Math 23a Practice Multiple Choice Questions

1. Which of these functions is not uniformly continuous on $(0,1)$?
(a) x^{2}
(b) $1 / x^{2}$
(c) $f(x)=1$ for $x \in(0,1), f(0)=f(1)=0$
(d) $\sin (x)$
(e) $\frac{\sin (x)}{x}$
2. Let s_{n} be a sequence of real numbers on a bounded set S , where $\lim \inf s_{n} \neq \lim \sup s_{n}$. Which of the following is not necessarily true?
(a) $\lim s_{n}$ does not exist.
(b) s_{n} is not Cauchy.
(c) $\liminf s_{n}<\limsup s_{n}$
(d) There exists a convergent subsequence.
(e) s_{n} has an infinite number of dominant terms.
3. Which of the following is not true about $s_{n}=\frac{1}{n}$?
(a) The sequence converges to 0 .
(b) $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} s_{i}=L$, for some finite L .
(c) $\limsup s_{n}=0$.
(d) The series $\sum(-1)^{n} s_{n}$ converges.
(e) The series $\sum s_{n}^{2}$ converges.
4. Let $\sum_{n} a_{n}$ be a conditionally convergent series. Which of the following is not necessarily true?
(a) The series converges to some finite L .
(b) The series sum is independent of order of terms.
(c) $\sum\left|a_{n}\right|$ diverges.
(d) $\lim (-1)^{n} a_{n}=0$.
(e) None of the above. They're all necessarily true.
5. Which of the following series converges? THERE ARE TWO ANSWERS
(a) $\sum \frac{x^{n}}{n!}, \forall x$
(b) $\sum \frac{1}{n+\sin (n)}$
(c) $\sum(-1)^{n} n$
(d) $\sum \sin (n)$
(e) $\sum \frac{2^{n}}{\sqrt{n!}}$
6. Which of the following must be true of a continuous function on (a, b) ?
(a) The function achieves its maximum on (a, b).
(b) The function is bounded.
(c) For all Cauchy Sequences s_{n} on the set $(a, b), f\left(s_{n}\right)$ is also Cauchy.
(d) If $f(a)=2$, and $f(b)=5$, then $f(c)=3$, for some $c \in(a, b)$.
(e) None of the above.
7. Which of the following is not necessarily true about a uniformly continuous function, f, on $[a, b]$? THERE ARE THREE ANSWERS
(a) The function is bounded.
(b) The function achieves its maximum on the set (a, b).
(c) If $f(a)=4$ and $f(b)=6$, then $f^{\prime}(c)=2$ for some $c \in(a, b)$.
(d) The derivative f^{\prime} is bounded.
(e) If $f^{\prime}(a)=3$, and $f^{\prime}(b)=4$, then $f^{\prime}(c)=3.5$ for some $c \in(a, b)$.
8. Find $\lim _{x \rightarrow b} \frac{\sqrt{x}-\sqrt{b}}{x-b}$ for $b>0$.
(a) ∞
(b) $\frac{1}{2 \sqrt{b}}$
(c) 0
(d) $2 \sqrt{b}$
(e) b
9. Let f be a differentiable function, where all derivatives exist, such that $f(0)=0$, $f^{\prime}(0)=0$, and $\left|f^{\prime \prime}(x)\right| \leq M, \forall x$. Which of the following is not necessarily true?
(a) $f(1) \leq \frac{M}{2}$
(b) 0 is neither a maximum nor a minimum.
(c) $\forall \epsilon>0, \exists \delta>0$ s.t. if $x \in(-\delta, \delta),|f(x)|<\epsilon$
(d) If $\lim s_{n}=0$, then $\lim f\left(s_{n}\right)=0$.
(e) None of the above.
