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Reading

• Hubbard, section 1.7 (you have already read most of this)

• Hubbard, sections 1.8 and 1.9 (computing derivatives and differentaibility)

• Hubbard, section 2.8 page 233-235 and page 246. (Newton’s method)

• Hubbard, section 2.10 up through page 264. (inverse function theorem)

Recorded Lectures

• November 17, 2015 (watch on November 15)

• November 19, 2015 (watch on November 17)

Proofs to present in section or to a classmate who has done them.

• 11.1 Let U ⊂ Rn be an open set, and let f and g be functions from U to
R. Prove that if f and g are differentiable at a then so is fg, and that

[D(fg)(a)] = f(a)[Dg(a)] + g(a)[Df(a)].

• 11.2 Using the mean value theorem, prove that if a function f : R2 → R has
partial derivatives D1f and D2f that are continuous at a, it is differentiable
at a and its derivative is the Jacobian matrix

[
D1f(a) D2f(a)

]
.
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R Scripts

• Script 3.3A-ComputingDerivatives.R
Topic 1 - Testing for differentiability
Topic 2 - Illustrating the derivative rules

• Script 3.3B-NewtonsMethod.R
Topic 1 - Single variable
Topic 2 - 2 equations, 2 unknowns
Topic 3 - Three equations in three unknowns

• Script 3.3C-InverseFunction.R
Topic 1 - A parametrization function and its inverse
Topic 2 - Visualizing coordinates by means of a contour plot
Topic 3 - An example that is economic, not geometric
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1 Executive Summary

1.1 Definition of the derivative

• Converting the derivative to a matrix
The linear function f(h) = mh is represented by the 1× 1 matrix [m].
When we say that f ′(a) = m, what we mean is that the function
f(a + h) − f(a) is well approximated, for small h, by the linear function
mh. The error made by using the approximation is a “remainder” r(h) =
f(a + h) − f(a) −mh. If f is differentiable, this remainder approaches 0
faster than h, i.e.

lim
h→0

r(h)

h
= lim

h→0

f(a+ h)− f(a)−mh
h

= 0.

This definition leads to the standard rule for calculating the number m,

m = lim
h→0

f(a+ h)− f(a)

h
.

• Extending this definition to f : Rn → Rm

A linear function L(~h) is represented by an m× n matrix.
When we say that f is differentiable at a, we mean that the function
f(a + ~h)− f(a) is well approximated, for any ~h whose length is small, by a
linear function L, called the derivative [Df(a)].
The error made by using the approximation is a “remainder”
r(~h) = f(a + ~h)− f(a)− [Df(a)](~h).

f is called differentiable if this remainder approaches 0 faster than |~h|, i.e.

lim
~h→~0

1

|~h|
r(~h) = lim

~h→~0

1

|~h|
(f(a + ~h)− f(a)− [Df(a)](~h)) = 0.

In that case, [Df(a)] is represented by the Jacobian matrix [Jf(a)].

Proof: Since L exists and is linear, it is sufficient to consider its action on
each standard basis vector. We choose ~h = t~ei so that |~h| = t. Knowing
that the limit exists, we can use any sequence that converges to the origin
to evaluate it, and so

lim
t→0

1

t
(f(a + t~ei)− f(a)− tL~ei)) = 0? and L(~ei) = lim

t→0

1

t
(f(a + t~ei)− f(a))

What is hard is proving that f is differentiable – that L exists – since that
requires evaluating a limit where ~h→ ~0. Eventually we will prove that f is
differentiable at a if all its partial derivatives are continuous there.
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1.2 Proving differentiability and calculating derivatives

In every case f is a function from U to Rm, where U is an open subset of Rn.

• f is constant: f = c. Then [Df(a)] is the zero linear transformation, since

lim
~h→~0

1

|~h|
(f(a + ~h)− f(a)− [Df(a)]~h) = lim

~h→~0

1

|~h|
(c− c− ~0) = ~0.

• f is affine: a constant plus a linear function, f = c +L. [Df(a)] = L , since

lim
~h→~0

1

|~h|
(f(a+~h)−f(a)−[Df(a)]~h) = lim

~h→~0

1

|~h|
(c+L(a+~h)−(c+L(a))−L(~h)) = 0.

f has differentiable components: if f =


f1
·
·
·
fn

 : then Df(a) =


Df1(a)
·
·
·

Dfn(a)


.

• f + g is the sum of two functions f and g, both differentiable at a.
The derivative of f + g is the sum of the derivatives of f and g. (easy to
prove)

• fg is the product of scalar-valued function f and vector-valued g, both
differentiable. Then
[D(fg)(a)]~v = f(a)([Dg(a)]~v) + ([Df(a)]~v)g(a).

• g/f is the quotient of vector-valued function g and scalar-valued f , both
differentiable, and f(a) 6= 0. Then

[D(
g

f
)(a)]~v =

[Dg(a)]~v

f(a)
− ([Df(a)]~v)g(a)

(f(a)2
.

• U ⊂ Rn and V ⊂ Rm are open sets, and a is a point in U at which we want
to evaluate a derivative.

g : U → V is differentiable at a, and [Dg(a)] is an m× n Jacobian matrix.

f : V → Rp is differentiable at g(a), and [Df(g(a))] is a p × m Jacobian
matrix.

The chain rule states that [D(f ◦ g)(a))] = [Df(g(a))] ◦ [Dg(a)].

• The combined effect of all these rules is effectively that if a function is
defined by well-behaved formulas (no division by zero), it if differentiable,
and its derivative is represented by its Jacobian matrix.
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1.3 Connection between Jacobian matrix and derivative

• If f : Rn → Rm is defined on an open set U ∈ Rn, and

f(x) = f

x1...
xn

 =

f1(x)
...

fm(x)


the Jacobian matrix [Jf(x)] is made up of all the partial derivatives of f :

[Jf(a)] =

 D1f1(a)....Dnf1(a)
...

D1fm(a)....Dnfm(a)


• We can invent pathological cases where the Jacobian matrix of f exists

(because all the partial derivatives exist), but the function f is not differ-
entiable. In such a case, using the formula

∇~vf(a) = [Jf(a)]~v

generally gives the wrong answer for the directional derivative! You are
trying to use a linear approximation where none exists.

• Using the Jacobian matrix of partial derivatives to get a good affine ap-
proximation for f(a+~h) is tantamount to assuming that you can reach the

point a + ~h by moving along lines that are parallel to the coordinate axes
and that the change in the function value along the solid horizontal line is
well approximated by the change along the dotted horizontal line. With
the aid of the mean value theorem, you can show that this is the case if
(proof 11.2) the partial derivatives of f at a are continuous.

(a1, a2)

(a1, a2 + h2) (a1 + h1, a2 + h2)

(a1 + h1, a2)

1.4 Newton’s method – one variable

Newton’s method is based on the tangent-line approximation. Function f is
differentiable. We are trying to solve the equation f(x) = 0, and we have found
a value a0 that is close to the desired x. So we use the best affine approximation
f(x) ≈ f(a0) + f ′(x0)(x− a0).
Then we find a value a1 for which this tangent-line approximation equals zero.
f(a0) + f ′(x0)(a1 − a0) = 0, and a1 = a0 − f(a0)/f

′(a0).
When f(a0) is small, f ′(a0) is large, and f ′(a0) does not change too rapidly, a1
is a much improved approximation to the desired solution x. Details, for which
Kantorovich won the Nobel prize in economics, are in Hubbard.
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1.5 Newton’s method – more than one variable

Example: we are trying to solve a system of n nonlinear equations in n unknowns,
e.g.
x2ey − sin(y)− 0.3 = 0
tanx+ x2y2 − 1 = 0.
Ordinary algebra is no help – there is no nonlinear counterpart to row reduction.
U is an open subset of Rn, and we have a differentiable function ~f(x) : U → Rn.

In the example, ~f

(
x
y

)
=

(
x2ey − sin(y)− 0.3
tanx+ x2y2 − 1

)
, which is differentiable.

We are trying to solve the equation ~f(x) = ~0.
Suppose we have found a value a0 that is close to the desired x.
Again we use the best affine approximation

~f(x) ≈ ~f(a0) + [Df̃(a0)](x− a0).

We set out to find a value a1 for which this affine approximation equals zero.

~f(a0) + [Df̃(a0)](a1 − a0) = ~0

This is a linear equation, which we know how to solve!
If [Df̃(a0)] is invertible (and if it is not, we look for a better a0), then

a1 = a0 − [Df̃(a0)]
−1~f(a0).

Iterating this procedure is the best known for solving systems of nonlinear equa-
tions. Hubbard has a detailed discussion (which you are free to ignore) of how
to use Kantorovich’s theorem to assess convergence.

1.6 The inverse function theorem – short version

For function f : [a, b] → [c, d], we know that if f is strictly increasing or strictly
decreasing on interval [a, b], there is an inverse function g for which g ◦ f and
f ◦ g are both the identity function. We can find g(y) for a specific y by solving
f(x) − y = 0, perhaps by Newton’s method. If f(x0) = y0 and f ′(x0) 6= 0, we
can prove that g is differentiable at y0 and that g′(y0) = 1/f ′(x0).
“Strictly monotone” does not generalize, but “nonzero f ′(x0)” generalizes to
“invertible [Df(x0)].” Start with a function f : Rn → Rn whose partial derivatives
are all continuous, so that we know that it is differentiable everywhere. Choose
a point x0 where the derivative [Df(x0)] is an invertible matrix. Set y0 = f(x0).
Then there is a differentiable local inverse function g = f−1 such that

• g(y0) = x0.

• f(g(y)) = y if y is close enough to y0.

• [Dg(y)] = [Df(g(y))]−1 (follows from the chain rule)
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2 Lecture outline

1. The derivative as a linear transformation

When we say that function f is differentiable at x = a and that f ′(a) = m,
what we mean is that the function f(a + h) − f(a) is well approximated,
for small h, by a linear function L(h) = mh, where m = f ′(a).

Show how this idea can be viewed as a “tangent-line approximation” to
f(x) for x near to a.

In the single-variable case, we usually think of the derivative f ′(a) as just
a number, not a linear function of an increment h, but that view will not
generalize to derivatives in Rn. Here is a view of single-variable calculus
that generalizes correctly.

Any linear function L(h) = mh is represented by the 1 × 1 matrix [m],
which in turn is represented by the real number m.

The error made by using the tangent-line approximation
f(a+ h)− f(a) = f ′(a)h is a “remainder”

r(h) = f(a+ h)− f(a)− f ′(a)h.

If f is differentiable, this remainder approaches 0 faster than h, i.e.

lim
h→0

r(h)

h
= lim

h→0

f(a+ h)− f(a)− f ′(a)h

h
= 0.

This definition leads to the standard rule for calculating the number f ′(a),

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
.

What mathematical object represents a linear transformation
L : Rn → Rm?
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2. Extending this definition to f : Rn → Rm

A linear function L(~h) is represented by an m× n matrix.

What matrix represents the linear function(
y1
y2

)
= L

(
x1
x2

)
=

(
2x1 + x2
3x1 − x2

)
?

When we say that f is differentiable at a, we mean that the function
f(a + ~h)− f(a) is well approximated, for any ~h whose length is small, by a
linear function L, called the derivative [Df(a)].

The error made by using the approximation is a “remainder”
r(~h) = f(a + ~h)− f(a)− [Df(a)](~h).

f is called differentiable if this remainder approaches 0 faster than |~h|, i.e.

lim
~h→~0

1

|~h|
r(~h) = lim

~h→~0

1

|~h|
(f(a + ~h)− f(a)− [Df(a)](~h)) = 0.

In that case, [Df(a)] is represented by the Jacobian matrix [Jf(a)].

Proof: Since L exists and is linear, it is sufficient to consider its action on
each standard basis vector. We choose ~h = t~ei so that |~h| = t. Knowing
that the limit exists, we can use any sequence that converges to the origin
to evaluate it, and so

lim
t→0

1

t
(f(a + t~ei)− f(a)− tL~ei)) = 0? and L(~ei) = lim

t→0

1

t
(f(a + t~ei)− f(a))

What is hard is proving that f is differentiable – that L exists – since that
requires evaluating a limit where ~h → ~0. Such a limit exists only if every
sequence ~h1, ~h2, · · · that converges to ~0 leads to the conclusion that

lim
1

|~hn|
r(~hn) = 0

Mere existence of partial derivatives of f at a does not guarantee that
f is differentiable at a. Eventually we will prove (proof 11.2) that f is
differentiable at a if all its partial derivatives are continuous there.
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3. Proving differentiability and calculating derivatives

In every case f is a function from U to Rm, where U is an open subset of
Rn.

• f is constant: f = c. Then [Df(a)] is the zero linear transformation,
since

lim
~h→~0

1

|~h|
(f(a + ~h)− f(a)− [Df(a)]~h) = lim

~h→~0

1

|~h|
(c− c− ~0) = ~0.

• f is affine: a constant plus a linear function, f = c + L. [Df(a)] = L ,
since

lim
~h→~0

1

|~h|
(f(a+~h)−f(a)−[Df(a)]~h) = lim

~h→~0

1

|~h|
(c+L(a+~h)−(c+L(a))−L(~h)) = 0.

f has differentiable components: if f =


f1
·
·
·
fn

 : then Df(a) =


Df1(a)
·
·
·

Dfn(a)


.

• f + g is the sum of two functions f and g, both differentiable at a.
The derivative of f + g is the sum of the derivatives of f and g. (proof
on next page)
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4. Derivative of a sum

f and g are differentiable at a. The obvious guess is that the derivative of
f + g is the sum of their derivatives.

Since f and g are differentiable at a, we know that

lim
~h→~0

1

|~h|
(f(a + ~h)− f(a)− ([Df(a)]~h) = 0.

lim
~h→~0

1

|~h|
(g(a + ~h)− g(a)− ([Dg(a)]~h) = 0.

To prove the obvious guess, show that

lim
~h→~0

1

|~h|
((f + g)(a + ~h)− (f + g)(a)− ([Df(a)] + [Dg(a)])~h) = 0.

5. Product rule (your proof 11.1):

Now comes something harder: the product rule for two scalar-valued func-
tions f and g. It is easy to guess what the derivative of fg must be, since
in single variable calculus, (fg)′ = fg′ + gf ′.
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Product rule: [D(fg)(a)] = f(a)[Dg(a)] + g(a)[Df(a)].

• Step 1: Write the “remainder” r(~h) that must have the property

lim
~h→~0

r(~h)

|~h|
= 0.

r(~h) = f(a + ~h)g(a + ~h)− f(a)g(a)− f(a)[Dg(a)]~h− g(a)[Df(a)]~h

• Step 2 – a trick that must be memorized: Subtract and add
f(a)g(a + ~h), and subtract and add g(a + ~h)[Df(a)]~h.

r(~h) = f(a + ~h)g(a + ~h)− f(a)g(a + ~h) + f(a)g(a + ~h)− f(a)g(a)

−f(a)[Dg(a)]~h−g(a+~h)[Df(a)]~h+g(a+~h)[Df(a)]~h−g(a)[Df(a)]~h.

• Step 3: split into three terms, one involving the remainder for f , one
involving the remainder for g, and one involving [Df(a)].

r(~h) = r1(~h) + r2(~h) + r3(~h), where

r1(~h) = f(a + ~h)g(a + ~h)− f(a)g(a + ~h)− g(a + ~h)[Df(a)]~h

r2(~h) = f(a)g(a + ~h)− f(a)g(a)− f(a)[Dg(a)]~h.

r3(~h) = g(a + h)[Df(a)]~h− g(a)[Df(a)]~h.

• Step 4: Divide each term by |~h|, and use the differentiability of f and

g to prove that the limit lim~h→~0
r(~h)

|~h|
is zero. For each term you have

the product of two factors: one approaches zero, while the other is
bounded.

r1(~h) = (f(a + ~h)− f(a)− [Df(a)]~h)g(a + ~h).

lim
~h→~0

r1(~h)

|~h|
= 0,

since the first factor over |~h| goes to zero and the second is bounded.

r2(~h) = f(a)(g(a + ~h)− g(a)− [Dg(a)]~h).

lim
~h→~0

r2(~h)

|~h|
= 0,

since the second factor over |~h| goes to zero and the first is constant.

r3(~h) = [g(a + ~h)− g(a)][Df(a)]~h.

lim
~h→~0

r3(~h)

|~h|
= 0,

since the first factor goes to zero by continuity and the second factor
over |~h| is bounded.
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6. (Proof 11.1)
Let U ⊂ Rn be an open set, and let f and g be functions from U to R.
Prove that if f and g are differentiable at a then so is fg, and that

[D(fg)(a)] = f(a)[Dg(a)] + g(a)[Df(a)].

(Simpler than in Hubbard because both f and g are scalar-valued functions)
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7. Chain rule in Rn – not a proof, but still pretty convincing

The chain rule for differentiating composition of functions in general is
as simple as you could hope for on the basis of single-variable calculus.
Remember the single-variable version:

(f ◦ g)′(a) = f ′(g(a))g′(a).

This can be rewritten

[D(f ◦ g)(a)] = [Df(g(a))][Dg(a)],

where the square brackets convert the old-style derivatives (numbers) into
1× 1 Jacobian matrices.

This says that the derivative of the composition of f and g is the com-
position of the linear function “multiply by g′(a)” and the linear function
“multiply by f ′(g(a))” Notice that f has to be differentiable at g(a).

Here is the generalization:

U ⊂ Rn and V ⊂ Rm are open sets, and a is a point in U at which we want
to evaluate a derivative.

g : U → V is differentiable at a, and [Dg(a)] is a m× n Jacobian matrix.

f : V → Rp is differentiable at g(a), and [Df(g(a))] is a p × m Jacobian
matrix.

The chain rule states that [D(f ◦ g)(a))] = [Df(g(a))] ◦ [Dg(a)].

Draw a diagram to illustrate what happens in the case n = m = p = 2
when you use derivatives to find a linear approximation to
(f ◦ g)(a + h̃)− (f ◦ g)(a).
This approximation can be done in a single step or in two steps.
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8. Two easy chain rule examples

(a) g : R → R2 maps time into the position of a particle moving around
the unit circle:

g(t) =

(
cos t
sin t

)
.

f : R2 → R maps a point into the temperature at that point.

f

(
x
y

)
= x2 − y2

The composition f ◦ g maps time directly into temperature .

Confirm that [D(f ◦ g)(t)] = [Df(g(t))] ◦ [Dg(t)].

(b) Let φ : R→ R be any differentiable function. You can make a function
f : R2 → R that is constant on any circle centered at the origin by

forming the composition f

(
x
y

)
= φ(x2 + y2).

Show that f satisfies the partial differential equation yD1f−xD2f = 0.
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9. Connection between Jacobian matrix and derivative

• If f : Rn → Rm is defined on an open set U ∈ Rn, and

f(x) = f

x1...
xn

 =

f1(x)
...

fm(x)


the Jacobian matrix [Jf(x)] is made up of all the partial derivatives
of f :

[Jf(a)] =

 D1f1(a)....Dnf1(a)
...

D1fm(a)....Dnfm(a)


• We can invent pathological cases where the Jacobian matrix of f exists

(because all the partial derivatives exist), but the function f is not
differentiable. In such a case, using the formula

∇~vf(a) = [Jf(a)]~v

generally gives the wrong answer for the directional derivative! You
are trying to use a linear approximation where none exists.

• Using the Jacobian matrix of partial derivatives to get a good affine
approximation for f(a + ~h) is tantamount to assuming that you can

reach the point a + ~h by moving along lines that are parallel to the
coordinate axes and that the change in the function value along the
solid horizontal line is well approximated by the change along the
dotted horizontal line. With the aid of the mean value theorem, you
can show that this is the case if (proof 11.2) the partial derivatives of
f at a are continuous.

(a1, a2)

(a1, a2 + h2) (a1 + h1, a2 + h2)

(a1 + h1, a2)
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10. Jacobian matrix for a parametrization function gives a good affine approx-
imation
Here is the function that converts the latitude u and longitude v of a point
on the unit sphere to the Cartesian coordinates of that point.

f

(
u
v

)
=

cosu cos v
cosu sin v

sinu


Work out the Cartesian coordinates of the point with sinu = 3

5
(37 degrees

North latitude) and sin v = 1(90 degrees East longitude), and calculate the
Jacobian matrix at that point. Then find the best affine approximation to
the Cartesian coordinates of the nearby point where u is 0.01 radians less
(going south) and v is 0.02 radians greater (going east).
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11. A non-differentiable function

Consider a surface where the height z is given by the function

f

(
x
y

)
=

3x2y − y3

x2 + y2
; f

(
0
0

)
= 0.

This function is not differentiable at the origin, and so you cannot calculate
its directional derivatives there by using the Jacobian matrix!

(a) Along the first standard basis vector, the directional derivative at the
origin is zero. Find two vectors along other directions that also have
this property.

(b) Along the second standard basis vector, the directional derivative at
the origin is -1.
Find two vectors along other directions that also have this property.
(This surface is sometimes called a “monkey saddle,” because a mon-
key could sit comfortably on it with its two legs and its tail placed
along these three downward-sloping directions.)

(c) Calculate the directional derivative along an arbitrary unit vector

~eθ =

(
cos θ
sin θ

)
. Using the trig identity sin 3θ = 3 sin θ cos2 θ − sin3 θ,

quickly rederive the special cases of parts (a) and (b).

(d) Using the definition of the derivative, give a convincing argument that
this function is not differentiable at the origin.
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12. The mean-value theorem in Rn

For functions of one variable, this is an old friend.

If f : [a, b] → R is continuous on [a, b] and differentiable on (a, b), then
∃c ∈ [a, b] such that

f(b)− f(a) = f ′(c)(b− a)

The generalization uses the segment from a to b like the closed interval
[a, b].

The function f (takes values in R) must be differentiable on an open set U
that includes this entire segment.

The conclusion is that

f(b)− f(a) = [Df(c)] ~(b− a).

The proof (Hubbard p. 148) is easy. Define a function h(t) that maps the
interval 0 ≤ t ≤ 1 uniformly into the segment from a to b. The formula is

h(t) = (1− t)a + tb

Now g = f ◦h satisfies all the hypotheses of the single-variable mean-value
theorem. So there exists t0 in (0,1) for which

g(1)− g(0) = g′(t0)(1− 0).

By the chain rule, g′(t0) = [Df(h(t0))]Dh(t0)

Set c = h(t0) and this becomes

f(b)− f(a) = [Df(c)] ~(b− a).

If points b and a differ only in their ith component, so that b = a + ~ei ,
then

f(a + ~ei)− f(a) = Dif(a + t0~ei), 0 < t0 < 1.
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13. (Proof 11.2) Using the mean value theorem, prove that if a function f :
R2 → R has partial derivatives D1f and D2f that are continuous at a, it is
differentiable at a and its derivative is the Jacobian matrix

[
D1f(a) D2f(a)

]
.
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14. Derivative of a function of a matrix (Example 1.7.17 in Hubbard):

A matrix is also a vector. When we square an n×n matrix A, the entries of
S(A) = A2 are functions of all the entries of A. If we change A by adding
to it a matrix H of small length, we will make a change in the function
value A2 that is a linear function of H plus a small “remainder.”

We could in principle represent A by a column vector with n2 components
and the derivative of S by a very large matrix, but it is more efficient to
leave H in matrix form and use matrix multiplication to find the effect of
the derivative an a small increment matrix H. The derivative is still a linear
function, but it is represented by matrix multiplication in a different way.

(a) Using the definition of the derivative, show that the linear function
that we want is DS(H) = AH +HA.

(b) Confirm that DS is a linear function of H

(c) Check that DS(H) is a good approximation to S(A+H)−S(A) for the
following simple case, where the matrices A and H do not commute.

A =

[
1 1
0 1

]
, H =

[
0 h
k 0

]
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15. Derivative of the matrix-inverse function

Define the function T (A) = A−1. We expect that T (A+H)− T (A) can be
well approximated by an expression that is linear in H.

Proof strategy: use a geometric series

If we were dealing with numbers, we could write

1

a+ h
=

1

a

1

1 + h
a

=
1

a
(1− h

a
+
h2

a2
− ...) =

This approach works with matrices, too, but we must be careful with the
order of factors and remember that (BC)−1 = C−1B−1.

• Prove that (A+H)−1 = (I + A−1H)−1A−1.

• Expand in a geometric series.

• Evaluate T (A+H)− T (A) and identify the term that is linear in H.
Now we have our guess for the derivative.
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• The “remainder” is T (A+H)−T (A) +A−1HA−1, and we have found
that

T (A+H) = (A+H)−1 =
A−1 − A−1HA−1 + A−1HA−1HA−1 − A−1HA−1HA−1HA−1 + · · · .
Get a formula for this remainder that includes two factors of H. Then
take its length. Use two strategies:

Length of product ≤ product of lengths.

Length of sum ≤ sum of lengths (generalized triangle inequality.)

• Prove that

lim
H→0

|Remainder|
|H|

= 0.
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16. Chain rule for functions of matrices

We have shown that the derivative of the squaring function S(A) = A2 is
DS(H) = AH +HA

We also showed that for T (A) = A−1, the derivative isDT (H) = −A−1HA−1

Now the function U(A) = A−2 can be expressed as the composition U =
S ◦ T .

Find the derivative DU(H) by using the chain rule.

The chain rule says “the derivative of a composition is the composition of
the derivatives,” even in a case like this where composition is not repre-
sented by matrix multiplication.
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17. Newton’s method

(a) One variable: Function f is differentiable. You are trying to solve the
equation f(x) = 0, and you have found a value a0, close to the desired
x, for which f(a0) is small. Derive the formula a1 = a0− f(a0)/f

′(a0)
for an improved estimate.

(b) Use Newton’s method to find an approximate value for the cube root
of 8.1.

(c) n variables: U is an open subset of Rn, and function ~f(x) : U → Rn is

differentiable. You are trying to solve the equation ~f(x) = ~0,

and you have found a value a0, close to the desired x, for which ~f(a0)
is small. Derive the formula

a1 = a0 − [Df̃(a0)]
−1~f(a0).

for an improved estimate.
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18. Newton’s method – an example with two variables
We want an approximate solution to the equations

log x+ log y = 3

x2 − y = 1

i.e. f

(
x
y

)
=

(
log x+ log y − 3
x2 − y − 1

)
=

(
0
0

)
.

Knowing that log 3 ≈ 1.1, show that x0 =

(
3
9

)
is an approximate solution

to this equation, then use Newton’s method to improve the approximation.
Here is a check:

log 2.81 + log 6.87 = 2.98

2.812 − 6.87 = 1.02
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19. Derivative of inverse function

Suppose that f : Rn → Rn is a continuously differentiable function. Choose
a point x0 where the derivative [Df(x0)] is an invertible matrix. Set y0 =
f(x0). Let g be the differentiable local inverse function g = f−1 such that

g(y0) = x0 and f(g(y)) = y if y is close enough to y0.

Prove that [Dg(y0)] = [Df(x0)]
−1
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20. An economic example of the inverse-function theorem:

Your model: Providing x in health benefits and y in educational benefits
leads to happiness H and cost C according the the equation(

H
C

)
= f

(
x
y

)
=

(
x+ x0.5y
x1.5 + y0.5

)
.

Currently, x = 4, y = 9, H = 22, C = 11. Your budget is cut, and you are
told to adjust x and y to reduce C to 10 and H to 19. Find an approximate
solution by using the inverse-function theorem.

We cannot find formulas for the inverse function g

(
H
C

)
that would solve

the problem exactly, but we can calculate the derivative of g.

(a) Check that[Df ] =

[
1 + y

2
√
x

√
x

3
2

√
x 1

2
√
y

]
=

[
13
4

2
3 1

6

]
is invertible.

(b) Use the derivative [Dg] =

[
−0.03 0.36
0.55 −0.6

]
to approximate g

(
19
10

)
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3 Group Problems

1. Chain rule

(a) Chain rule for matrix functions

On smple problem 4, we obtained the differentiation formula for U(A) =
A−2 by writing U = S ◦ T with S(A) = A2, T (A) = A−1. Prove
the same formula from the chain rule in a different way, by writing
U = T ◦ S. You may reuse the formulas for the derivatives of S and
T :

If S(A) = A2 then [DS(A)](H) = AH +HA.

If T (A) = A−1 then [DT (A)](H) = −A−1HA−1.
(b) Chain rule with 2× 2 matrices

Start with a pair of polar coordinates

(
r
θ

)
.

Function g converts them to Cartesian

(
x
y

)
.

Function f then converts

(
x
y

)
to

(
2xy

x2 − y2
)
.

Confirm that [D(f ◦ g)(

(
r
θ

)
))] = [Df(g

(
r
θ

)
)] ◦ [Dg

(
r
θ

)
]
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2. Issues of differentiability

(a) Suppose that A is a matrix and S is the cubing function given by
the formula S(A) = A3. Prove that S is differentiable and that its
derivative is the linear function of the matrix H given by the formula

[DS(A)](H) = A2H + AHA+HA2.

The proof consists in showing that the length of the “remainder” goes
to zero faster than the length of the matrix H.

(b) A continuous but non-differentiable function

f

(
x
y

)
=

x2y

x2 + y2
, f

(
0
0

)
= 0.

i. Show that both partial derivatives vanish at the origin, so that
the Jacobian matrix at the origin is the zero matrix [0 0], but

that the directional derivative along

(
1
1

)
is not zero. How does

this calculation show that the function is not differentiable at the
origin?

ii. For all points except the origin, the partial derivatives are given
by the formulas

D1f

(
x
y

)
=

2xy3

(x2 + y2)2
, D2f

(
x
y

)
=
x4 − x2y2

(x2 + y2)2

Construct a “bad sequence” of points approaching the origin to
show that D1f is discontinuous at the origin.
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3. Inverse functions and Newton’s method

(a) An approximate solution to the equations

x3 + y2 − xy = 1.08

x2y + y2 = 2.04

is x0 = 1, y0 = 1.

Use one step of Newton’s method to improve this approximation.

(b) You are in charge of building the parking lots for a new airport. You
have ordered from amazon.com enough asphalt to pave 1 square kilo-
meter, plus 5.6 kilometers of chain-link fencing. Your plan is to build
two square, fenced lots. The short-term lot is a square of side x=0.6
kilometers; the long-term lot is a square of side y=0.8 kilometers. The
amount of asphalt A and the amount C of chain-link fencing required
are then specified by the function(

A
C

)
= F

(
x
y

)
=

(
x2 + y2

4x+ 4y

)
,

Alas, Amazon makes a small shipping error. They deliver enough
asphalt to pave 1.03 square kilometers but only 5.4 kilometers of fence.

i. Use the inverse-function theorem to find approximate new values
for x and y that use exactly what was shipped to you.
In this simple case you can check your answer by solving alge-
braically for x and y.

ii. Find a case where A = 1 but the value of C is such that this
approach will fail because [DF ] is not onto. (This case corresponds
to the maximum amount of fencing.)
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4. Problems to be solved using R (if your group has experience with R, solve
one of these as your third problem.)

Both problems can by done by modifying R script 3.3B. Since Newton’s
method is the only generally applicable technique for solving nonlinear
equations, it is really useful to know how to do it on a computer.

(a) Saving Delos

The ancient citizens of Delos, threatened with a plague, consulted the
oracle of Delphi, who told them to construct a new cubical altar to
Apollo whose volume was double the size of the original cubical altar.
(For details, look up “Doubling the cube” on Wikipedia.)

If the side of the original altar was 1, the side of the new altar had to
be the real solution to f(x) = x3 − 2 = 0.

Numerous solutions to this problem have been invented. One uses a
“marked ruler” or “neusis”; another uses origami.

Your job is to use multiple iterations of Newton’s method to find an
approximate solution for which x3 − 2 is less than 10−8 in magnitude.

(b) An approximate solution to the system of nonlinear equations

x+ y2 + z3 = 9

xy + xz + yz = 12

xyz = 7

is x = 3, y = 2, z = 1.

Use two iterations of Newton’s method to find a good approximate
solution to these equations.
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4 Homework

1. (similar to group problem 1a)

We know the derivatives of the matrix-squaring function S and the matrix-
inversion function T :

If S(A) = A2 then [DS(A)](H) = AH +HA.

If T (A) = A−1 then [DT (A)](H) = −A−1HA−1.

(a) Use the chain rule to find a formula for the derivative of the function
U(a) = A4.

(b) Use the chain rule to find a formula for the derivative of the function
W (a) = A−4.

2. (a) Hubbard, Exercise 1.7.21 (derivative of the determinant function).
This is really easy if you work directly from the definition of the deriva-
tive.

(b) Generalize this result to the 3×3 case. Hint: consider a matrix whose
columns are ~e1 + h~a1, ~e2 + h~a2, ~e3 + h~a3, and use the definition of the
determinant as a triple product.

3. Hubbard, Exercise 1.8.6, part (b) only. In the case where f and g are
functions of time t, this formula finds frequent use in physics. You can
either do the proof as suggested in part (a) or model your proof on the one
for the dot product on page 143.

4. (similar to the second example on page 14)

Hubbard, Exercise 1.8.9. The equation that you prove can be called a
“first-order partial differential equation.”

32



5. (similar to group problem 2b)

As a summer intern, you are given the job of reconciling the Democratic and
Republican proposals for tax reform. Both parties agree on the following
model:

• x is the change in the tax rate for the middle class.

• y is the change in the tax rate for the well-off.

• The net impact on revenue is given by the function

f

(
x
y

)
=
x(x2 − y2)
x2 + y2

, f

(
0
0

)
= 0.

The Republican proposal is y = −x, while the Democratic proposal is
y = x.

(a) Show that f is continuous at the origin.

(b) Show that both proposals are revenue neutral by calculating two ap-
propriate directional derivatives. You will have to use the definition
of the directional derivative, not the Jacobian matrix.

(c) At the request of the White House, you investigate a 50-50 mix of the
two proposals, the compromise case where y = 0, and you discover
that it is not revenue neutral! Confirm this surprising conclusion by
showing that the directional derivatives at the origin cannot be given
by a linear function; i.e. that f is not differentiable.

(d) Your final task is to explain the issue in terms that legislators can un-
derstand: the function is not differentiable because its partial deriva-
tives are not continuous. Demonstrate that one of the partial deriva-
tives of f is discontinuous at the origin. (D2f is less messy.)
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6. Chain rule: an example with 2× 2 matrices
A similar example with a 3× 3 matrix is on page 151 of Hubbard.

The function

f

(
x
y

)
=

(
1
2
(x+ y)√
xy

)
was invented by Gauss about 200 years ago to deal

with integrals of the form∫ ∞
−∞

dt√
(t2 + x2)(t2 + y2)

.

It was revived in the late 20th century as the basis of the AGM (arithmetic-
geometric mean) method for calculating π. You can get 1 million digits with
a dozen or so iterations.

The function is meant to be composed with itself; so it will be appropriate
to compute the derivative of f ◦ f by the chain rule.

(a) f is differentiable whenever x and y are positive; so its derivative is
given by its Jacobian matrix. Calculate this matrix.

We choose to evaluate the derivative of f ◦ f at the point

(
8
2

)
.

Conveniently, f

(
8
2

)
=

(
5
4

)
. The chain rule says that

[D(f ◦ f)]

(
8
2

)
= [Df

(
5
4

)
][Df

(
8
2

)
].

Evaluate the two numerical Jacobian matrices. Because the derivative
of f is evaluated at two different points, they will not be the same.

(b) Write the formula for f ◦ f , compute and evaluate the lower left-hand
entry in its Jacobian matrix, and check that it agrees with the value
given by the chain rule.
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7. (a) Hubbard, problem 2.10.2. Make a sketch to show how this mapping
defines an alternative coordinate system for the plane, in which a point
is defined by the intersection of two hyperbolas.

(b) The point x = 3, y = 2 is specified in this new coordinate system
by the coordinates u = 6, v = 5. Use the derivative of the inverse
function to find approximate values of x and y for a nearby point
where u = 6.5, v = 4.5. (This is essentially one iteration of Newton’s
method.)

(c) Find h such that the point u = 6 + h, v = 5.1 has nearly the same
x-coordinate as u = 6, v = 5.

(d) Find k such that the point x = 3 + k, y = 2.1 has nearly the same
u-coordinate as x = 3, y = 2.

(e) For this mapping, you can actually find a formula for the inverse func-
tion that works in the region of the plane where x, y, u, and v are all
positive. Find the rather messy formulas for x and y as functions of
u and v, and use them to answer the earlier questions. Once you cal-
culate the Jacobian matrix and plug in appropriate numerical values,
you will be back on familiar ground.
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8. The CEO of a chain of retail stores will get a big bonus if she hits her volume
and profit targets for December exactly. Her microeconomics consultant,
fresh out of Harvard, tells her that both her target figures are functions
of two variables, investment x in Internet advertising and investment y in
television advertising. The former attracts savvier customers and so tends
to contribute to volume more than to profit.

The function that determines volume V and profit P is

(
V
P

)
=

(
x

3
4y

1
3 + x

x
1
4y

2
3 + y

)
.

With x = 16, y = 8, V = 32, P = 16, our CEO figures she is set for a
big bonus. Suddenly, the board of directors, feeling that Wall Street is
looking as much for profit as for volume this year, changes her targets to
V = 24, P = 24. She needs to modify x and y to meet these new targets.

Near V = 32, P = 16, there is an inverse function such that(
x
y

)
= g

(
V
P

)
. Find its derivative [Dg], and use the derivative to find

values of x and y that are an approximate solution to the problem. Because
the increments to V and P are large, you should not expect the approximate
solution to be very good, but it will be better than doing nothing.

Optional extra problems to be solved using R

9. In the preceding problem, use multiple iterations of Newton’s method in R
to find accurate values of x and y that meet the revised targets. Feel free
to modify Script 3.3C.

10. (Related to group problem 4a)

The quintic equation x(x2 − 1)(x2 − 4) = 0 clearly has five real roots that
are all integers. So does the equation x(x2 − 1)(x2 − 4) − 1 = 0, but you
have to find them numerically. Get all five roots using Newton’s method,
carrying out enough iterations to get an error of less than .001. Use R to do
Newton’s method and to check your answers. If you have R plot a graph,
it will be easy to find an initial guess for each of the five roots.
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