Math 23a - Proof 1.1

Paul Bamberg

September 9, 2016

- Suppose that a and b are two elements of a field F. Using only the axioms for a field, prove that $\forall a \in F, 0 a=0$.
- Suppose that a and b are two elements of a field F. Using only the axioms for a field, prove that $\forall a \in F, 0 a=0$.
- $0+0=0$
- Suppose that a and b are two elements of a field F. Using only the axioms for a field, prove that $\forall a \in F, 0 a=0$.
- $0+0=0$
- $(0+0) a=0 a$
- $0 a+0 a+(-0 a)=0 a+(-0 a)$
- Suppose that a and b are two elements of a field F. Using only the axioms for a field, prove that $\forall a \in F, 0 a=0$.
- $0+0=0$
- $(0+0) a=0 a$
- $0 a+0 a=0 a$
- Suppose that a and b are two elements of a field F. Using only the axioms for a field, prove that $\forall a \in F, 0 a=0$.
- $0+0=0$
- $(0+0) a=0 a$
- $0 a+0 a=0 a$
- $0 a+0 a+(-0 a)=0 a+(-0 a)$
- Suppose that a and b are two elements of a field F. Using only the axioms for a field, prove that $\forall a \in F, 0 a=0$.
- $0+0=0$
- $(0+0) a=0 a$
- $0 a+0 a=0 a$
- $0 a+0 a+(-0 a)=0 a+(-0 a)$
- $0 a+0=0$
- Suppose that a and b are two elements of a field F. Using only the axioms for a field, prove that $\forall a \in F, 0 a=0$.
- $0+0=0$
- $(0+0) a=0 a$
- $0 a+0 a=0 a$
- $0 a+0 a+(-0 a)=0 a+(-0 a)$
- $0 a+0=0$
- $0 a=0$
- Suppose that a and b are two elements of a field F. Using only the axioms for a field, prove that if $a b=0$, then either a or b must be 0 .
- Either $a=0$ or $a \neq 0$
- Suppose that a and b are two elements of a field F. Using only the axioms for a field, prove the additive inverse of a is unique.

