communities. Although California had extensive branching outside the bank’s

home office city this was not the norm (Carlson and Mitchener (2009)). From individual in-

ventors up to large, publicly-traded corporations, an important component of finance could be

sourced locally (Nanda and Nicholas (2009)). As such, one might expect a positive relationship

between the health of a state’s financial market and its propensity to innovate.

Measuring the level of financial development is fraught with difficulties. Private transactions

between investors and inventors are not observable systematically and most later stage R&D

is financed by firms internally. However, we can gain useful insights using FDIC data, which

provides broad indicators of financial market development. We measure the health of a state’s

financial sector by bank deposits per capita in 1920 in order to proxy for the size of available

funds in the state. We choose 1920 in order to avoid the pre-Depression inflation in stock prices

and the market’s subsequent collapse. Figure 10 plots the relationship, showing that a healthier

financial sector is correlated with greater innovation levels, in line with expectations.
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Figure 10: 1920 Deposits per capita and Innovation
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Notes: Figure plots the relationship between 1920 financial health, and the average patents per capita between
1920 and 1940. Our measure of financial health is the amount of deposits per capita in 1920 dollars. Banking
data originate from the FDIC dataset, downloaded from the University of Michigan’s ICPSR repository (number
0007). We use 1920 data to remove the influence of the Great Depression from our data. Delaware excluded as
an outlier for visibility. Source: FDIC, USPTO patent records.

Robustness. We now repeat and extend the analysis at the county-level. For this purpose

we exploit the fact that dependence on external financial might vary across different types of

inventors: those operating outside and inside the boundaries of corporations. Specifically, we

would expect independent inventors to be more responsive to changes in the external financing

environment than firms, where internal funds would be a more important driver of R&D in-

vestment. Empirical studies have shown that larger and more established firms exhibit a strong

preference for financing innovation internally, to the point where they manage their cash flows

in order to be able to do so (e.g., Hall and Lerner (2009)). With this fact in mind, Table 9 cor-

relates individual- and firm-level patenting with the measure of financial development. Columns

1 and 4 reproduce at the county-level the basic correlation shown at the state-level in Figure 10.

Columns 2 and 5 introduce sectoral controls as well as state fixed effects.

The results show a clear relationship between innovation and the level of financial development,

and in the direction that we would expect based on the groups of inventors on which these

specifications are run. The coefficients are more precisely estimated for non-corporate versus

corporate patenting and their economic magnitude is also larger. Moreover, the results are

robust to the possibility that even though the availability of finance may have been local at this

time, inventors may have crossed state borders to access capital. When we run regressions at

the state level in columns 3 and 6 we find a strong and statistically significant effect of finance

on innovation for non-corporate patentees for whom we would expect the effect to be largest.

Fact 4. Geographically-connected states were more inventive.

Another important dimension for innovation is access to other geographical regions. This could

increase both the market size for innovation and the potential flow of knowledge spillovers. Both
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Table 9: Financial Development and Innovation: County-Level Results

Non-Corporate Patents Corporate Patents
County County State County County State

(1) (2) (3) (4) (5) (6)

Deposits per Capita 0.300∗∗∗ 0.185∗ 0.400∗∗∗ 0.164∗∗∗ 0.034 0.125
(0.114) (0.103) (0.139) (0.062) (0.035) (0.146)

% Agricultural Occupation -0.383∗∗∗ -0.184 -0.400∗∗∗ -0.614
(0.085) (0.308) (0.057) (0.681)

% Manufacturing Occupation -0.027 0.142 0.116∗∗ 0.244
(0.067) (0.314) (0.059) (0.574)

State Fixed Effects N Y Y N Y Y
Observations 3013 2279 48 3013 2279 48

Notes: Table reports coefficients from OLS regression of average patents per capita between 1920 and 1940 on
the local amount of deposits per capita in 1920. Columns 1 through 3 consider only patents not assigned to
corporations while columns 4 through 6 solely account for patents assigned to corporations. Columns 1, 2, 4,
and 5 report estimates from county-level regressions, while columns 3 and 6 report analogous estimates from
state-level regressions. All independent variables measured as of 1920 and standardized to have 0 mean and unit
standard deviation. White heteroskedasticity robust standard errors reported in parentheses. ∗,∗∗ ,∗∗∗ represent
that coefficients statistically differ from 0 at the 10%, 5%, and 1% level. Source: FDIC, USPTO patent records.

mechanisms receive support in the literature. Acemoglu and Linn (2004) and Aghion et al.

(2016) have shown that market size is a crucial factor for innovation in the pharmaceutical

and auto industries, respectively. Sokoloff (1988) found that inventive activity in the early

nineteenth century accelerated in locations that were proximate to navigable waterways, while

Perlman (2016) finds strong effects on invention and agglomeration from the nineteenth century

development of railroads. Donaldson and Hornbeck (2016) measure the increased level of market

access caused by an expansion of the US railroad network between 1870 to 1890, finding the

aggregate impact on growth to be large.

We use data provided by Donaldson and Hornbeck (2016) to investigate the relationship be-

tween a state’s geographic connectivity and its level of patenting. By observing the development

of roads, railroad, and waterways over time, and assigning different per-mile costs to each mode

of transport, they construct the cost of shipping one ton of goods between every county pair in

the United States every 10 years from 1830 through 1920. A high cost of shipping goods out of

a state indicates that the state is geographically isolated.

Geographic connectivity may increase innovation both by allowing inventors to sell their inven-

tions to a larger market, and by encouraging the free exchange of ideas across geographies. The

average cost to transport goods out of a state is an imperfect proxy of these two measures. We

therefore consider alternative measures of geographic connectivity derived from these transport

cost data. Additionally, we ask whether the observed positive relationship between geographic

connectivity and innovation persists at the more granular county level.

We construct two measures of a county’s connectivity. Define κc,c′ to be the cost to ship one

ton of goods from county c to county c′ in 1880, and let κ̄c be the weighted average outgoing

transport cost for county c:

κ̄c =
1

N

∑
c′

ωc,c′κc,c′

25



for N the number of distinct c′. To account for the fact that connection to markets with more

economic activity may increase the reward to innovating more than connection to relatively

poor areas, we weight these averages by the mean wage income in county c′ in our principal

measures.14 Let µ and σ be the mean and standard deviation, respectively, of κ̄c in the sample.

We call our first measure of county connectivity its “cost advantage” and compute it as

Cost Advantagec =
µ− κ̄c
σ

A one unit increase in a county c’s cost advantage has the interpretation that the average out-

bound transport cost for county c is one standard deviation below the mean outgoing transport

cost. Our second measure of connectivity measures the number of people who live in counties

which lay within the median county-to-county transport costs radius of c. Specifically, letting

π50 be the median value of κc,c′ , define M(c) = {c′ : κc,c′ ≤ π50} to be the set of counties within

median county-to-county transport costs of c. For Pc to the population living in county c in

1880, we define a county’s “market size” to be

Market Sizec =
∑

c′∈M(c)

Pc

The agglomeration literature would predict a positive relationship between transport cost

advantage and innovation. Figure 11 tests this hypothesis.

Figure 11: Transport Cost State Scatters

Panel A: All states Panel B: Non-Western States
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Notes: Figure plots the relationship between outgoing shipment costs and innovation. The horizontal axis plots
the average cost to transport one ton of goods from a county in state s to counties in state d different from s. For
details on the construction of the county-to-county transportation cost measures, see Donaldson and Hornbeck
(2016). Panel A plots the relationship for all states, while Panel B plots the relationship only for non-Western
states. Non-Western states defined as those states with average outbound transport cost under $18. Source:
USPTO patent records, Donaldson and Hornbeck (2016).

The horizontal axis plots the average cost advantage and the vertical axis plots the average

number of patents per 10,000 state residents over the period spanning 1920 to 1940. Panel A

shows only a weak positive relationship between transport cost advantage and innovation across

14Using unweighted measures, or weighting by destination county population or patent counts does not qualita-
tively change the conclusions of this section.
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all states. However, closer inspection reveals that the weak relationship between transport cost

advantage and innovation is driven by a number of states with high transport costs. These

states are all in the West of the United States. Although regional economies within the country

integrated to form a national economy from the nineteenth to the early twentieth centuries (Kim

(1995)), in such places the cost of transporting people, goods and information still represented

a significant constraint.

Hence, the results are notably different when we consider the older, more integrated East

Coast and Midwestern states where economic activity was concentrated. At the turn of the

twentieth century the manufacturing belt contained almost three quarters of total manufacturing

employment (Krugman (1991)). Panel B focuses only on the states with average shipping costs

below $18, which includes most of this area. The nonlinearity is important. Among the states

where the average outgoing transportation cost is below $18, the relationship between innovation

and transportation cost advantage is strongly positive, suggesting that access to outside markets

was an important component of innovation among traditionally developed states.

Robustness. These state-level patterns are confirmed through county-level analysis in Table

10. We report the coefficients from a county-level regression of patents per 10,000 residents on

our two measures of county connectivity.

Table 10: Transport Costs, Market Size and Innovation: County-Level Results

(1) (2) (3) (4)

Transport Cost Advantage 0.096 0.583∗∗∗

(0.080) (0.199)
Market size 0.040 0.713∗∗

(0.081) (0.281)
% Agricultural Occupation -0.569∗∗∗ -0.573∗∗∗

(0.158) (0.158)
% Manufacturing Occupation -0.129 -0.137

(0.169) (0.168)

State Fixed Effects N Y N Y
Observations 2757 2073 2757 2073

Notes: Table presents estimates from OLS regressions of average patents per 10,000 between 1920 and 1940 on the
degree of state geographic connectivity in 1920, as measured by a state’s cost advantage or the population living
within median transport cost of the county. A one unit increase in a state’s cost advantage has the interpretation
that the average outbound transport cost is one standard deviation below the mean outgoing transport cost in
that state. All independent variables measured as of 1920 and standardized to have zero mean and unit standard
deviation. Standard errors clustered at state level reported in parentheses. Observation counts drop in columns
2 and 4 due to missing occupation data in the county. ∗,∗∗ ,∗∗∗ represent that coefficients statistically differ from
0 at the 10%, 5%, and 1% level. Source: USPTO patent records, Donaldson and Hornbeck (2016).

Columns 1 and 3 show little evidence that more connected counties were more innovative,

unconditional on any covariates. However, this is subject to the same concerns as the state-

level scatter plots presented in Figure 11: grouping states further westward with established

eastern states masks the economic mechanisms at play during this time period. Once we control

for state fixed effects and the county-level sectoral mix in columns 2 and 4, we find a strong

positive relationship between a county’s geographic connectivity and its innovation intensity. A
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one standard deviation increase in a county’s cost advantage (market size) is associated with an

increase in patents per 10,000 of 0.583 (0.713) between 1920 and 1940, conditional on state fixed

effects.

Fact 5. States associated with slavery were less inventive but religiosity is not

robustly correlated with inventiveness.

One potential explanation for these underlying state-level and county-level differences is that

innovative places are relatively more open to unconventional and disruptive technological ideas.

The recent literature has shown that the opening of the labor force to women and minorities

has important consequences for growth. Viewing the changes in labor market outcomes for

women and minorities through the lens of a Roy (1951) model, Hsieh et al. (2013) show that the

convergence in the occupational distribution between white men, women, and black Americans

can account for 15 to 20% of growth in aggregate output per worker between 1960 and 2010.

The effect of this convergence on innovation, however, remains an open question.

Cultural differences may be an important determinant of a region’s innovative activity and

growth ((Gorodnichenko and Roland, 2011)). Yet, culture can have a positive or a negative

effect. For example, productive aspects of social capital have been linked to financial development

(Guiso et al. (2004)), whereas negative aspects of social capital have been linked to the rise of

fascism (Satyanath et al. (2016)). Insofar as the makeup of society influences the incentives

for creative invention (e.g., Florida (2002), Acemoglu et al. (2014)), we would expect to find

correlations between a state’s level of innovation and its demographic characteristics.15

An important aspect of openness of a society to innovation and economic growth could be

seen from its approach towards slavery. Wright (1986) argues that the southern economy of

the US was constrained by a lack of technological innovation in agriculture and manufacturing

because of slavery. Slavery can undermine trust, having a persistent effect on beliefs and behavior

(Nunn and Wantchekon, 2011). A lack of cultural freedom to deviate from established norms can

strongly inhibit innovation. Cook (2011) finds that while African American inventors often made

important technological discoveries during the nineteenth and early twentieth centuries, they

were much less likely to do so in closed environments such as places that implemented segregation

laws. Logan and Parman (2015) link racial sorting to a doubling in a newly constructed index

of residential segregation in the US between 1880 and 1940.

Another important dimension through which societal attitudes towards innovation and eco-

nomic growth can be shaped is through religion. Following Weber, “ascetic Protestantism”—the

idea that idleness is sinful and rigorous self-discipline is necessary to serve God—is often hypoth-

esized to have a positive effect on economic growth, though the relationship has proved difficult

to verify empirically (e.g., Cantoni (2015)). A more recent set of studies has directly addressed

the question of whether religiosity promotes or inhibits innovation. Benabou et al. (2013) and

Benabou et al. (2015) conclude that the relationship is robust and strongly negative. While their

15Another project attempts to match patent data to the Censuses. Sarada et al. (2016) match patent data from
the Annual Report of the Commissioner of Patents at decennial intervals from 1870 to 1940 to the US Federal
Population Censuses in those years. Their study is complementary to ours as it focuses on the relationship
between the demographics of patentees and economic and demographic characteristics at the county-level.
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evidence is compelling for the United States in the modern era, we lack corresponding empirical

evidence on the relationship between religion and innovation for the US in our time period.

We incorporate slavery and religion into our analysis. We use data from the 1860 Census to

determine the percentage of slave-owning families.16 If a state’s slave ownership rate captures

a society’s openness to change, one would expect that innovation would correlate negatively

with the slave ownership rate. Given the multidimensional nature of religion we use a variety

of measures based on data in the Census of Religious Bodies. Specifically, we construct two

measures: the share of the population belonging to any religion, and a Herfindahl Index of

religious membership. The intuition behind the last measure is that it captures religious diversity

and therefore the extent to which different beliefs are tolerated within broad communities. This

variable proxies for the degree of openness to disruptive ideas, as a conduit to technological

innovation (Acemoglu et al. (2014)).

Our results with respect to slavery have a natural interpretation. Figure 12 shows the re-

lationship is unambiguously negative and statistically significant both when we correlate slave

ownership with patenting in all US states and when we do this for only states in the south-

ern part of the country, where slavery was most prevalent. The basic correlation can be taken

alongside the descriptive statistics in Table 1 showing that slave states were disproportionately

among the least inventive in the United States. Our findings are consistent with the view that

slavery severely stunted economic growth (e.g., Wright (2006)).

Figure 12: Slave Ownership and Innovation

Panel A: All States Panel B: Most Severe States
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Notes: Figure plots the relationship between the percent of families which owned slaves in the 1860 census, and
the average patents per capita between 1880 and 1940. Panel A plots the relationship for all states, while Panel
B only includes states which have positive slave ownership rates. Many northern states did not have positive
slave ownership in the 1860s. Source: 1860 Historical Census Data, USPTO patent records.

As shown in Figure 13, the relationship between religion and inventiveness is more complex.

We find no strong correlation at the state level between the Herfindahl Index of religious openness

measure (Panel A), or the share of the population of a state belonging to a religion (Panel B) and

inventiveness. Although these findings contrast with Benabou et al. (2013) and Benabou et al.

(2015) this difference could be explained by the fact that the effect of religion on innovation may

16County-level slavery statistics were calculated by Acharya et al. (2016).
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have varied over time. Historically—much more so than today—religion was associated with

literacy and access to education (Goldin and Katz (2001)). The positive (though statistically

insignificant) effect of religion that we find in Figure 13 may simply be capturing the underlying

impact of human capital. The upshot of these results is that the effect of religion on innovation

at the state-level is ambiguous.

Figure 13: Religion and Innovation

Panel A: Herfindahl Index Panel B: Share Belonging

of Religious Membership to any Religion
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Notes: Figure plots the relationship between various measure of religion from the Census of Religious Bodies,
and the average patents per capita between 1920 and 1940. Panel A plots the Herfindahl Index of religious
membership, while Panel B plots the share of individuals in a state belonging to any religion. Source: 1916
Census of Religious Bodies, USPTO patent records.

Robustness. These contrasting findings for the nature of the relationship between social

structure and innovation from the perspective of slavery and religion are confirmed at the county-

level. Table 11 column 1 shows that the negative relationship illustrated in Figure 12 holds in

the cross section of counties when we use the share of the population as slaves as an independent

variable.

Table 11: Slave Ownership and Innovation: County-Level Results

(1) (2)

% of Population Slaves -0.391∗∗∗ 0.274
(0.117) (0.232)

% Agricultural Occupation -0.423∗∗∗

(0.095)
% Manufacturing Occupation 0.067

(0.120)

State Fixed Effects N Y
Observations 2200 2186

Notes: Table reports coefficients from OLS regression of average patents per capita between 1920 and 1940 on
county-level slavery. All independent variables measured as of 1920 and standardized to have 0 mean and unit
standard deviation. Heteroskedasticity robust standard errors reported in parentheses. Source: 1860 Historical
Census Data, USPTO patent records.

Although with additional controls for occupational mix the coefficient becomes statistically

insignificant in column 2 and even reverses sign, this only tells us that differences in the share
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of slave ownership across counties but within states had no effect on patenting. Variation in the

cross-section of counties (and states) should be more important in this case given that unob-

servable traits like discrimination or institutional weaknesses that would be strongly correlated

with slavery will tend to be be fixed within states.17

Table 12 reports corresponding estimates at the county-level for the relationship between

religion and patenting. In columns 1 and 2 the coefficients on the Herfindahl Index of religious

membership are economically small and statistically indistinguishable from zero. However, we

do find a negative estimate in columns 3 and 4 on the broadest measure of religiosity, which

is statistically significant in column 4. This finding is consistent with the negative effect found

by Benabou et al. (2013) and Benabou et al. (2015) for the modern era. Overall, however,

when taking the evidence in 13 and Table 12 together, it appears that religion was not a strong

predictor of technological development during the US golden age.

Table 12: Religion and Innovation: County-Level Results

(1) (2) (3) (4)

Herfindahl Index of Church Membership -0.045 -0.012
(0.040) (0.060)

% of Population Belonging to a Religion -0.053 -0.135∗∗

(0.053) (0.057)
% Agricultural Occupation -0.396∗∗∗ -0.413∗∗∗

(0.086) (0.083)
% Manufacturing Occupation 0.028 -0.005

(0.085) (0.087)

State Fixed Effects N Y N Y
Observations 2732 2708 2715 2692

Notes: Table reports coefficients from OLS regression of average patents per capita between 1920 and 1940 on
county-level measures of religiosity. All independent variables measured as of 1920 and standardized to have 0
mean and unit standard deviation. Heteroskedasticity robust standard errors reported in parentheses. Source:
1916 Census of Religious Bodies, USPTO patent records.

3.2 Personal Facts

Moving on from environmental factors, we now make use of our microdata to present facts about

the inventors of the golden age. While the macroeconomic facts we presented above are informed

by linking our patent data to regional aggregates, this section relies largely on our dataset of

patents matched to the Censuses. We examine the personal background of inventors, paying

special attention to their educational attainment and age, entry and exit over the life cycle of

inventiveness, lifetime migration decisions and marriage patterns.

17In Table 11 when we run the regression in column 2 without state fixed effects and just with controls the
coefficient is still negative (-0.169, s.e. 0.232). Alternatively, if we include just state fixed effects but no
controls, the sign on the coefficient reverses (0.179, s.e. 0.225).
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Fact 6. Inventors were more educated on average and were most productive between

the age of 36 and 55.

A large literature suggests that education is a key factor for economic growth (see, for instance,

Lucas (1998), Benhabib and Spiegel (1994), Bils and Klenow (2000), Goldin and Katz (2009),

Barro (2001), Vandenbussche et al. (2006), Stokey (1991)). One of the main channels through

which education affects economic growth may be its impact on innovation. Figure 14 shows the

number of inventors per 10,000 people within each education group. While education seems to

be an important determinant of becoming an inventor, the effect is particularly strong at the

college degree level. Although the 1940 Census tended to overstate education levels (Goldin

(1998)) the differences we see between categories are large. For example, an individual with at

least a college degree is four times more likely to become an inventor than an individual with

just a high-school diploma. Indeed, 40% of inventors had a college degree in 1940, compared

with just 10% of the non-inventor population.

Figure 14: Education and Probability of Becoming an Inventor

Panel A: Inventors per 10,000 by Education Panel B: Percent of Inventors in

Each Education Category
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Notes: Figure plots the education of inventors and non-inventors in the 1940 census, the only census in our
sample to provide sufficiently granular education information. Panel A plots the inventors per 10,000 people
by education category. Panel B plots the percent of inventors and non-inventors that fall into each educational
category. Source: 1940 Historical Census Data, USPTO patent records.

The opportunity cost of education is time spent in an active career. In theoretical models

of education, individuals face a tradeoff between the benefits of higher education, which ac-

cumulate over the life cycle, and the costs which are incurred early on (Becker (1967), Card

(2001)). By extension economic growth can be affected by the tradeoff inventors face between

acquiring human capital to innovate and the potential delays this creates in the production of

new technological discoveries that, in turn, benefit society. Jones (2010) argues that if true

breakthroughs are developed by younger cohorts of individuals, the growth-slowing delay effect

can be pronounced, especially if more human capital is required for the production of creative

ideas as the demands of developing novel innovations increases over time. He finds that the age

of great invention shifted upwards by about half a decade over the twentieth century.

We find that inventors were most productive between ages 35-55 as illustrated in Figure 15.
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This is true for males and females, although we observe few female inventors. Interestingly, as

shown by Sarada et al. (2016) the average age of invention in 1900 was approximately 40 years

old, about what it is converging to today. Our data indicate that inventors had a reasonably

long productive career-length. Long career-length is consistent with Khan and Sokoloff (2004)’s

data on superstar inventors. They found that while 37 percent born prior to 1820 had careers

over 30 years, 57 percent did in their post-1820 birth cohorts. A broad inventor life cycle, like

we observe, tends to maximize creative output (Galenson, 2016).

Figure 15: Probability of Innovation by Age
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Notes: Figure shows the average life cycle of inventiveness over the years 1880 to 1940. It plots the number of
inventors per 10,000 individuals by gender. The dark blue bars plot the number of male inventors per 10,000
males against the left axis, while the bright red bars plot the number of female inventors per 10,000 females
against the right axis. Source: 1880-1940 Historical Census Data, USPTO patent records.

Fact 7. Inventors were positively selected through exit early in their careers, but

were less productive and more likely to exit late in their careers.

We extend the analysis to study career dynamics. If inventors approximate the life cy-

cle of firms, some should enter, develop and succeed whereas others should fail and exit—

entrepreneurial churn is an essential feature of a well-functioning innovation sector (Haltiwanger

(2012)). There is a large growth literature examining firm selection and its mechanism. Ace-

moglu et al. (2015) examine potential misallocation of R&D inputs using a model in which old

firms may be positively selected through endogenous exit of low-quality firms (as in Jovanovic

(1982) and Hopenhayn (1992)), or negatively selected through obsolescence.

Figure 16 plots the career cycle of inventors using the universe of inventor data, as opposed to

just the inventor data matched to the Census. Panel A plots the exit rate for inventors over their

life cycle, where an inventor is said to have exited in period t if they file no successful patent

applications in every period t′ > t. Panel B plots the average number of patents conditional on

survival for inventors over their tenure in the data. In both panels, the horizontal axis plots the

number of years since the inventor filed his first successful patent application.
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Figure 16: Inventors’ Career Dynamics
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Panel A plots the exit rate for inventors over their life cycle, where an inventor is said to have exited in period t
if they file no patent applications in every period t′ > t. Panel B plots the average number of patents conditional
on survival for inventors over their tenure in the data. Source: USPTO disambiguated inventor data 1920-2006,
constructed by the authors using the algorithm of Li et al. (2014). Source: USPTO patent records.

The figure reveals both similarities and differences with the life cycle dynamics of firms. We

find evidence for both positive selection through exit, and eventual obsolescence of inventors.

Panel A of Figure 16 shows that inventor exit rates exhibit a U-shape, while Panel B shows

that the number of patents conditional on survival has an inverted-U shape over the life cycle.

Positive selection occurs early in an inventor’s career, where low productivity inventors stop

applying for patents. This yields a decreasing exit rate and increasing average productivity over

the average inventor’s life cycle. In later years of life, however, skill obsolescence and old age set

in, reducing inventor productivity, and increasing exit rates. In the limit, biological constraints

ensure that the inventor exit rate converges to one.

Fact 8. The patents of new inventors received more citations on average, and were

more likely to be in the top decile of the citation distribution.

Young firms are an important source of employment creation (Haltiwanger, 2012), and the

entry of young firms may yield particularly radical innovations. Akcigit and Kerr (2016) estimate

a model with heterogeneous innovations and find that innovative young firms do indeed invest

more heavily, relative to their size, in products outside their normal span of expertise. Bernstein

(2015) shows that publicly listed firms have less novel innovations and instead advance internal

projects. In a recent survey, Lerner (2012) examines the advantages and liabilities of large

companies for pursuing new innovation areas compared to start-ups.

There are reasons to suspect that the economics governing the differences between young and

old firms might not carry over to the dynamics of a human inventor’s career. For instance,

the intuition laid out in the Lucas (1978) span-of-control model suggests that large firms might

curtail innovation due to limits on its managers’ time. On the other hand, there might exist

innovation benefits for old, large firms if idea circulation is key to the innovative process (Hellman

and Perotti, 2011). These mechanisms rely on the organizational structure of a firm, which has

no clear counterpoint in an individual inventor’s life cycle.
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We therefore investigate the quality of the patents granted to inventors over their career

path. We proxy a patent’s quality and influence by considering its citation count, adjusted

following the methodology of (Hall et al. (2001)). Figure 17 plots various moments of the patent

quality distribution measured each year of an inventor’s career, conditional on survival. Panel

A plots the probability that a patent granted t years after the inventor’s first successful patent

application lies in the bottom quartile and Panel B repeats the same exercise with the top

quartile of citations received. They show that patents granted by new inventors are more likely

to be highly cited than patents granted by inventors with a long record of patenting, mirroring

the dynamics of innovative firms found in the previous literature. Indeed, patents in the first year

of an inventor’s inventive tenure are 4.74 percentage points more likely to lie in the top quartile

of patent citations, and 3.3 percentage points less likely to be in the bottom quartile than are

patents granted 6 or more years after the inventor’s first patent, conditional on individual and

technology-year fixed effects. These plots are especially striking since they are conditional on

survival, given that Figure 16 shows positive selection, measured by raw patent counts, among

inventors who continue to innovate over a long career.

Figure 17: Patent Quality over an Inventor’s Life Cycle
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Notes: Figure plots regression coefficients from an OLS regression of the panel title on indicators for whether
a patent was granted t years after the inventor’s first appearance in the patent data. All regressions include
individual and technology-year fixed effects. Grey bands indicate 95% confidence interval around point estimates,
using standard errors which are clustered at the technology class-year level. Source: USPTO patent records.

Table 13 repeats the same analysis in a regression framework. Column 1 regresses the log of

citations on an an indicator that is equal to 1 if the patent is granted within the first two years

of inventor career and 0 otherwise. It shows clearly that patents obtained early in the career are

of higher quality on average. Columns 2 to 5 replace the dependent variable with an indicator

showing if the patent belongs to the relevant citation quartile. Again, on average, we see that

inventors produce more influential work early in their career.

Fact 9. Inventors delayed marriage and had fewer children.

To the extent that this life cycle dynamic created tradeoffs with respect to time allocation,

one area in which we would expect to observe this is through marriage. Theory models specify
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Table 13: Panel Relationship between Entry and Patent Quality

Log Patent in quartile (coefficients sum to 0):
Citations First Second Third Fourth

(1) (2) (3) (4) (5)

Patent granted in first 0.077∗∗∗ -1.791∗∗∗ -1.087∗∗∗ 0.350∗∗∗ 2.528∗∗∗

two years of inventor career (0.002) (0.093) (0.092) (0.096) (0.091)

Inventor Fixed Effects Y Y Y Y Y
Class × Year Effects Y Y Y Y Y
Observations 4290376 4765684 4765684 4765684 4765684

Notes: Table reports regression coefficients from an OLS regression of log citations and whether a patent was
in a particular quartile of the citation distribution on an indicator for whether a patent was granted in the first
two years of a career. All regressions include individual and technology-year fixed effects. Standard errors are
clustered at the technology class-year level. Source: USPTO patent records.

that commitment to a spouse soaks up time and effort, and that if married partners did not gain

from a union then they would remain single (e.g., Becker (1974)).

Anecdotally, some of the most prolific inventors did not believe in marriage. Nikola Tesla

thought that marriage was inconsistent with great invention. He commented in the New York

Herald in 1897 “I do not believe an inventor should marry, because he has so intense a nature,

with so much in it of wild, passionate quality, that in giving himself to a woman he might love,

he would give everything, and so take everything from his chosen field.” Tesla went on to argue

that “I do not think you can name many great inventions that have been made by married men.”

However, other great inventors did marry. Elias Howe (1819-1867), the sewing machine inventor,

married when he was 21 years of age. Thomas Edison married first at age 24 and within a year

had developed the revolutionary quadruplex telegraph for sending messages simultaneously over

a single wire. Following the death of his first wife, Edison married again at age 39.

Figure 18: Family Decisions: Probability of Being Married
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Notes: This figure plots the probability that an individual is married over their life cycle using data averaged
across our six census years (1880, 1900, 1910, 1920, 1930, 1940). The data are constructed from this repeated
cross section. The solid green line shows the marriage rate for inventors, while the red dashed line shows the
rate for the universe of non-inventors. For comparison, the marriage rate for non-inventor high-skill occupations
is plotted in the blue dotted line. Source: 1880-1940 Historical Census Data, USPTO patent records.
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Figure 18 shows that inventors delayed marriage substantially relative to the population as a

whole although inventors did indeed marry (or stay married) at a higher rate than their non-

inventor counterparts at older ages. Inventors also tended to have fewer children. Table 3 above

shows that inventors delayed fertility relative to the average American: 72.9% of inventors had

a child before the age of 35, while 80% of non-inventors had a child by this time. Of course the

relationship between delayed marriage and fewer children is mechanical. As Becker (1974, p.22)

points out, “the age of entry [into marriage] would be earlier the larger the number of children

desired.”

Figure 18 also plots the probability of marriage for those working in a high-skill occupation,

such as doctors and lawyers. The figure shows that inventors’ marriage decision mirrors that of

this group almost one-for-one. This comparison suggests that inventors’ difference from the rest

of the population is driven by underlying skill differences and human capital investment choices.

This similarity in observable marriage patterns with high-skill workers can be reconciled with

theoretical models of marriage markets like Bergstrom and Bagnoli (1993), where high-wage men

gain by delaying marriage relative to low-wage men because accumulated income is a signal of

quality when searching for the best partner.

Fact 10. Inventors were more likely to have migrated from their state of birth.

They moved to states that were more conducive to innovation.

Individuals migrate in order to seek better job prospects in their destination state. This

argument may apply particularly strongly for inventors, since, as shown above, environmental

factors shift both the costs and benefits of innovation. The example of Thomas Edison illustrates

this point. Not only did he stand to gain more from marketing his inventions in the larger market

of New Jersey and New York but he also benefitted from the larger supply of skilled labor and

financial development there. When inventors systematically move to such places, this generates

spatial concentration giving rise to agglomeration externalities (Carlino and Kerr (2015)).

Figure 19 confirms that Edison’s example is representative of the broader inventor population.

The figure shows that inventors were most likely to move after the age of 35: the beginning of

their most innovative period according to Figure 15. The high migration rate for inventors does

not simply reflect their higher average skill level. Indeed, we see that highly skilled individuals

in non-inventor occupations migrate significantly less than do inventors.

Migration can boost innovation at a more aggregate level as well. Immigrants can bring new

ideas, expertise, and specialized labor to an area, all of which facilitate the production of patented

innovations. Although modern studies have produced opposing conclusions on the role played

by immigrants in US knowledge production (e.g., Kerr and Lincoln (2010); Hunt and Gauthier-

Loiselle (2010); Borjas and Doran (2012)), historical evidence is more unequivocal. Moser et al.

(2014) estimates that German emigres who fled the Nazi regime provided a significant boost to

US invention during the twentieth century. In our data, Table 1 shows higher levels of interstate

and international migration in inventive states. The higher share of international migrants we

see in the top 10 inventive states is in line with Akcigit et al. (2016b)’s finding that inventors

are internationally highly mobile. In the top 10 most inventive states, 20.6% of the population
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Figure 19: Interstate Migration Rates by Age
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Notes: Figure plots interstate migration rates by age of individual for the population of high skill individuals.
An individual is defined to be an interstate migrant if their birth state is different from their current state of
residence. Each point represents a 5-year forward-looking bin. For example, the point at age 20 measures the
average migration rate for 20 to 25 year-olds. Figure uses data averaged across the four census years for which
we have occupation information: 1880, 1920, 1930, and 1940. Source: 1880, 1920-1940 Historical Census Data,
USPTO patent records.

were international migrants, while just 1.7% of the population of the least inventive states were

born abroad.

Conditional on moving to a new location, where did inventors go? To answer this question,

Figure 20 plots the characteristics of geographic origin and destination amongst inventors who

move across state lines in our matched dataset of inventors to the Census. To facilitate the

exposition, a 45-degree line is also plotted which denotes no change at all. To understand the

plot, consider a point with 20 on the horizontal axis, and 60 on the vertical axis in Panel A.

This point shows that an inventor migrant from a state in which 20% of the population lives in

an urban area moves to a state with 60% of the population living in an urban area on average.

Most of the observations are clustered above the 45-degree line in Panel A, implying that

inventors generally moved from less to more urbanized regions. Likewise, Panel B shows that

inventors moved toward regions where deposit ratios were higher, suggesting that access to

finance could have played a role in their migration decisions. Panel C shows that inventors

moved toward regions where slave-ownership had been lower. Panel D shows little movement to

places with a strong religious presence. Overall, inventors generally migrated to regions whose

characteristics were well-suited to innovation.18

3.3 Family Background: Who Became an Inventor?

Having documented the basic facts about inventor careers, demographics and education, we now

examine family backgrounds. Does parental affluence matter for the propensity to become an

18Equally these were places where the population was moving as well. Thus while Figure 19 shows inventors
were much more likely to migrate than were non-inventors, conditional on migrating, inventors moved largely
in lock-step with non-inventors. This is how clusters of economic activity start to emerge: the movement of
people to centers of innovation becomes cumulative as it reduces the cost of moving products, accessing labor
and diffusing new ideas (Ellison et al. (2010)).
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Figure 20: To Where did Inventors Move?
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Notes: In each panel, the horizontal axis plots the average value of the variable of interest in the source state for
migrating inventors. The vertical axis plots the average of this variable in the destination state, weighted by the
number of inventors who move there from the given source. The dashed line plots the 45o line. Panel C plots
only source states in which slavery was legal in 1860, and thus has fewer data points than Panels A, B and D.
Source: 1860, 1940 Historical Census Data, 1916 Census of Religious Bodies, FDIC, USPTO patent records.

inventor? If so, through what mechanisms might this operate? Throughout this section we rely

heavily on our parent-child matched dataset.19 Because this covers individuals residing in the

same household, we are capturing inventors early in their career. Home-leaving ages increased

noticeably during the early twentieth century only starting to decline after World War II. Using

Census data Gutmann et al. (2002) find that in 1940 the median home-leaving age for white

males was 24 whereas 85% of unmarried white males lived at home between ages 15 and 29.

Fact 11. Father’s income was positively correlated with becoming an inventor. This

effect disappears once child’s education is controlled for.

Figure 21 illustrates the relationship between father’s income and the probability of becoming

an inventor. We find a strong association between the two, especially for the highest-income

fathers. The convex relationship between parental income and the propensity to become an

inventor is striking in its ubiquity. Aghion et al. (2015b) and Bell et al. (2015) document re-

markably similar patterns in modern administrative data from Finland and the United States,

19For details of its construction, see appendix A.2.
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Figure 21: The Relationship between Father’s Income and Becoming an Inventor
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Notes: Figure plots the number of inventors per 10,000 people by their father’s percentile of wage income in
the 1940 census. Only individuals successfully matched to their fathers are included in this plot. Wage income
percentiles are calculated using the full sample of matched fathers in the U.S. Source: 1940 Historical Census
Data, USPTO patent records.

respectively. The persistence of this relationship across time periods, geographies, and institu-

tions is among the most noteworthy facts in this new literature on the backgrounds of inventors.

Several mechanisms can plausibly drive the patterns illustrated in Figure 21. If education

was an important determinant of innovation, then the fact that only wealthy individuals had

access to education could imply that credit constraints were binding for low-income families (e.g.,

Celik (2015)). Furthermore, credit constraints may inhibit the ability of prospective inventors

to raise starting capital to develop their ideas. Alternatively, it is possible that high income

parents interact in better-connected social circles, permitting their children to access high-quality

funding, labor, and marketing resources. Finally, high income parents may have useful skills,

knowledge, or genes which they pass on to their children.

We provide insight into some of these potential mechanisms through Table 14, which examines

the relationship between fathers and sons using linear probability regressions. The dependent

variable is an indicator for being granted at least one patent, scaled by a factor of 100 for

legibility. Column 1 establishes a positive correlation between the father being an inventor and

the child being an inventor. Column 2 introduces parental income instead and column 3 includes

both measures. Having a father with income in the right tail of the distribution is very strongly

correlated with the child becoming an inventor, even conditional on basic covariates.

Of course, a potentially confounding effect is that high-income parents could themselves be

highly-educated, and so invest more in their children’s development. To address this, column

4 adds parental education. Interestingly, parental income still matters. Finally, in column 5

we include the child’s own education. The effect of parental income disappears, which suggests

that parental income only positively affects the probability of becoming an inventor through its

effect on children’s access to education. In column 6 we show that this finding is robust to the
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inclusion of occupation fixed effects, so it does not reflect occupational skill differences.

Table 14: Who Became an Inventor?

(1) (2) (3) (4) (5)

Father Inventor 0.161∗∗ 0.159∗∗ 0.157∗∗ 0.155∗∗ 0.154∗∗

(0.075) (0.076) (0.075) (0.075) (0.075)
Father Income 90th − 95th %ile 0.003∗∗ 0.002 -0.001 -0.001

(0.001) (0.001) (0.001) (0.001)
Father Income 95th %ile and above 0.008∗∗∗ 0.005∗∗∗ 0.000 -0.000

(0.002) (0.002) (0.002) (0.002)
Father: High School Graduate 0.004∗∗ -0.001 -0.001

(0.001) (0.001) (0.001)
Father: At least Some College 0.007∗∗∗ -0.002∗ -0.001

(0.001) (0.001) (0.001)
Self: High School Graduate 0.006∗∗∗ 0.005∗∗∗

(0.001) (0.001)
Self: At least Some College 0.029∗∗∗ 0.023∗∗∗

(0.004) (0.004)

Occupation FE N N N N Y
Observations 82810258 82810258 82810258 82810258 82810258
Mean of Dep. Var. 0.011 0.011 0.011 0.011 0.011

Notes: Standard errors clustered at the state-level reported in parentheses. All regressions include state fixed
effects, and controls for race, sex, migration status, a quadratic in age, and father’s age. Columns (2) through
(5) include indicators for father being between the 50th and 75th percentile of income, and between the 75th and
90th percentile of income as independent variables. The omitted categories are below median income and less
than high school eduction. Column (5) includes fixed effect controls for Census-defined occupation categories,
including those with missing occupation data as a separate category. Source: 1940 Historical Census Data,
USPTO patent records.

While Table 14 focuses on the extensive margin—the characteristics of those becoming inventors—

Table 15 considers the relationship between an inventor’s background and his productivity on

the intensive margin, measured by the number of career patents and citations he generates. In

column 1 we find a weak positive effect of the father being an inventor. In columns 2 through

4 and 6 through 8, we do not detect a strong effect of father’s income, or father’s education.

In column 5 we introduce the child’s own education and this is strongly correlated with long

run inventiveness. In other words, the most highly educated inventors tended to be the most

productive.

Two findings emerge when taking Table 14 and Table 15 together. First, the importance of

education holds both at the extensive and intensive margins, which is consistent with a human

capital explanation of invention. Second, both father inventor status and parental income matter

on the extensive margin but not on the intensive margin, which suggests that the existence of

credit constraints might have undermined inventiveness. This second finding is related to a long

line of research in the family firm and management practice literatures, showing that privileged

access to career paths (e.g., inherited CEO roles) is associated with under performance (e.g.,

Perez-Gonzalez (2006); Bloom and Van Reenen (2007) Caselli and Gennaioli (2013)).
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Table 15: Individual Background and Long Run Inventiveness

Dependent Variable: Log Career Patents Log Career Citations
(1) (2) (3) (4) (5) (6) (7) (8)

Father Inventor 0.140 0.164 0.120 -0.019 0.693 0.693 0.779∗ 0.633
(0.692) (0.643) (0.571) (0.578) (0.508) (0.454) (0.405) (0.429)

Father Income 90th − 95th %ile -0.211 -0.170 -0.180 -0.164 -0.142 -0.152
(0.241) (0.252) (0.252) (0.332) (0.328) (0.331)

Father Income 95th %ile and above 0.185 0.077 0.062 0.370 0.294 0.277
(0.208) (0.203) (0.195) (0.357) (0.395) (0.384)

Father: High School Graduate 0.066 -0.032 0.248 0.145
(0.118) (0.122) (0.232) (0.229)

Father: At least Some College 0.234∗ 0.121 0.224 0.104
(0.134) (0.126) (0.175) (0.176)

Self: High School Graduate 0.065 0.042
(0.042) (0.063)

Self: At least Some College 0.297∗∗∗ 0.310∗∗∗

(0.052) (0.054)

Observations 9032 9032 9032 9032 9032 9032 9032 9032
Mean of Dep. Var. 1.581 1.581 1.581 1.581 3.205 3.205 3.205 3.205
S.D. of Dep. Var. 1.365 1.365 1.365 1.365 1.964 1.964 1.964 1.964

Notes: Standard errors clustered at the state-level reported in parentheses. All regressions include state fixed
effects, and controls for race, sex, migration status, a quadratic in age, and father’s age. Columns (2) through
(4) and (6) through (8) include indicators for father being between the 50th and 75th percentile of income, and
between the 75th and 90th percentile of income as independent variables. The omitted income category is below
median income, and we omit an indicator for the individual having less than a high school education. ∗,∗∗ ,∗∗∗

represent that coefficients statistically differ from 0 at the 10%, 5%, and 1% level. Source: 1940 Historical Census
Data, USPTO patent records.

3.4 Return to Innovation

With our dataset of inventors matched to the 1940 Census we can examine the private returns to

innovation, with two caveats in mind. First, information on labor income is not recorded for all

observations in the Census; and second labor income itself provides only a partial measure of the

total financial returns to innovation. The discovery of new inventions may permit individuals

to start their own business and earn a return on new capital assets. Hurst and Pugsley (2011)

show that non-wage factors may be an important benefit of self-employment.

What we can do is examine the distribution and life cycle of wage earnings for inventors, both

unconditionally and conditional on observable characteristics. Insights from inventor earnings

profiles are important because the literature in this area is quite sparse due to data constraints.

There is no systematic empirical evidence on inventor earnings during the late nineteenth and

early twentieth centuries, even though anecdotally this was seen to be a key determinant of

inventor behavior. Schmookler (1966) argued that the expectation of pecuniary gain was implicit

to most inventors’ careers, citing Thomas Edison as an inventor whose motivations were largely

commercial and demand-driven by anticipated market size.

Even for modern periods, few studies on the profile of inventor earnings exist. There are some

studies on the topic, however. For example, Astebro (2003) characterises the distribution of

returns to independent invention for Canadian inventors between 1976 and 1993 as being highly
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skewed, with the average inventor earning less than an equivalent investment in a portfolio of

high-risk securities. Toivanen and Vaananen (2012) estimate a varying premium across inven-

tions for a sample of Finnish inventors who patented in the US between 1991 and 1999, although

they show the returns to the quality of technological development are particularly high. Depalo

and Di Addario (2014) also find that superstar Italian inventors patenting between 1987 and

2006 earned the most.

Fact 12. Successful patentees had substantially higher labor income, even control-

ling for demographics, occupation, and education.

Figure 22 plots the distribution of wage income for inventors and non-inventors in the 1940

Census. Panel A plots the unconditional CDF of log wage income for both groups. The solid

green line represents the distribution of inventors’ income, while the dashed red line shows the

distribution for non-inventors. Unsurprisingly, inventors have relatively high incomes. Indeed,

the inventors’ income distribution first order stochastically dominates that of non-inventors.

Figure 22: The Distribution of Labor Income by Inventor Status (1940)

Panel A: Unconditional Distribution Panel B: Conditional on Observables
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Notes: Figure plots the distribution of the natural log of wage income for inventors and non-inventors, as reported
in the 1940 census. Many individuals report 0 wages, and are excluded from this plot. Solid green lines plot the
distribution of inventors’ wages, while dashed red lines plot the distribution of non-inventors’ wages. Panel A
plots the unconditional CDF of log wages. Panel B plots the density of log wages residualized against observable
characteristics. Specifically, it plots the distribution of residuals from a regression in which the dependent variable
is log wages, and includes controls for race, education, sex, international migrant status, residence state fixed
effects, occupation fixed effects, and a quadratic in age. Source: 1940 Historical Census Data, USPTO patent
records.

Of course, this result is expected given that inventors are better-educated, higher-skilled, and

live in more urban states than non-inventors. Panel B therefore plots the distribution of wages

for inventors and non-inventors after conditioning on observables. Specifically, we regress an

individual’s log wages on race, education, sex, international migrant status, residence state fixed

effects, occupation fixed effects, and a quadratic in age. We then plot the distribution of residuals

from this regression for inventors and non-inventors. Even after controlling for all observable

characteristics, inventors have higher wage incomes throughout the distribution.

Inventors also have a steeper life cycle profile of wages. Figure 23 plots the average life cycle

of log earnings for inventors, non-inventors, and non-inventors in high skill occupations. This
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figure is constructed from the cross-section of individuals at each age. We see that inventors

have higher earnings throughout their life cycle than non-inventors and high-skilled individuals.

Indeed, Table A-5 in the Appendix shows that the difference between the wages of inventors and

high-skill non-inventors is statistically significant at the 1% level from the age of 19 onwards.

These figures provide suggestive evidence that invention was a key labor income differentiator.

Figure 23: The Life Cycle of Earnings by Inventor Status
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Notes: Figure plots the evolution of log average wage income over the life cycle. The solid green line plots
the evolution of inventors’ wage income, while the dashed red line plots the wage evolution of the universe of
non-inventors. The dotted blue line plots the life cycle of wages for doctors and lawyers. All plots use 1940
census data only. Source: 1940 Historical Census Data, USPTO patent records.

Fact 13. Inventor’s income was highly correlated with the quality of invention, as

measured by patent citations.

If the returns to invention reflected pecuniary gains from technological development we would

also expect to observe a correlation between labor income and the quality of patents. Our data

shows a strong correlation between the the quality of an inventor’s patent portfolio and log

wages. Figure 24 Panel A plots the relationship between the number of patents an inventor files

over his life time and log average wages. Panel B mirrors Panel A, except the horizontal axis

now weights each patent in an inventors portfolio by the number of citations the patent receives.

Both panels exhibit a robust positive relationship between inventor productivity and log wages,

suggesting that the higher-quality inventors were being compensated for their inventions.

There are two possible explanations for this positive relationship between wages and inventor

productivity. First, an inventor may simply be more productive as a result of his past inventions.

Alternatively, if invention is a signal of underlying worker type, an employer may pay an inventor

more of a financial premium in anticipation of future productivity.

To disentangle these two effects, we regress log wages, measured in 1940, on an inventor’s

innovative activity both before and after 1940. If the current productivity effect dominates, we

would expect pre-1940 innovation to have a strong effect on wages. However, if the anticipation

effect dominates, the forward-looking innovative activity should predict an inventor’s wages,
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Figure 24: The Relationship between Innovative Productivity and Wages
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7.

4
7.

6
7.

8
8

8.
2

Lo
g 

W
ag

e

0 20 40 60 80 100
Patent Count Quantile

7.
4

7.
6

7.
8

8
8.

2
Lo

g 
W

ag
e

0 20 40 60 80 100
Citation−Weighted Patent Count Quantile

Notes: Figure plots the relationship between log average wages and the quantile of inventive activity, conditional
on being granted at least one patent. The median inventor is granted only 3 patents. Thus the unweighted patent
count has relatively few percentile points at the low end of the distribution: the first 24% of the distribution is
contained in the first percentile data point. Source: 1940 Historical Census Data, USPTO patent records.

so long as employers correctly anticipate an employee’s future productivity. The results are

reported in Table 16. Each regression controls for inventor demographics, education, and state.

Whether we measure innovative activity as the log number of patents or as the log number of

citations received, we find the anticipation effect to be a stronger determinant of wages.

One might expect the anticipation effect to be stronger for young inventors who have a longer

career ahead of them at the point in time that they enter the most productive part of their

careers (see Figure 15). In columns 2 and 4 of Table 16, we interact our forward- and backward-

looking innovation measures with an indicator for whether the individual is over 35 years old in

1940. In line with theory, past productivity is a stronger predictor of wages for those over 35,

while the reverse is true for those under age 35.

3.5 Income Inequality and Social Mobility

In this section we use the income data in the 1940 Census to study the effect of innovation on the

make up of local societies. Do more inventive states have higher or lower wage inequality and

social mobility? The nature of the relationship between innovation and income inequality is ex

ante ambiguous. If innovation displaces incumbent firms and creates new wealth for competing

entrants, more innovative societies are more likely to have lower income inequality. However,

if innovation primarily strengthens incumbent firms, allowing them to increase markups and

constrain output, income inequality in a society may rise with its level of innovation.

This issue is especially relevant given the large literature on income inequality and recent

attempts to analyze the relationship between the top income share and patenting. The existing

empirical literature is divided on the topic. Aghion et al. (2015a) examine modern US data

finding a positive causal effect of innovation-led growth on top incomes shares at the state-level.

However, they also find some sensitivity to measurement. The relationship between inequality

and patenting becomes much weaker at different thresholds like the top 10% share, and they find
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Table 16: What Determined Income?

(1) (2) (3) (4)

Log Patents Pre-1940 0.028∗∗ -0.051∗∗∗

(0.012) (0.018)
Log Patents Post-1940 0.064∗∗∗ 0.125∗∗∗

(0.008) (0.015)
Log Patents Pre-1940 × Over 35 0.109∗∗∗

(0.018)
Log Patents Post-1940 × Over 35 -0.090∗∗∗

(0.016)
Log Citations Pre-1940 0.017∗∗ -0.013

(0.006) (0.009)
Log Citations Post-1940 0.038∗∗∗ 0.067∗∗∗

(0.006) (0.009)
Log Citations Pre-1940 × Over 35 0.041∗∗∗

(0.010)
Log Citations Post-1940 × Over 35 -0.042∗∗∗

(0.010)

Observations 6059 6059 6059 6059
Mean of Dep. Var. 7.636 7.636 7.636 7.636
S.D. of Dep. Var. 0.850 0.850 0.850 0.850

Notes: Table presents estimated coefficients from a regression of log wages on innovation measures. We restrict
our attention to the sample of inventors matched to the 1940 census. Standard errors clustered at the state-level
reported in parentheses. All regressions include state fixed effects, and controls for race, sex, migration status,
occupation skill level, education and a quadratic in age. ∗,∗∗ ,∗∗∗ represent that coefficients statistically differ
from 0 at the 10%, 5%, and 1% level. Source: 1940 Historical Census Data, USPTO patent records.

a negative relationship when using the Gini coefficient, which considers all parts of the income

distribution not just the top share. By contrast Jones and Kim (2014) shows theoretically that

if innovations come from new entrants, the relationship between inequality and innovation could

be negative. Given the lack of consensus on the topic, it is important to place these modern

studies in a historical context.

Fact 14. Broad measures of income inequality (90/10, Gini) were negatively cor-

related with innovation.

Our results in Figure 25 generally point to a negative relationship between income inequality

and inventiveness.

The vertical axis plots the state-level 90/10 ratio and Gini coefficient as measured in the 1940

Census, while the horizontal axis plots backward-looking average patents per capita between

1920 and 1940. Both of these measures of inequality are strongly negatively associated with

regional inventiveness.

Table 17 reports the results from a state-level regression of 1940 wage income inequality on

average patents per capita between 1920 and 1940, and the state’s occupation mix. All indepen-

dent variables in the regression are standardized to have zero mean and unit standard deviation.

Column 2 shows that increasing the number of patents per capita by one standard deviation is as-

sociated with a decline in the 90/10 ratio of 0.28 (= 0.828/2.98) standard deviations, conditional
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Figure 25: Relationship between Wage Income Inequality and Inventiveness

Panel A: Ratio of 90th to 10th Percentile Panel B: Gini Coefficient

MSAR

NC

AL

GANM

KY

TN

LA

SC

ND

VA
WV

SD

OK

TX

FL

ME

ID

AZ

KSNE

IA

UT

MT

WY

MD

MN
ORMO

VT

CO

IN

WA

NH

PA

WI

RI

MI

MA

CA
OH

NY
IL

NJ

CT

NV

5
10

15
20

90
/1

0 
W

ag
e 

In
co

m
e 

R
at

io
 (

19
40

)

0 2 4 6 8
Patents per 10,000: 1920−1940

90/10 Wage Income Ratio (1940) = 15.607 −1.344 * Patents per Capita
Slope coefficient statistically significant at 1% level

MS

AR

NC

AL

GA

NM

KY

TN

LA

SC

ND

VA

WV

SD

OK
TX
FL

ME

ID
AZ

KS
NE

IAUTMTWY

MD

MNOR

MO

VT
CO

IN

WA

NH

PA

WI

RIMI
MACA

OHNY

IL

NJ

CTNV

.3
5

.4
.4

5
.5

.5
5

G
in

i C
oe

ffi
ci

en
t o

f W
ag

e 
In

co
m

e 
(1

94
0)

0 2 4 6 8
Patents per 10,000: 1920−1940

Gini Coefficient of Wage Income (1940) = 0.492 −0.019 * Patents per Capita
Slope coefficient statistically significant at 1% level

Notes: Figure plots the relationship between average patents per 10,000 residents between 1920 and 1940, and
the state-level wage income inequality observed in the 1940 census. Panel A measures income inequality with
the ratio of the 90th percentile to the 10th percentile of income, while panel B uses the Gini coefficient as its
measure. Source: 1940 Historical Census Data, USPTO patent records.

on the state’s occupation mix.20

Table 17: Wage Income Inequality and Innovation

Dependent Variable: 90/10 Ratio Gini Coefficient
(1) (2) (3) (4)

Av. Patents per Capita 1920-1940 -2.210∗∗∗ -0.828∗∗ -0.030∗∗∗ -0.010
(0.358) (0.343) (0.006) (0.007)

% Agricultural Occupation (1940) 1.777∗∗∗ 0.020∗∗∗

(0.343) (0.006)
% Manufacturing Occupation (1940) -0.086 -0.012∗∗∗

(0.216) (0.003)

Observations 48 48 48 48
R-squared 0.5545 0.7150 0.5239 0.7509
Mean of Dep. Var. 12.30 12.30 0.44 0.44
Std. Dev. of Dep. Var. 2.98 2.98 0.04 0.04

Notes: Table reports estimated coefficients from a regression of 1940 income inequality, measured by the ratio
of the 90th to the 10th percentile of wage income (columns 1 and 2) and the Gini coefficient (columns 3 and 4),
on the average patents per 10,000 residents between 1920 and 1940. Independent variables standardized to have
zero mean and unit standard deviation. White heteroskedasticity robust standard errors reported in parentheses.
∗,∗∗ ,∗∗∗ represent that coefficients statistically differ from 0 at the 10%, 5%, and 1% level. Source: 1940 Historical
Census Data, USPTO patent records.

Fact 15. Top-1% labor-income share had a U-shaped relationship with innovation.

The estimated relationship between innovation and income inequality is sensitive to measure-

ment.

Contrary to the findings of the previous section, the top 1% income share exhibits a non-

linear, U-shaped relationship with patenting. In the least innovative states we find a negative

20We do not present evidence on the relationship between county innovation and county-level inequality, as such
an analysis would miss the important cross-county inequality margin.
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relationship. However, in the most innovative states such as New York, New Jersey and Mas-

sachusetts we find that more patenting was associated with more income held in by the top

1%. One potentially confounding effect is the different mixes of occupations in these innovative

states. For example, Philippon and Reshef (2012) show that between 1909 and 1933 skill-based

wage-compensation in finance was high. Addressing this concern, Appendix Figure A-8 shows

that these patterns are robust to excluding individuals who work in the financial sector.

Figure 26: Relationship between Top-1% Labor-income Share and Inventiveness
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Notes: Figure plots the relationship between average patents per 10,000 residents between 1920 and 1940, and
1940 state-level wage income inequality, measured by the share of income controlled by the top 1% of the state’s
wage earners. Source: 1940 Historical Census Data, USPTO patent records.

Although we do not claim to show a causal link between innovation and income inequality,

our analysis yields a number of important insights. First, alternative measures of inequality may

yield startlingly different results. The literature has not yet reached a consensus on the economics

behind these various measures. Second, the correlations presented here suggest that innovation

may indeed have an important effect on income inequality. Our time period covers a period in

US history when income inequality was high (Goldin and Katz (1999), Piketty and Saez (2003)),

and it was also associated with the diffusion of electricity as a major twentieth century general

purpose technology(Jovanovic and Rousseau (2005)). Our findings are therefore consistent with

the idea that technological change may drive a wedge between the relative earnings of the skilled

and unskilled.

Fact 16. Innovation was strongly positively correlated with social mobility.

While places with high income inequality tend to exhibit low levels of social mobility (e.g.

Chetty et al. (2014)), innovation might actually decrease inequality if it acts as a social elevator.

The Schumpeterian paradigm suggests that innovation allows a new entrant to capture markets

from old incumbents. This process of creative destruction creates churn in the economy, allowing

individuals and firms with limited market shares to grow. This mechanism lies at the heart of a

large class of economic models, such as Aghion and Howitt (1992), Klette and Kortum (2004),

and Akcigit and Kerr (2016). Yet, data constraints have prohibited direct evidence relating

innovation to social mobility at the societal level.
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We examine the relationship between innovation and social mobility directly using our occu-

pation data. Figure 27 shows how a state’s level of social mobility in 1940 correlates with the

number of patents per capita granted between 1920 and 1940. Social mobility is measured as

the fraction of individuals with a low skill father, who themselves have a high skill occupation.

We see that more innovative regions feature more social mobility.

Figure 27: The Relationship between Inventiveness and Social Mobility

AL

AZ

AR

CA

CO CT

DE
FL

GA

ID

IL

IN

IAKS

KY

LA

ME

MD

MA

MIMN

MS

MO
MTNE

NV

NH

NJ

NM

NY

NC

ND

OH

OK

OR

PA

RI

SC

SD

TN

TX

UT

VT
VA

WA

WV

WIWY

0
1

2
3

4

P
er

ce
nt

 w
ith

 lo
w

 s
ki

ll 
fa

th
er

w
ho

 h
av

e 
hi

gh
 s

ki
ll 

oc
cu

pa
tio

n 
(1

94
0)

0 2 4 6 8
Patents per 10,000: 1920−1940

Social Mobility = 1.301 + 0.339 * Patents per Capita
Slope coefficient statistically significant at 1% level

Notes: Figure plots the relationship between average patents per 10,000 residents between 1920 and 1940, and
1940 social mobility, measured by the share of those with a low-skill father who themselves have a high skill
occupation. Source: 1940 Historical Census Data, USPTO patent records.

Of course, more innovative states may have higher social mobility for a number of reasons. For

example, we have shown that innovative states tend to be more urban which may be correlated

with social mobility while states with different types of economic activity (agricultural versus

manufacturing) may also vary in their degree of change. To counter this concern, we regress

our measure of social mobility in 1940 on average patents granted per capita between 1920 and

1940, and controls for a state’s occupation mix. The percent of people in a state who work in

the agricultural sector serves as a proxy for the state’s degree of urbanization, while the states

least open to technological disruption tended to be agricultural and in the south. Table 18 shows

that the relationship between patents per capita and social mobility is positive and statistically

significant, even after controlling for occupational variation.

These results are informative from the standpoint of innovation as a driver of social mobility

given that Long and Ferrie (2013) find that around the turn of the twentieth century Amer-

ica was (from its mid-nineteenth century high-point) generally becoming a less socially mobile

place. While we do not measure changing mobility levels over time, our results do indicate that

innovative places were also socially mobile places. As we showed in Table 3 inventors were a

small share of the total population who had a large effect on US development. Our findings

underscore the need to study social movement within this sub-group of the population given the

implications for the relationship between social mobility and economic growth.
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Table 18: % of High-skill Child given Low-skill Father

(1) (2)
Av. Patents per Capita 1920-1940 0.746∗∗∗ 0.484∗∗∗

(0.116) (0.149)
% Agricultural Occupation (1940) -0.031∗∗∗

(0.011)
% Manufacturing Occupation (1940) -0.016

(0.019)
Observations 49 48
R-squared 0.5924 0.6844

Notes: Table reports estimated coefficients from a regression of 1940 social mobility, measured by the share of
those with a low-skill father who themselves have a high skill occupation, on the average patents per 10,000
residents between 1920 and 1940. Both dependent and independent variables standardized to have zero mean
and unit standard deviation. White heteroskedasticity robust standard errors reported in parentheses below
coefficient. ∗,∗∗ ,∗∗∗ represent that coefficients statistically differ from 0 at the 10%, 5%, and 1% level. Source:
1940 Historical Census Data, USPTO patent records.

4 Relation to Previous Studies

Finally, we attempt to overview our findings by codifying the facts we have presented throughout

the paper in relation to the existing literature. We frame the discussion using Table 19, which

summarizes areas in which our findings tend to agree with previous studies or disagree. In some

cases our findings have no real counterpart in the literature. We highlight these as representing

new facts about the dynamics of US inventive activity.

Our regional-level findings agree with the basic arguments underpinning four main literatures.

The long-standing endogenous growth literature is framed by the idea that innovation and tech-

nological progress are key determinants of sustained development (e.g., Romer (1990), Aghion

and Howitt (1992)). Our results (Fact 1) have verified that basic premise holds true in the data

and in Section 3 we also attempted to show that the relationship between innovation and growth

is likely to be causal. We have also been able to identify key mechanisms. Consistent with the

large literature on agglomeration (e.g., Glaeser (2011)), we found that densely populated places

were more innovative (Fact 2). Our findings (Facts 3 and 4, respectively) also emphasise the

importance for innovation of access to finance (e.g., King and Levine (1993)) and spatial links

that would increase the extent of the market (e.g., Donaldson and Hornbeck (2016)).

Equally, some of our findings create a degree of ambiguity in relation to the current literature.

Given the frequently postulated relationship between the degree of openness of a region and its

inventiveness we find some contrasting results (Fact 5). The experience of US slave states is

perhaps the exemplar case of being closed to new ideas and we do find an empirically strong

negative relationship between slavery and innovation. On the other hand, religiosity is a weak

predictor of innovation in our data and time period. In the modern era the relationship is

robustly negative (Benabou et al. (2013) and Benabou et al. (2015)). We consider these types

of contrasting results to be equally informative because they reveal what has changed over time

in the types of social structures that affect a society’s propensity to innovate.

Given the large literature on the profiles of inventors historically (e.g., Lamoreaux and Sokoloff
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Table 19: Codifying the Facts

Agree Disagree New Fact
Fact 1 More inventive states and sectors grew

faster on average.
X

Fact 2 Densely-populated states were more in-
ventive.

X

Fact 3 Financially-developed states were more
inventive.

X

Fact 4 Geographically-connected states were
more inventive.

X

Fact 5 States associated with slavery were less in-
ventive but religiosity is not robustly cor-
related with inventiveness.

X X

Fact 6 Inventors were more educated on average
and were most productive between the age
of 36 and 55.

X

Fact 7 Inventors were positively selected
through exit early in their careers, but
were less productive and more likely to
exit late in their careers.

X

Fact 8 The patents of new inventors received
more citations on average, and were more
likely to be in the top decile of the citations
distribution.

X

Fact 9 Inventors delayed marriage and had
fewer children.

X

Fact 10 Inventors were more likely to have mi-
grated from their state of birth. They
moved to states that were more conducive
to innovation.

X

Fact 11 Father’s income was correlated with be-
coming an inventor. This effect disappears
once child’s education is controlled for.

X

Fact 12 Successful patentees had substantially
higher labor income, even controlling for
demographics and education.

X

Fact 13 Inventor’s income was highly correlated
with the quality of invention measured
by patent citations.

X

Fact 14 Broad measures of income inequality,
such as 90/10 ratio, Gini coefficient, were
negatively correlated with innovation.

X X

Fact 15 However, the top-1% income share has
a U-shaped relationship with innovation.

X X

Fact 16 Innovation was strongly positively corre-
lated with social mobility.

X
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(1999) and Khan and Sokoloff (2004)), our data help to confirm major findings about age profiles

and education characteristics using a large sample of inventors (Fact 6). It is also reassuring that

our results on the age distribution mirror those of Sarada et al. (2016) who match inventors to

Census records for the same time period as us using different data and methods. These types of

data are crucial to understanding the relationship between human capital and economic growth

(e.g., Lucas (2009), Alvarez et al. (2013), Lucas and Moll (2014), Perla and Tonetti (2014)). Our

results pinpoint productivity variation over the life cycle and continue to dispel the traditional

argument that US inventors during the golden age were uneducated back-yard tinkerers.

We have also attempted to extend the analysis in a new direction by examining the life cycle

of invention through the lens of career dynamics. Following the literature on firm dynamics

(e.g., Haltiwanger (2012)) and the economic growth literature on entry, exit and reallocation

(e.g., Acemoglu et al. (2015) and Akcigit and Kerr (2016)) we find that inventors were positively

selected early in their careers on the quality of their inventions but their productivity dropped

sharply later in their careers, presumably as new entrants disrupted existing ideas (Facts 7

and 8). These findings help to reconcile why the age distribution is heaped around middle-age

(Fact 6) as does our evidence on marriage patterns, child rearing and time allocation (Fact

9). Finally, while it is known that inventors were susceptible to migration (Sarada et al. (2016))

we have presented further evidence on the nature of re-location decisions (Fact 10). These

findings, in turn, relate to our regional results showing that inventors tended to move to urban

and financially-developed places that were more likely to foster innovation (Facts 2 and 3).

We are also able to present new evidence on the family background of inventors (Fact 11). On

the extensive margin our finding that the entry of inventors was increasing in father’s income, but

the mechanism appears to be operating through better off families providing access to education,

is consistent with a human capital explanation of invention (Fact 6). Furthermore, our finding

that father’s income had no effect on the intensive margin of productivity is consistent with the

broader hypothesis that US technological development was characterized by the democratization

of invention (Khan and Sokoloff (2004)).

A large literature going back to Schmookler (1966) suggests that financial incentives drive

innovation and our findings confirm that rewards did accrue to individuals developing new

technological ideas. Most of the literature in this area is confined to modern periods where large

scale administrative records are available.(e.g., Bell et al. (2015) and Aghion et al. (2015b)).

While our results are novel given the lack of evidence on the returns to income for inventors in

historical time periods, they confirm the hypothesis that incentives matter. Inventors earned

more, especially if they produced high quality innovations (Facts 12 and 13).

Our results pertaining to the relationship between innovation, income inequality and social

mobility are controversial relative to the recent literature (e.g., Aghion et al. (2015b) and Bell

et al. (2015)) and they also indicate the need for more research. Much depends on the approach

to measuring inequality: the relationship between inequality and innovation is different if one

considers society as a whole (Fact 14 on the 90/10 ratio and Gini coefficient) or only the upper

echelons (Fact 15 on the top-1%). Our final finding, that innovation appears to be a major

social elevator (Fact 16) has important implications for how mobility connects to economic
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growth. Inventors are a small sub-group of society who have a large influence on everyday life

because of their technological ingenuity. We find that invention could be an important social

elevator even though the US population as a whole was becoming less socially mobile over time

(Long and Ferrie (2013)).

5 Conclusion

This paper presents a series of facts emerging from a major data collection and matching exer-

cise combining information from US patent records with state and county-level aggregates and

data on individuals from Federal Censuses between 1880 and 1940. The new data provide a

comprehensive profile of inventions and their creators during the golden age of US invention.

Our analysis begins with an attempt to identify a causal relationship between innovation and

long run economic growth. We proceed to explore some of the main mechanisms driving this

relationship using a framework for establishing macro and micro-level facts about the innovation

process.

Examining the drivers of innovation during this historical time period is critical and sheds

light on numerous key debates on innovation and long-run economic growth. Our data can also

complement modern studies such as Aghion et al. (2015b) and Bell et al. (2015) to provide

a more complete picture of inventor profiles over time and space. These new historical data

exhibit a positive relationship between state-level innovation and regional growth, population

density, financial development, geographic connectedness and social mobility. We further find

that inventors during this period were largely middle-aged white males, with above-average ed-

ucation. Inventors in 1940 were positively selected through early exit, had steeper life cycle

wage earnings profiles and right-shifted earnings distributions compared with similarly-skilled

individuals; this was especially true of the period’s most prolific inventors. Finally, our data sug-

gest a non-monotone relationship between a state’s level of innovation and its income inequality.

These areas have allowed us to gain preliminary insights into the birth of technological ingenuity

during one of the most important eras of American economic development.

A number of opportunities exist for further research. We have provided a range of interesting

correlations in this paper, and establishing causal links between our variables will help to shed

light on the nature of these facts and the various mechanisms at work. Yet taken at face

value, our study has important implications for the design of innovation policy. Establishing

the background of the most effective inventors informs well-targeted innovation interventions.

Furthermore, while regional innovation yields growth, it is also related to inequality and social

mobility. The extent to which innovation contributes to growth, inequality, and mobility is

central to determining the societal costs and benefits of technological advance.
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Appendix

A Census Data Description

In this section we detail our Census data and the methods we use to prepare it for analysis. We

use IPUMS complete-count data from the decennial Censuses in 1880, 1900, 1910, 1920, 1930,

and 1940. We are limited to this set of years because the complete Census records are released

only with a 72 year lag. In addition, the 1890 Census was largely destroyed in a fire in 1921. We

start in 1880 because the Census for this year is systematic and contains a set of family related

variables we use in our analysis. As the codebook for the 1880 Census writes:

“The 1880 Census is in several critical respects the first “modern” Census; it broke new

ground in its completeness of coverage, accuracy of enumeration, and range and detail

of questions. The supervision of enumerators shifted from a part-time responsibility of

regular U.S. marshals to 150 Census Supervisors specifically appointed for the purpose.

To make a full, accurate, and speedy enumeration practical, the size of enumeration

subdistricts was reduced from a maximum of 30,000 inhabitants in 1870 to a maximum

of 2,500 in 1880 while the number of enumerators was increased from 6,530 to 31,282.

A variety of new questions were added that greatly enhance the value of the 1880 Census

compared to earlier years. It was the first federal Census to inquire about marital status

... Equally important, a question on relationship to head of family was added, which

makes it possible to distinguish kin from secondary individuals and allows construction

of a wide variety of variables on family structure.”

The set of variables contained in the Census varies greatly over time. In addition, the micro-

data from the 1940 Census is continuing to be populated with additional variables. Table A-1

summarizes the information available in our six decennial Census years.

A.1 Cleaning the Census Data

The Census provides a unique identifier for each individual in its records. These person identi-

fiers, or “PIDs,” are unique within Censuses, but are not constant across each Census year: an

individual with PID 1 in 1880 is not the same individual with the PID 1 in 1900. We are unable

therefore to create a panel dataset using our six Census datasets. Although the PIDs are unique

in the vast majority of states and years, there are occasions in which the same individual shows

up twice in the same year. Supposing data entry errors, we drop these duplicate PIDs.21

We take steps to impute missing data where it is easy to do so; for instance, we fill in missing

age data by calculating the difference between the observed Census year and the individual’s

reported birth year.22

Before 1940, many variables are coded in strings rather than as categorical variables. For

instance, sex variables can take on values “MALE,” “FEMALE,” “M,” “F,” and additional

21One individual in Georgia (PID 559409) has consistently non-sensical data, and is thus dropped from the 1900
Census.

22A number of individuals in 1900 have negative ages, or some ages above 130 years old. We drop these individuals
from our analysis, supposing data entry errors.
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Table A-1: Variables in the Censuses

Census Year 1880 1900 1910 1920 1930 1940

Age X X X X X X
Race X X X X X X
Gender X X X X X X
Marital status X X X X X X
Years married X
Times married X
Birth place X X X X X X
Arrival year (immigrants) X X X X X
Mother’s birth place X X X X X X
Father’s birth place X X X X X X
Head of household X X X X X X
Family number X X X
Children born X
Children living X
Speak English X X X
Read X X X
Write X X X
Attended school X X X
Highest grade schooling X
Own home or rent X X X
Home mortgage X X X
Value of home X X
Radio X
Occupation X X X X
Industry X X X
Class of worker X X X
Income X

Notes: This list focuses on those variables we use in our analysis and for which a large number of records have
non-missing information. Home ownership variables are populated only for select group of individuals, and cannot
be robustly matched to patent data.

codes indicating unknown. In many cases, these are easy to categorize into numeric categories.

However, in certain instances, additional categorization must be done by hand. For instance,

the race variable often mixes race and nationality. We therefore must make some assumptions

as to what nationality corresponds to which race. For example, we classify those reporting that

they are “Asian,” “Chinese,” “Filipino,” “Japanese,” “Korean,” “Mongolian,” or “Siamese” as

one category “ASIAN.”

There are two additional places where such categorization plays an important role in our

analysis. First, the occupation variables contain over twenty thousand unique values in 1880,

1920, and 1930. Many of these unique values are the result of misspellings – such as “FARMR”

in place of “FARMER” – or due to differences between British and American English, such as

“LABOURER” instead of “LABORER.” In order to reduce the dimension of the occupation

data, we collapse the raw occupation data into three skill groups – low, medium, or high – and
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three occupation categories: doctors, lawyers, and farmers. The three skill groups are mutually

exclusive, and account for 79.4% of individuals with non-missing occupation data. Doctors and

lawyers are all high skill, while farmers can be any skill level so long as they appear to work in

farm related activities.

The skill classification proceeds as follows. We first classify individuals into low skill occu-

pations using a string match. Low skill individuals perform routine jobs, sell their labor as

hired hands, or work as servants or maids. For instance, if an individual reports an occupation

containing the string “ASSIST,” “CLERK,” “LAUNDR,” or “FARM,” they are initially classi-

fied as low skill.23 This method will classify those who say they are a shop clerk, blacksmith’s

assistant, laundry girl, or farm hand as low skill individuals. However, it will also classify farm

supervisors and legal clerks as low skill. To correct for this, we next begin the classification of

middle skill occupations.

Middle skill individuals are 1) those with particular specialties, such as carpenters or black-

smiths 2) those who perform middle management roles such as supervisors, or foremen, and 3)

those in the clergy or law enforcement. We replace those coded with low skill occupations with

a middle skill code if the individual both reports a string associated with a medium skill job,

and is not an assistant or apprentice. Therefore, those who report that they are a “Foreman

on a farm” will initially be classified as low skill because their occupation includes the string

“farm,” but will be updated to medium skill due to the string “Foreman.” On the other hand,

a “Blacksmith’s apprentice” will not be updated to medium skill, as the string “apprentice”

disqualifies classification as middle skill, even though the individual works with a blacksmith.

A similar routine is carried out for high skill classifications. Individuals are classified as high

skill if 1) their occupation requires higher cognitive thought, such as a scientist, lawyer, or

financier, 2) they are owners, directors, or upper management of ventures, 3) they are highly

skilled manual workers, such as jewellers, goldsmiths, or silversmiths, or 4) they are public

officials such as members of congress, or politicians. In addition, they must not be assistants,

apprentices or hired hands. Once again, therefore, one who “Owns a farm” will initially be a

low skill individual, but will be updated to high skill as a result of the string “own.” Finally,

students and those retired have missing occupation skills.

The occupation categories are more straightforward to classify. Doctors are those who are

both high skill and who report an occupation string containing “DOCTOR,” “MEDIC,” “MD,”

“PHARM,” “DENT,” “PSYCH,” or “OPTOM,” among others. Thus pharmacists, dentists,

psychiatrists, and optometrists will all be classified as doctors. Lawyers are high skill individuals

with an occupation string containing “LAW,” “JUDG,” “ATTORN,” and a number of legislator

strings such as “SENATE.” Thus attorneys, lawyers, judges, and legislators all count as lawyers

by our broad definition. Finally, farmers are any individual who have an occupation string

containing broad categories and common misspellings like “FARM,” “FRM,” “FIELD,” and

“CROP,” or more narrow strings such as “HUSKER,” “COTTON,” “PICK,” or “CHICKEN.”

23This example is far from the full set of strings used to classify individuals. A full list of terms is available
from the authors upon request. The set of strings was chosen by hand after examining the most common
occupations.
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The second major instance in which careful classification is required is in determining the

birthplace of individuals. The majority of individuals report their place of birth at the state or

country level. However, many give more specific answers such as the city, county, or (if abroad)

principality of birth. In order to calculate robust migrant flows, it is necessary to aggregate these

more refined answers to a state or country level. While there are too many small cities listed

to code each person by hand, we make substantial progress in matching individuals to their

state of birth: 86.7% of Census records with non-missing birthplace information are successfully

matched.

We begin this refinement process by standardizing place names to be upper case, with no

spaces. Next, we assign the largest cities in each state to its logical destination. For instance,

“MOBILE” and “BIRMINGHAM” are assigned to Alabama. Note that individuals who were

born in the much smaller town of Birmingham, Connecticut, for instance, will be incorrectly

matched to an Alabama birthplace. While we are comfortable with this small error in most

cases, it can prove quite difficult to address for city names that are large in multiple places.

For instance, many people live in both Kansas City, Kansas, and Kansas City, Missouri. In

such cases, we assume that the individual did not migrate across state lines if possible. That

is, we assign an individual’s birthplace to be Kansas if they currently live in Kansas and to be

Missouri if they currently live in Missouri. These large cities that appear in multiple states are,

as far as we can tell, only cities that straddle state lines. Therefore this conservative approach to

migration appears to be justified - even if an individual moves from Kansas City, MO to Kansas

City, KS, he will still be living in the same metropolitan area. Since classifying this individual

as a migrant is thus misleading, we believe this no-migration error is justified.

A similar routine is carried out for international migrants as well. In particular, many German

migrants provided specific states of birth, such as Bavaria, Württemberg, or Hamburg. Again,

we aggregate these to the country level. We then divide the reported countries into nine regions:

Western Europe, Scandinavia, Eastern Europe, Oceania, Africa, the Middle East, Latin America,

Canada, and East Asia.24

With the cleaned birthplaces, we can then define the migration status of individuals. An

individual is said to be an international migrant if they were born in any of the nine global

regions defined above. An individual is defined as an interstate migrant if their birth state is

different to their state of residence in the Census. Although we cannot calculate year-on-year

migration flows, we can ask whether an individual has moved out of his state of birth, and has

yet to move back.

A.2 Father Match

In order to study social mobility and the role of parental affluence, we attempt to form a robust

link between individuals and their parents. The 1940 Census provides an explicit match between

individuals and their spouse and parents, so long as they live in the same household. Using a

household identifier and a variable giving an individual’s person number in the household (e.g.

24A full list of classifications at both the state and country level is available from the authors upon request.
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household head is 1, spouse may be 2, father may be 3, etc.), and the person number of their

relevant family, we can explicitly ascertain the PID of the individual’s family members.

Before 1940, however, we use our own algorithm to determine the PIDs of individuals’ family

members. First, we generate a family identifier, given by a unique surname, household ID,

and city. We then use the relationship to household head variable recorded by the Census

to determine the PID of individuals’ family members. Specifically, we first limit ourselves to

families with only one household head. Then we consider those individuals who report being

either the household head or his/her spouse. We extract the PID of these household heads, and

assign them to individuals reporting to be either the son or the daughter of the household head.

This builds a crosswalk dataset - every son/daughter of a household head is matched to the PID

of his/her mother and father.

To test the validity of this matching routine, we use our algorithm on the 1940 data, checking

that we match the correct father to the correct child using the person number variables provided

by the Census. Our match is nearly perfect: among individuals for whom the Census provides a

person number match, we correctly ascertain the PIDs of an individual’s father in over 99.99%

of every state’s population.

While this high match rate is encouraging, it does not suggest that our algorithm is perfect.

Instead, it suggests that we are able to successfully replicate the Census’ own algorithm for

matching parents to children. The match is still subject to two important caveats. First, we

can only match individuals to their parents if they live in the same household, and therefore our

match may be more successful for younger children or poorer families. Second, we only match

parents if at least one of them is the head of the household. In principle, one could attempt

to match other members of the family by considering, for instance, the brother and nephew

of the household head. However, matching based on non-nuclear family members introduces

additional noise and incorrect matches, particularly in cases in which large families reside in

the same household. We therefore avoid these kinds of matches in the construction of our final

dataset.

B Patent Data Description

Our analysis is based on three main patent datasets we assembled using a mixture of hand entry

and optical character recognition (OCR) techniques based on the original patent documents,

and information from existing databases. These data are summarized as follows:

1. Patent Dataset A. 6,675,311 patents. Consists of close to the universe of patents

granted by the USPTO between 1836 and 2004 covering the location of the first named

inventor listed on the original patent documents down to the city level.

2. Patent Dataset B. 60,594 patents. Consists of the universe of patents granted by the

USPTO for the years 1880, 1900 and 1910 covering both the name and location of the

first named inventor down to the city level.
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3. Patent Dataset C. 5,739,225 patents. Consists of the universe of patents granted by

the USPTO including the name of all inventors and assignees from 1920 to 2006.

Note that these datasets contain overlapping and sometimes complementary information—for

instance, Patent Dataset A contains the location of inventors but not their names whereas

Patent Dataset C contains names but not locations.

We obtained address information for the first inventor from the original patent documents

using OCR and hand entry (Patent Dataset A). This dataset contains US patents that were

granted to both US citizens and individuals living abroad, but in our analysis we obviously limit

ourselves to patents granted to individuals and entities based in the United States. In 1880 94%

and in 1940 86% of patents were granted to inventors located in the US.

For the years 1880, 1900, and 1910 (Patent Dataset B), we extracted the name and address

of the first inventor listed on the patent document, under the assumption that this individual

was the principal inventor of the art. Single inventors were the norm during this time period.

In 1880, 1900 and 1910 approximately 92%, 90% and 91% of patents were granted to a single

inventor respectively.

From 1920 through 2006, we retrieved the name of every inventor listed on every patent each

year using data supplied to us by the European Patent Office (Patent Dataset C). Additionally

we created a panel dataset with an inventor identifier through disambiguating the inventor data

using the algorithm of Li et al. (2014).

B.1 Citation Adjustment

Our data includes the number of citations each patent receives from patents granted from

September 1947, when the USPTO began to note citation data in a systematic way, to February

2008. Thus, we have the full universe of citations received by patents granted during this time

period. Citations start in 1947 because a USPTO Notice was issued on December 19th, 1946,

instructing examiners to add citations in the published format of the patent, a practice that was

incorporated into the Manual of Patenting Examining Procedure (paragraph 1302.12).

For patents granted before 1947, the noted citation count is left censored: a patent granted in

1940 will only have citations from patents granted after 1947, but will not have citations from

patents between 1941 and 1946. This artificially deflates the number of citations received by

patents before 1947, confounding attempts to use citations as an objective measure of a patent’s

quality. Furthermore, aggregate citation trends may weaken the link between raw citation counts

and patent quality. For instance, if patents granted in 1960 cite an average of 5 prior patents, but

those granted in 1990 cite 20 patents, one might expect the average citation received from a 1960

patent to be more indicative of a high quality innovation than a citation received in 1990. We

therefore adjust the number of citations received by each patent following the quasi-structural

approach laid out in Hall et al. (2001).

This approach relies on two critical assumptions. First, we assume that the citation process is

stationary. That is, we assume that the evolution of citation shares does not change over time:

a patent will on average receive a share πkτ of its citations τ years after it is granted, regardless
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of the grant year. This allows us to project back our adjustment factors to patents filed before

the citation data began in 1947. Second, we assume proportionality. That is, we assume that

the shape of the citation evolution does not depend on the total number of citations received

so that highly cited patents are more highly cited at all lags. This allows the application of the

same adjustment factor to every patent in our data granted in a given period and belonging to

a given patent class.

The adjustment proceeds as follows. We start with the full patent citation network data,

keeping only those patents granted in the United States. Let Ckst be the total number of citations

to patents in year s and technology category k coming from patents in year t.25 Further, define

Pks to be the total number of citations received by patents granted in year s in technological

category k. One can then define πkst = Ckst/Pks to be the average share of citations received

by patents in class k in year s from patents granted in year t We assume that πkst is some

multiplicatively separable function of grant year, patent category, and a citation lag. That is,

we can write

log[πkst] = α0 + αs + αt + αk + fk(L) (A-1)

for L = t−s the lag between cited and citing patent grant years, and fk(·) some category-specific

function of these lags. For our purposes, we define fk(L) = γ̃k,L. We may then estimate equation

A-1 using OLS to recover estimates of α0, αs, αt, αk, and γ̃k,L for each value of s, t, k and L in

our data.26 Taking exponentials of equation A-1 yields

Ckst/Pks = eα0eαseαteαkeγ̃k,(t−s) (A-2)

This formulation allows us to standardize citation counts over time and across categories. Specifi-

cally, in order to adjust for patent class, cited year, and citing year effects, we weight each citation

from a patent in year t to a patent in class k in year s by exp (−α̂k − α̂s − α̂t). Each patent’s

citation counts are therefore reflective of the patent’s quality relative to the average patent in

some base year and category.27

While this procedure accounts for aggregate differences across patent classes and grant years,

it does not yet correct for bias arising from the left truncation of citation records. To build

intuition for the truncation correction, consider an example in which each of the estimated α

coefficients were 0: the only bias in our citation data arises from the lag. In that case, the

assumptions of proportionality and stationarity suggest a natural adjustment factor for a patent

granted L years before the 1947 cutoff. Define Gk(L) to be the CDF of the lag distribution:

the share of an average patent’s citations received within the first L years after its grant. The

25For the purposes of the adjustment, we use technological categories as defined by the NBER patent data. For
a detailed description of these data, see Hall et al. (2001).

26It is rare for a patent to receive citations more than 30 years after its initial grant date, and thus we top-code
the citation lag L to have a maximum value of 30. That is, we define L = min{t− s, 30}.

27For our purposes, we choose each patent citation to be relative to a patent in the “Other” category granted
in 1975, receiving citations from patents also granted in 1975. Mechanically, this corresponds to setting the
omitted categories in estimation of equation A-1 to be k = “Other”, s = t = 1975.
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adjustment factor is then given by

σk,L =
1

1−Gk(L)

We would then predict that a patent in category k granted in year 1947 − L and receiving c

citations from patents granted after 1947 would have received σk,Lc citations had the USPTO

kept track of citations before 1947.28

In order to incorporate the year and category fixed effects into this truncation adjustment

framework, one must establish a notion of the CDF of the lag distribution conditional on year

and category effects. To do so, we interpret the exp(γ̃k,L)’s as weights for each patent in the

citation data. For instance, if the estimated exp(γ̃k,L=2) is 2, then an average patent is twice as

likely to receive a citation after 1 year than in the year of patent grant, conditional on year and

category effects. To construct the CDF of citations by lag conditional on year and class effects,

we can sum our estimates of exp(γ̃k,L), normalizing the estimated coefficients so that they sum

to 1. This gives us our estimate of Gk(L):

Ĝk(L) =

L∑
l=1

exp(γ̃k,l)

30∑
l=1

exp(γ̃k,l)

(A-3)

We can then calculate our truncation adjustment factor as before29

σ̂k,L =
1

1− Ĝk(L)
. (A-4)

To summarize, the citation adjustment proceeds in four steps:

1. Estimate equation A-1 using OLS to recover α0, αk, αt, αs and γk,L.

2. For each citation made from a patent p′ granted in year t to a patent p in class k granted

in year s is weighted by

ωk,s,t = e−αk−αt−αs

Define, for each cited patent p, the year- and category-adjusted citation count c to be the

sum of the ωk,s,t it received.

3. Calculate Ĝk(L) according to equation A-3

4. Using Ĝk(L), calculate the truncation adjustment factor σ̂k,L according to A-4. Finally,

define a patent p’s adjusted citation count to be c̃ = c · σk,L if p is in class k and was

granted L years before 1947.

28Ignoring year and category effects and adjusting citations in this way does not significantly change the results
presented in the main body of the paper.

29Note that we only calculate the truncation adjustment up to L = 20, despite estimating γk,L for L as large as

30. This is to bound Ĝk(L) away from 1, so that we do not divide by 0 in the adjustment. For L larger than
20, we apply the adjustment factor for L = 20.
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Figure A-1 plots the adjustment factors for truncation years for each of the six NBER patent

categories. The multiplicative adjustment factors range from 1 to almost 5, and vary by NBER

category. Meanwhile, Figure A-2 plots the distribution of log citations and the evolution of the

average citation counts according to three adjustment regimes: no adjustment, full adjustment,

and an adjustment in which we do not correct for truncation at 1947. We see that the fully

adjusted citation counts have a much flatter time series relative to the unadjusted citation counts.

This is by design: the purpose of the adjustment is to remove the aggregate fluctuations which

do not accurately measure the relative quality of patents.

Figure A-1: Citation Adjustment: Adjustment Factors by Years Truncated
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B.2 Patent Classes and Matching Patents to Sectors

We obtain the main USPTO patent class for each patent and the NBER patent aggregations of

these classes.30 We match patents to sectors using the USPTO technology class of the patent.

We also use value added and full-time employment data by sector from 1947 through 1986,

before the SIC was revised in 1987. These data are matched to data provided by Bill Kerr

containing the fraction of patents in each class which were manufactured and used by every

3-digit SIC code (Kerr, 2008). We first aggregate these SIC codes into the same categories

contained in the industry value added data from the BEA. Table A-2 shows this aggregation.

Once we know the fraction of patents in each class that are accounted for by the BEA-provided

industries, we assign each class to an industry. We say a patent class c is affiliated with industry

30The USPTO occasionally reclassifies patents based on the emergence of new technologies. Throughout the
paper, we use the 2006 classification.
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Figure A-2: Citation Adjustment: Citation Distributions and Average Citation
Counts over Time
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j if industry j manufactures the highest share of patents in class c. We can then calculate the

total number of patents for each BEA industry.

A-10



T
ab

le
A

-2
:
2
-
a
n
d

3
-D

ig
it

S
IC

C
o
d
e
s
a
n
d

A
ss
o
c
ia
t
e
d

In
d
u
st

r
y
T
it
l
e
s

0
1-

02
F

ar
m

s
23

A
p

p
ar

el
an

d
ot

h
er

te
x
ti

le
p
ro

d
u

ct
s

61
C

re
d

it
ag

en
ci

es
ot

h
er

th
an

b
an

k
s

0
7-

09
A

gr
ic

u
lt

u
ra

l
se

rv
ic

es
,

fo
re

st
ry

,
a
n

d
fi

sh
in

g
26

P
ap

er
an

d
al

li
ed

p
ro

d
u

ct
s

62
S

ec
u

ri
ty

an
d

co
m

m
o
d

it
y

b
ro

ke
rs

10
M

et
a
l

m
in

in
g

27
P

ri
n
ti

n
g

an
d

p
u

b
li

sh
in

g
63

In
su

ra
n

ce
ca

rr
ie

rs

1
1-

12
C

o
a
l

m
in

in
g

28
C

h
em

ic
al

s
an

d
al

li
ed

p
ro

d
u

ct
s

64
In

su
ra

n
ce

ag
en

ts
,

b
ro

ke
rs

,
an

d
se

rv
ic

e

13
O

il
an

d
ga

s
ex

tr
a
ct

io
n

29
P

et
ro

le
u

m
an

d
co

al
p
ro

d
u

ct
s

65
-6

6
R

ea
l

es
ta

te

14
N

o
n

m
et

al
li

c
m

in
er

a
ls

,
ex

ce
p

t
fu

el
s

30
R

u
b

b
er

an
d

m
is

ce
ll

an
eo

u
s

p
la

st
ic

s
p

ro
d

u
ct

s
67

H
ol

d
in

g
an

d
ot

h
er

in
ve

st
m

en
t

offi
ce

s

1
5-

17
C

o
n

st
ru

ct
io

n
31

L
ea

th
er

an
d

le
at

h
er

p
ro

d
u

ct
s

70
H

ot
el

s
an

d
ot

h
er

lo
d

gi
n

g
p

la
ce

s

24
L

u
m

b
er

an
d

w
o
o
d

p
ro

d
u

ct
s

40
R

ai
lr

oa
d

tr
an

sp
or

ta
ti

on
72

P
er

so
n

al
se

rv
ic

es

25
F

u
rn

it
u

re
a
n

d
fi

x
tu

re
s

41
L

o
ca

l
an

d
in

te
ru

rb
an

p
as

se
n

ge
r

tr
an

si
t

73
B

u
si

n
es

s
se

rv
ic

es

32
S

to
n

e,
cl

ay
,

an
d

gl
as

s
p

ro
d

u
ct

s
42

T
ru

ck
in

g
an

d
w

ar
eh

ou
si

n
g

75
A

u
to

re
p
ai

r,
se

rv
ic

es
,

an
d

p
ar

k
in

g

33
P

ri
m

a
ry

m
et

a
l

in
d

u
st

ri
es

44
W

at
er

tr
an

sp
or

ta
ti

on
76

M
is

ce
ll

an
eo

u
s

re
p

ai
r

se
rv

ic
es

34
F

a
b

ri
ca

te
d

m
et

a
l

p
ro

d
u

ct
s

45
T

ra
n

sp
or

ta
ti

on
b
y

ai
r

78
M

ot
io

n
p

ic
tu

re
s

35
M

ac
h
in

er
y,

ex
ce

p
t

el
ec

tr
ic

a
l

46
P

ip
el

in
es

,
ex

ce
p

t
n

at
u

ra
l

ga
s

79
A

m
u

se
m

en
t

an
d

re
cr

ea
ti

on
se

rv
ic

es

36
E

le
ct

ri
c

an
d

el
ec

tr
on

ic
eq

u
ip

m
en

t
47

T
ra

n
sp

or
ta

ti
on

se
rv

ic
es

80
H

ea
lt

h
se

rv
ic

es

37
1

M
ot

or
ve

h
ic

le
s

a
n

d
eq

u
ip

m
en

t
48

C
om

m
u

n
ic

at
io

n
s

81
L

eg
al

se
rv

ic
es

37
2
-3

7
9

O
th

er
tr

an
sp

o
rt

a
ti

o
n

eq
u

ip
m

en
t

48
1,

48
2,

48
9

T
el

ep
h

on
e

an
d

te
le

gr
ap

h
82

E
d

u
ca

ti
on

al
se

rv
ic

es

38
In

st
ru

m
en

ts
an

d
re

la
te

d
p

ro
d

u
ct

s
48

3
R

ad
io

an
d

te
le

v
is

io
n

83
S

o
ci

al
se

rv
ic

es

39
M

is
ce

ll
a
n

eo
u

s
m

an
u

fa
ct

u
ri

n
g

in
d

u
st

ri
es

49
E

le
ct

ri
c,

ga
s,

an
d

sa
n

it
ar

y
se

rv
ic

es
86

M
em

b
er

sh
ip

or
ga

n
iz

at
io

n
s

20
F

o
o
d

a
n

d
k
in

d
re

d
p

ro
d

u
ct

s
50

-5
1

W
h

ol
es

al
e

tr
ad

e
84

,8
9

M
is

ce
ll

an
eo

u
s

p
ro

fe
ss

io
n

al
se

rv
ic

es

21
T

o
b

a
cc

o
p

ro
d

u
ct

s
52

-5
9

R
et

ai
l

tr
ad

e
88

P
ri

va
te

h
ou

se
h

ol
d

s

22
T

ex
ti

le
m

il
l

p
ro

d
u

ct
s

60
B

an
k
in

g
43

,9
1-

97
G

ov
er

n
m

en
t

N
ot

es
:

S
ec

to
r

co
d
es

re
tr

ie
ve

d
fr

om
th

e
d
o
cu

m
en

ta
ti

on
of

va
lu

e
ad

d
ed

st
at

is
ti

cs
p
ro

v
id

ed
b
y

th
e

B
E

A
:

h
tt

p
s:

//
w

w
w

.b
ea

.g
ov

/i
n
d
u
st

ry
/x

ls
/G

D
P

b
y
In

d
V

A
S
IC

.x
ls

on
A

u
gu

st
10

,
20

16
.

A-11



C Merging Patent and Census Data

C.1 Data Preparation

We first standardize the names and places listed in the patent and Census data. We begin by

ensuring that all names are fully capitalized, and remove all special characters (e.g. “.”s) from

the names.31 In addition, we remove suffixes such as “JR,” “Senior,” and “III” from listed names.

We next parse the names into different words. The surname is taken to be the last word of an

individual’s name, while an individual’s first name is taken to be the first word. The first letter of

the second word of an individual’s name is taken to be their initial, so long as the name contains

at least three words. For example, a name originally recorded as “Thomas Alva Edison,” will

return three pieces of information: the surname “EDISON,” a first name “THOMAS,” and an

initial “A.” Note that this procedure implies that those with multiple words in their surname

are constrained to have a first name, single middle initial, and one-word surname. For example,

Robert Van de Graaff, inventor of the Van de Graaff generator (a machine that generates static

electricity), is eventually listed as “ROBERT V GRAAFF.”32

Locations are likewise standardized. First, we capitalize all place names listed in the Census

and on the patent records. We then ensure that the spelling of common pieces of the place name

are constant across the two data sources. For instance, we enforce that the word “SAINT,” as

in “SAINT LOUIS,” are all listed as “ST.” In addition, we remove superfluous words such as

“WARD,” “DISTRICT” or “CITY;” for instance, “NEW YORK CITY” becomes simply “NEW

YORK.” Finally, we standardize a number of common place names by hand; for example, we

impose that the five boroughs of New York City – Brooklyn, Manhattan, Queens, the Bronx,

and Staten Island – are all coded as “NEW YORK.”

C.2 Merging the Data

We next merge the patent data to the decennial Censuses. To do so, we first insist that records

in the Census have the same first name, last name, county, and state as the inventor listed on

the patent. In addition, the patent in question must have been granted in the same year as

the Census was conducted. While we make a strong effort to clean our data before matching,

there remain some cases that do not match even on these basic criteria. Of all patent-inventor

instances in the patent data, 70.8% find a match in the census based on these criteria. The

remaining 30% may not match either because their names were incorrectly entered in either the

Census or patent data, or because they may have moved across state lines between the time the

Census was conducted and the patent was granted. Predictably, this problem is particularly

pronounced immediately following the end of the First World War: we match just 61.1% of

patent-inventor observations in 1920.

31We drop Census records with first or last names longer than 40 characters. We do this because we suppose
that such long names arise from input errors.

32The 1910 Census provides multiple name fields. We take the most well-populated field, and fill in missing values
with the names contained in the other name variables. In the vast majority of cases, the names provided in
the two variables are identical.
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Naturally, there may remain multiple inventor matches if, for example, there are multiple

Thomas Edison’s living in Middlesex county, New Jersey in 1900. Indeed, 44.3% of our initially

matched patents have multiple candidate inventors. We then refine the match further based

on other information in the patent documents. First, for each patent, we look to see if one of

the candidate inventors in the Census data has the same middle initial as listed on the patent

document. If so, we only keep those that match. This removes 8.2% of our multiple matches.

At this stage, the multiplicity concern arises from the possibility of multiple Thomas A Edi-

son’s living in Middlesex, NJ in 1900. Thus we refine to a more granular geography. Our second

refinement asks whether there are any candidate inventors living in the same city or township as

was listed on the patent document. We only keep those who match on this criterion, so long as

the patent has at least one matched candidate. Thus we limit ourselves to Thomas A Edison’s

living in Menlo Park, Middlesex County, New Jersey in 1900. The refinement based on cities

removes 7.3% of the duplicate inventors, who survived the refinement based on middle initials.

Multiplicity can still persist, however, and may be particularly common within family units

if a son is named after his father. At this stage, both John J Smith Jr and his father John J

Smith Sr, living in the same household, would be matched to the same patent. To combat this,

we finally refine the match based on an age criterion. For a given patent, we ask if there is a

candidate inventor between the ages of 15 and 85 in the Census. If so, we keep that candidate

inventor, and discard the candidate children under 15 years old and the elderly above 85. This

age refinement removes 5.5% of the multiple inventors present at this stage. We next repeat this

refinement with a sharper age criterion, keeping those between 18 and 65 years of age if such a

match exists.

Finally, if there are still multiple matches for a given patent, then we exclude the individual

and patent from the sample altogether and they are counted neither as an inventor nor as a

non-inventor. This is done to be conservative about our match rate, and to avoid inducing

spurious correlations from incorrect matches. As a robustness check, we also run our analysis

on a sample in which we keep a random inventor for each patent with a multiple match. The

results are qualitatively similar, and are available from the authors upon request.33

We then merge into our data every patent ever granted to each inventor we have successfully

matched. Thus, while we only match inventors to the Census if they are granted a patent in

a decennial Census year, our matched data contain patents granted to inventors in every year

from 1920 through 2006, as well as patents granted to inventors in 1880, 1900, and 1910.

33There is one exception to this similarity in headline results. Table 14 in the main body of the paper show
a weak correlation between the probability that an individual becomes an inventor and the inventor status
of one’s father. When we keep a random matched inventor, this correlation becomes large, significant, and
positive. This change can be best understood with an example. Suppose that John J Smith Jr is 25 years
old and cohabits with his father, the 50 year old John J Smith Sr. The younger John Smith is an inventor of
two patents, but his father is not. Because they are both between the age of 15 and 85 with the same first
name, last name and middle initial, and live in the same city, we must keep a random John J Smith for each
of the two patents. For the first patent, suppose we kept the younger John Smith, while the other patent
is assigned to his father. This generates a spurious correlation between an individual’s inventor status and
that of his father: even though John Smith Sr was never granted a patent, it appears as though he was in
our data. These family relationships might be a persistent source of multiplicity, and thus likely drives this
particular difference in our results. We therefore favor the more robust results presented in the main body of
the paper.
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C.3 Match Success

Figure A-3 shows the match rate by decennial Census year. Our most successful match year is

1880, in which we match 44.0% of all patents and 46.0% of all inventors in the patent data to

a unique individual in the Census. While the match rate hovers around 40% for most years, in

1920 we match 29.2% of US patents and 28.7% of inventors. The relatively low match rate we

observe for 1920 may simply be idiosyncratic. As we point out in Section 2 the 1920 Census was

conducted in the winter which led to some level of underenumeration, though not on a scale to

bias our results. The effects of World War I demobilization on the movement of ex-servicemen

in the population who were also inventors may also have had an effect.

Figure A-3: Match Rate by Decennial Census Year - All States
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Notes: Figure shows the percent of inventors (solid red bars) and patents (dashed blue bars) present in the patent
data who successfully match to the Census data by year. All states are aggregated together to produce this plot.

Figure A-4 shows the match rate by state, pooling all years together. Panel A shows the match

rate for patents, while Panel B shows the match rate for inventors. There is heterogeneity in

the match success across states. While Rhode Island enjoys a successful match rate of 54.5%

for patents and 55.9% for inventors, we only match 17.3% of patents and 21.0% of inventors in

Nevada. Part of this difference may be attributable to the changing county (and even state)

boundaries in the early part of our sample, as frontier states saw rapid increases in population.

A potential concern with our results is that they may be driven by systematic match errors,

rather than the unique characteristics for inventors. For instance, if name disambiguation proves

especially difficult for common names, our match success will reflect only rare names, which may

disproportionately represent a particular race, sex, or age profile. Alternatively, if data input
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Figure A-4: Match Rate by State - All Years
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errors are common within the Census, especially uncommon or foreign-sounding names may be

matched at a lower rate than traditional American names.

To test for any biases, we ask whether the patents and inventors that are successfully matched

to the Census are observably different from those that are not matched. For this exercise, we

consider the universe of patents granted in each of our decennial Census years in the 48 mainland

states used in our analysis. We then generate a binary variable equal to 1 if that patent and

inventor were successfully matched to our Census data and survived the refinements detailed

above. We then regress this indicator on characteristics of the patent and inventor. One might

be particularly concerned that we have more success matching common, traditional American

names, or particularly prominent inventors. We measure inventor and patent prominence by the

number of citations received between 1947 and 2008. We use two indicators for the rarity of

the inventor’s name. First, we construct the share of the population with each first name using

Census data. Second, we include the string length of the inventor’s surname.

The results of this regression exercise are displayed in Table A-3. Column 1 show that those

with longer names are less likely to be matched, and those with common first names are slightly

more likely to be matched. However, we do not disproportionately match patents or inventors

of a higher quality. These effects are small: increasing name prevalence by 100 (approximately

1 standard deviation) is associated with just a 1.3 percentage point increase in the match rate,

roughly 3% of its mean. Meanwhile, a one standard deviation (1.75) increase in an individual’s

surname length reduces the match rate by 0.6 percentage points.

To test for disproportionate matching of particular population groups, we again use the Census

to construct our variables of interest at the first name level. We thus include the percent of

individuals with the inventor’s first name who were international migrants and the average age

of those with the inventor’s name in the Census as dependent variables in columns 2 through 4.

Column 2 includes no fixed effects. Column 2 would suggest that, we are less likely to match

those with names commonly associated with international migrants, while there is hardly any

bias in our age match. This implies that, although we find little difference in the international

mobility between inventors and non-inventors using our matched data, it remains possible that

inventors were more likely to be international migrants. Indeed, this observation might partially

explain the difference in international migration rates between the most and least inventive

states, as shown in Table 1. A one standard deviation increase in the percent of people with the

inventor’s first name who are international migrants (13 percentage points) is associated with a

2.64 percentage point reduction in the patent match rate.

Columns 3 and 4 control for state-year fixed effects in our selection regressions, while column 4

additionally controls for the patent’s technology class, and the technology class of the inventor’s

first granted patent. Column 3 most closely matches that of our previous regression analyses,

which use matched data for just one year of the census, and include state fixed effects (see,

for example, Table 14). The inclusion of these fixed effects does not significantly change the

patterns shown in columns 1 and 2.

Another concern would be that the substantial heterogeneity in state match rates is systemat-

ically correlated with key state variables of interest. Although we do not use the matched data
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Table A-3: Selection into Matching: Regressions on Probability of Match

Panel A: Patent Match Probability
(1) (2) (3) (4)

Surname Length -0.346∗∗ -0.219 -0.285∗ -0.302∗∗

(0.154) (0.154) (0.153) (0.149)
Name prevalence (per 10,000 people) 0.013∗∗∗ 0.013∗∗∗ 0.008∗∗∗ 0.008∗∗∗

(0.003) (0.003) (0.003) (0.003)
Citations between 1947-2008 -0.011 -0.010 0.005 -0.004

(0.011) (0.011) (0.007) (0.007)
Percent First Name Int’l Migrant -0.203∗∗∗ -0.201∗∗∗ -0.201∗∗∗

(0.025) (0.018) (0.017)
Average Age with First Name -0.085∗ -0.000 -0.012

(0.051) (0.036) (0.036)

Fixed Effects None None State× Year
State× Year
Tech Class

Observations 175093 175093 175093 175093
Mean of Dep. Var. 38.65 38.65 38.65 38.65

Panel B: Inventor Match Probability
(1) (2) (3) (4)

Surname Length -0.675∗∗∗ -0.535∗∗∗ -0.592∗∗∗ -0.598∗∗∗

(0.142) (0.141) (0.140) (0.139)
Name prevalence (per 10,000 people) 0.022∗∗∗ 0.022∗∗∗ 0.015∗∗∗ 0.015∗∗∗

(0.002) (0.003) (0.002) (0.002)
Citations between 1947-2008 -0.028∗∗∗ -0.028∗∗∗ -0.008 -0.009

(0.010) (0.010) (0.007) (0.007)
Percent First Name Int’l Migrant -0.222∗∗∗ -0.218∗∗∗ -0.218∗∗∗

(0.024) (0.016) (0.015)
Average Age with First Name -0.124∗∗∗ 0.014 0.000

(0.047) (0.030) (0.029)

Fixed Effects None None State× Year
State× Year
Tech Class

Observations 122095 122095 122095 122095
Mean of Dep. Var. 39.12 39.12 39.12 39.12

Notes: Dependent variable is an indicator for an observation being matched to the census data, multiplied by 100
for legibility. White heteroskedasticity-robust standard errors reported in parentheses. ∗, ∗∗, and ∗∗∗ represent
coefficient statistically different from 0 at the 10, 5, and 1% level respectively. Inventor technology class defined
to be the technology class of his/her first patent.

for our state-level analysis, it is worth considering this claim. Table A-4 reports estimates from

an OLS regression of a state’s match rate on its observable characteristics. We see that none of

our regional variables predict a state’s match rate. Indeed, the full set of variables only explains

approximately 12% of the variation in state match rates, as measured by the regression’s R2.

A-17



Table A-4: Selection into Matching: State Match Rate Regressions

Panel A: Patent Match Panel B: Inventor Match
(1) (2) (3) (4)

90-10 Wage Income Ratio -0.542 -0.364 -0.541 -0.321
(0.627) (0.719) (0.620) (0.709)

Average Income -0.003 -0.006 -0.004 -0.007
(0.012) (0.017) (0.012) (0.017)

Population Density 0.030 0.021 0.034 0.022
(0.034) (0.040) (0.034) (0.039)

Deposits per capita 0.006 0.005 0.004 0.003
(0.011) (0.011) (0.010) (0.011)

Average outbound transport cost 0.101 0.134 0.055 0.101
(0.281) (0.311) (0.278) (0.307)

Percent of residents with college degree 0.083 0.107 0.187 0.209
(0.721) (0.773) (0.713) (0.762)

Percent employed in manufacturing -0.132 -0.183
(0.418) (0.412)

Percent employed in agriculture -0.154 -0.196
(0.242) (0.239)

Observations 47 47 47 47
R-squared 0.122 0.131 0.114 0.130
Mean of Dep. Var. 37.363 37.363 37.699 37.699

Notes: Dependent variable is the percent of a state’s patents matched to the census in one of our six census
years. White heteroskedasticity-robust standard errors reported in parentheses. ∗, ∗∗, and ∗∗∗ represent coefficient
statistically different from 0 at the 10, 5, and 1% level respectively.

D Additional Robustness Checks

Figure A-5: Innovation and Long-run Growth: US States between 1919-1999
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Notes: Figure plots the total number of patents granted to inventors in each state between 1919 and 1999 on
the horizontal axis, and the annualized growth rate in state GDP per capita between 1919 and 1999 on the
vertical axis. Both horizontal and vertical axes plot the variables of interest residualized against 1919 log GDP
per capita, to account for conditional convergence. Source: BEA Historical Regional Economic Accounts, and
data from (Martin (1939)) courtesy of Price Fishback.
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Figure A-6: The Geography of Inventiveness over Time: Patents per 10,000

Panel A: 1880 Panel B: 1900

Panel C: 1910 Panel D: 1920

Panel E: 1930 Panel F: 1940

Notes: Figure maps the number of patents per 10,000 residents in each state of the mainland U.S. in each
decennial census year of our data. Darker colors represent more inventive activity per resident. Patent data
come from the USPTO’s historical patent files, while population counts are calculated using the U.S. Census.
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Figure A-7: The Geography of Inventiveness over Time: Inventors per 10,000

Panel A: 1880 Panel B: 1900

Panel C: 1910 Panel D: 1920

Panel E: 1930 Panel F: 1940

Notes: Figure maps the number of unique inventors per 10,000 residents in each state of the mainland U.S. in
each decennial census year of our data. Darker colors represent more inventive activity per resident. Patent data
come from the USPTO’s historical patent files, while population counts are calculated using the U.S. Census.
Source: Historical Census Data, USPTO patent records.
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Figure A-8: Relationship between Wage Income Inequality and Inventiveness: Inequal-
ity Measures Excluding those Working in Financial Sector

Panel A: Ratio of 90th to 10th Panel B: Gini Coefficient
Percentile of Income
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Patents per 10,000: 1920−1940

Gini Coefficient of Wage Income (Non−Finance) = 0.492 −0.019 * Patents per Capita
Slope coefficient statistically significant at 1% level

Panel C: Share of Income held by Top 1%
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Patents per 10,000: 1920−1940

Notes: Figure plots the relationship between average patents per 10,000 residents between 1920 and 1940, and
the state-level wage income inequality observed in the 1940 census. All wage inequality measures exclude those
who work in the financial sector. Panel A measures income inequality with the ratio of the 90th percentile to the
10th percentile of income, while panel B uses the Gini coefficient as its measure. Panel C measures inequality by
the share of income controlled by the top 1% of the state’s wage earners. Source: 1940 Historical Census Data,
USPTO patent records.
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Table A-5: T-tests of Difference between Inventor and High-Skill Non-Inventor
Wages over the Life Cycle

Age Group Inventor High-Skill p-value
Mean Log Wage Mean Log Wage

19-25 6.621 6.141 0.000
(1.003) (0.922)

26-35 7.615 6.665 0.000
(0.708) (0.856)

36-45 7.913 6.789 0.000
(0.721) (0.908)

46-55 7.845 6.741 0.000
(0.805) (0.942)

56-65 7.735 6.588 0.000
(0.922) (0.997)

Notes: Table reports average log wages for inventors and high-skill non-inventors within each age group. Wage
income data taken from 1940 Census. Standard deviations reported in parentheses below means. Final column
presents p-values from a two-sided t-test of means among inventor and high-skill non-inventor populations. Source:
1940 Historical Census Data, USPTO patent records.
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