MATHEMATICS E-23a, Fall 2016
Quiz \#2 Practice Questions
November 2016
These questions were written by the course assistants last year. They are quite skillfully done.

A handwritten document that also includes the answers is in the file Quiz 2 Review.pdf.

Donald Trump suggests that you should just read through the answers before taking the quiz. Hillary Clinton suggests that you should print a copy of this file, work all the questions, and then use the answers to grade your own answers.

1. (Inspired by Week 5, group problems \#1)
(a) Starting from the triangle inequality $|a+b| \leq|a|+|b|$, show that

$$
|a|-|b| \leq|a-b| .
$$

(b) Using induction, show that:

$$
|a|-\sum_{i=1}^{n}\left|b_{i}\right| \leq\left|a-\sum_{i=1}^{n} b_{i}\right| .
$$

2. (Inspired by Week 5, group problems \#2)

Given $\lim s_{n}=s$ and $\lim t_{n}=t$ (and $t_{n} \neq 0 \forall n$ and $t>0$), show that

$$
\lim \frac{s_{n}}{t_{n}}=\frac{s}{t} .
$$

3. (Inspired by Week 5, group problems \#3)

Let $s_{1}=1$ and for $n \geq 1$ let $s_{n+1}=\sqrt{s_{n}+1}$.
Given that $\lim s_{n}=s$, prove that

$$
s=\frac{1}{2}(1+\sqrt{5}) .
$$

4. (Inspired by Week 6, group problems \#1)
(a) Show that $\liminf \left(s_{n}+t_{n}\right) \geq \liminf s_{n}+\liminf t_{n}$ for bounded sequences s_{n} and t_{n}.
(b) Invent an example where $\lim \inf \left(s_{n}+t_{n}\right)>\liminf s_{n}+\liminf t_{n}$.
5. (Inspired by Week 6, group problems \#2)

Let $s_{1}=1$ and $s_{n+1}=\frac{1}{3}\left(s_{n}+1\right)$ for $n \geq 1$.
(a) Use induction to show that $s_{n}>\frac{1}{2} \forall n$.
(b) Show that s_{n} is a decreasing sequence.
(c) Show that $\lim s_{n}$ exists and find $\lim s_{n}=s$.
6. (Inspired by Week 6, group problems \#3)

Fine the radius of convergence R and the exact interval of convergence of the series

$$
\sum x^{n!}
$$

7. (Inspired by Week 7, group problems \#1)

Prove that if f and g are real-valued functions that are continuous at $x_{0} \in \mathbb{R}$, then $f g$ is continuous at x_{0} by
(a) ϵ / δ definition of continuity.
(b) "no bad sequence" definition of continuity.
8. (Inspired by Week 7, group problems \#2)

Show that $\sin x=\cos x$ for some $x \in\left(0, \frac{\pi}{2}\right)$.
9. (Inspired by Week 7, group problems \#3)

Evaluate the following limit without using L'Hospital's Rule, then check using L'Hospital's Rule:

$$
\lim _{x \rightarrow 0} \frac{\cos 2 x-\cos x}{x^{2}}
$$

You may use $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1 ; \cos 2 x=1-2 \sin ^{2} x ; \sin 2 x=2 \sin x \cos x$.
10. (Inspired by Week 8, group problems \#1)

Let

$$
f(x)=x^{\frac{3}{4}} .
$$

Find the derivative $f^{\prime}(x)$
(a) using the definition of the derivative as a limit.
(b) by rising both sides to the 4th power and using the chain rule.
11. (Inspired by Week 8, group problems \#2)

Let $g(y)=\arccos y^{2}$.
Find $g^{\prime}(y)$ by finding and differentiating the inverse function $y=f(x)$.
You can check your answer by using the chain rule and the derivative of the arccos function.
12. (Inspired by Week 8, group problems \#3)

Construct the Taylor series for the function $f(x)=\ln (1+x)$, and use Taylor's theorem with remiander to show that the series converges to the function for $x \leq 1$.

