
Weeks	2-3:	Responsive	Web	Design	(RWD)	

RWD	overview	
Powerpoint	slides	to	introduce	RWD	problems,	3	components	
	

Configuring	RWD	web	design	
We’ll	be	converting	a	web	page	from	a	standard	fixed-width	layout	to	RWD	over	2	lectures.	
	

Step	1:	Initial	HTML	configuration	
	
Responsive	meta	tag:	http://css-tricks.com/snippets/html/responsive-meta-tag/	
	
normalize.css:	Normalizes	margins/padding	and	other	browser	defaults	for	all	browsers.	Does	not	
eliminate	them	like	a	reset	stylesheet	might.	
http://necolas.github.io/normalize.css/	
	
Box	model:	Can	use	traditional	box	model	or	hack	it	with	border	box	
http://www.paulirish.com/2012/box-sizing-border-box-ftw/	
	
html {
 box-sizing: border-box;
}
*, *:before, *:after {
 box-sizing: inherit;
}
	
Browser	support	issues	for	box-sizing	may	also	be	a	thing	to	deal	with,	depending	on	what	browsers	you	
must	support	—	see	http://caniuse.com/#search=box-sizing	
	
In	border-box,	the	CSS	width	includes	border	and	padding,	but	not	margin.	The	standard	box	model	
includes	padding,	margin,	and	border.	
	
For	example,	if	you	have	a	box	with	20px	margin,	10px	padding,	and	2px	border	around	it	on	all	4	sides,	
with	a	width:	200px;	set,	the	total	box	width	under	the	traditional	content-box	model	is	264px	(20px	
margin	left	and	right,	plus	10px	padding	left	and	right,	plus	2px	border	left	and	right,	plus	200px).	
	
Under	the	border-box	model,	the	content	width	is	not	200px	but	176px.	That’s	200px	minus	10px	
padding	left	and	right,	minus	the	2px	border	left	and	right.		The	overall	width	of	the	box	here	is	240px,	
which	includes	200px	(content,	border,	padding)	plus	the	margin	(20px	left	and	right).	

Step	2:	convert	sizes	from	pixels	to	ems,	convert	to	a	fluid	layout	
	
Units	in	RWD:	usually	em’s,	but	can	use	other	units	(typically	%	or	px):	http://pxtoem.com/	
Convert	almost	all	pixel	dimensions	to	%	or	em.	In	general,	use	em	where	the	value	will	be	impacted	by	
different	font	sizes.	Use	%	for	big	page	dimensions	or	other	major	dimensions	on	the	page.	(Generally	I	
use	for	widths	of	containers.)	

	
Images	for	div	img	and	main	img	are	enhanced	by	fluid	dimensions:	
width:	100%;	
max-width:	100%;	
	
This	allows	the	image	to	display	at	100%	of	its	width	and	no	wider.	This	prevents	the	image	from	leaving	
its	container,	overlapping	with	other	images,	etc.	This	scales	the	HTML	dimensions	of	the	image	—	it	
does	NOT	reduce	file	size	of	the	image	for	smaller	dimensions.	This	is	NOT	“responsive	images”,	which	
we	cover	later.	This	is	a	little	hack	that	will	make	images	behave	for	the	moment	while	we	style	around	
them.	
	
body { font-size: 100%; }

wrapper {
width: 97%;
max-width: 1200px;
}

header {
width: 100%;
}

header h1 {
padding: 0.5em;
}

nav ul a {
padding: 1em;
}

main {
padding-right: 3em;
}

main h2 {
font-size: 3em;
padding-top: 1em;
}

main p {
font-size: 1.5em;
}

ADD: div img {
width: 100%;
max-width: 225px;
}

main img {
margin-right: 1.875em;
width: 100%;
max-width: 400px;
}

div {
margin-left: 2.5em;
}

footer {
padding: 2em 0;
margin: 3em 0;
}

	

Step	3:	Configuring	a	fixed	grid	system	

For	the	moment,	switch	from	index.html	to	grid.html.	Grid.html	will	serve	as	a	prototype	for	some	new	
HTML	and	CSS	in	this	step.	We’ll	then	fit	this	code	back	to	index.html.	
	
We’re	stepping	back	to	a	simpler	HTML	design	to	think	about	the	grid	system.	I’ve	chosen	the	most	
complex	row	in	the	design	to	prototype	here,	along	with	a	few	potential	variations	I	want	to	plan	for.	
	
We	are	building	a	4	column	grid	system.	Just	because	you	can	build	12	columns	doesn’t	mean	you	
should!	If	you	want	to	build	12	columns,	take	the	work	for	4	columns	and	expand.	(Yeah,	more	math.)	
You	don’t	have	to	build	12	columns	unless	you	think	you’ll	need	them.	That’s	the	advantage	of	a	fully	
custom	design!	
	
HTML	has	changed	as	follows:	
	
<section	class="row">	
	 	 	
					<div	class="col-1”>…</div>	
					<div	class="col-1”>…</div>	
					<div	class="col-1”>…</div>	
					<div	class="col-1”>…</div>	
	
</section>	
	
Rows	have	been	defined,	each	holding	up	to	4	columns.	Rows	contain	the	clear	to	balance	the	floats	
used	in	each	column.	
	
Each	row	should	contain	4	columns.	That	can	be	4	col-1’s,	2	col-2’s,	a	col-1	and	a	col-3,	a	col-1,	col-2,	and	
col-1,	or	a	col-4.	
	
Why	<section>?	No	reason	in	particular,	except	it	makes	the	code	easier	to	read	while	we	work	on	this	
mini-example.	This	way	we	avoid	many	layers	of	nested	div’s,	which	gets	hard	to	read.	Nope,	not	very	
semantic,	but	very	practical	when	learning.	In	“real	life”,	I’d	recommend	using	div’s	for	your	rows	unless	
you	have	a	compelling	reason	to	use	a	different	tag.	
	
In	the	CSS,	we	add	a	clear	for	the	rows	http://css-tricks.com/snippets/css/clear-fix/	
	
Then	style	each	column.	Based	on	settings	for	the	single	column,	we	can	calculate	the	additional	widths	
for	the	other	columns.	For	example,	for	a	2	column	width,	add	20.8333333%	plus	20.8333333%,	plus	
3.333333%	which	was	in	between	the	two	columns.		
	
Background	colors	were	added	to	make	it	visually	clear	in	the	browser	which	class	is	activated	on	which	
row.	
	
Note	the	grid	is	NOT	currently	responsive	—	there	are	no	media	queries.	
	
CSS	added:	
	
/* grid system */

/* row class will clear floats from previous row */
.row:after {
 content:"";
 display: table;
 clear:both;
}
[class*='col-'] {
 float: left;
 margin-left: 3.33333%;
 min-height: 1px;
}
.col-1 {
 width: 20.83333%;

background-color: #ccf;
}
.col-2 {
 width: 44.99999%;
 background-color: #cff;
}
.col-3 {
 width: 69.16666%;
 background-color: #ffc;
}
.col-4 {
 width: 93.33333%;

background-color: #fcf;
margin-right: 3.33333%;
}

Phase	4:	Media	Queries	
	
Now	that	we	have	a	grid	system	in	place,	we’re	ready	to	make	it	responsive.	
	
Media	query	background,	including	syntax	and	how	they	can	be	used	(it’s	more	than	pixel	breakpoints!):	
https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Media_queries	 	
	
Great	tutorial:	http://css-tricks.com/css-media-queries/		
	
The	usual	question	now	is	where	should	breakpoints	be	placed?	A	breakpoint	is	the	point	where	CSS	
rules	either	start	to	apply	or	stop	being	applied	to	the	page.		
	
Here’s	some	typical	media	queries	used	with	a	960px	grid	system:	
http://www.sitepoint.com/build-a-responsive-design-using-960-grid/	 	

.img {width:100%;}

/* Everything before the media queries gets

applied to screen sizes greater than 960 pixels */

/*****************/

/* MEDIA QUERIES */

/*****************/

/* Tablet Screen Sizes */

@media only screen and (min-width: 768px) and (max-width: 959px)

{ … }

/* Mobile Landscape Screen Sizes */

@media only screen and (min-width: 480px) and (max-width: 767px)

{ … }

/* Mobile Portrait Screen Sizes */

@media only screen and (max-width: 479px) { … }

Note	that	this	design	is	not	“mobile	first”	—	it	builds	the	desktop	layout,	then	makes	the	layout	
progressively	smaller.	
	
Bootstrap	uses	the	following	media	queries	(which	are	mobile	first):	
/* Extra small devices (phones, less than 768px) */
/* No media query since this is the default in Bootstrap */

/* Small devices (tablets, 768px and up) */
@media (min-width: 768px) { ... }

/* Medium devices (desktops, 992px and up) */
@media (min-width: 992px) { ... }

/* Large devices (large desktops, 1200px and up) */

@media (min-width: 1200px) { ... }

What	are	the	right	media	queries	for	you?	It	depends	on	your	design	and	how	things	look.	Also,	mobile	
first	or	“desktop	first”	may	also	be	the	right	approach	for	you.	
	
(Why	did	we	use	“desktop	first”?	We’re	retrofitting	a	site	that	was	already	created	with	new	data	to	
make	it	work	on	a	desktop.	If	you	want	to	build	with	“mobile	first”,	the	procedure	is	the	same	as	
described	in	this	tutorial,	but	your	default	styles	are	the	mobile	settings.	After	that,	add	media	queries	
for	when	the	page	is	wider.)	
	
We	start	by	putting	in	these	media	queries	and	styles:	

/* media queries */

/* Mobile Landscape Screen Sizes */
@media only screen and (min-width: 480px) and (max-width: 767px) {
[class*='col-'] {
 float: left;
 margin-left: 3.33333%;
 min-height: 1px;
}
 .col-1 {
 width: 44.99999%;
 background-color: #ccf;
}
.col-2 {
 width: 44.99999%;
 background-color: #cff;
}
.col-3 {
 width: 93.33333%;
 background-color: #ffc;

margin-right: 3.33333%;
 }
.col-4 {
 width: 93.33333%;
 background-color: #fcf;

margin-right: 3.33333%;
 }

}

/* Mobile Portrait Screen Sizes */
@media only screen and (max-width: 479px) {
 [class*='col-'] {
 width: 100%;
 margin-left: 0;
 min-height: 1px;
 }
 .col-1 {
 background-color: #ccf;
 }
 .col-2 {
 background-color: #cff;
 }
 .col-3 {
 background-color: #ffc;
 }
 .col-4 {
 background-color: #fcf;
 }
}
Note	that	the	widths	and	layouts	will	change	with	the	structure	of	the	page.	
	
However,	the	above	layouts	don’t	work	well	with	a	1-3	layout.	In	this	case,	we	may	want	to	
differentiate	.col-1	into	two	types	of	situations.	.col-1-2	will	go	from	a	single	column	at	large	sizes	to	
spanning	2	columns	at	smaller	sizes.	.col-1-4	goes	from	occupying	one	column	at	large	sizes	to	occupying	
all	4	columns	at	small	sizes.	This	gives	us	more	flexibility	in	layout	for	smaller	screens	and	results	in	the	
following	changes	to	CSS	(maintain	the	other	styles	for	columns	2-4):	
	

/* media queries */

/* Mobile Landscape Screen Sizes */
@media only screen and (min-width: 480px) and (max-width: 767px) {
 .col-1-2 {
 width: 44.99999%;
 background-color: #ccf;
}
 .col-1-4 {
 width: 93.33333%;

 background-color: #ccf;
margin-right: 3.33333%;

}
}

/* Mobile Portrait Screen Sizes */
@media only screen and (max-width: 479px) {
 .col-1-2,
 .col-1-4 {
 background-color: #ccf;
}
}

Phase	5:	Apply	grid	and	media	queries	to	the	original	page	design.	Tweak	CSS	as	
required.	

Now	that	we	have	prototyped	some	grid	settings	and	media	queries	that	work	with	our	most	complex	
row	in	our	design,	let’s	try	applying	these	settings	to	the	rest	of	the	page.	
	
First,	add	the	“default”	grid	settings.	These	should	be	applied	around	line	101	(at	the	end	of	the	current	
stylesheet)	and	include	style	for	the	row	and	the	way	the	page	will	look	for	large	desktop	layouts.	
	
Remove	the	old	div	class	that	was	originally	in	the	CSS,	or	the	page	look	will	be	a	disaster!	
	
/* row class will clear floats from previous row */
.row:after {
 content:"";
 display: table;
 clear:both;
}
[class*='col-'] {
 float: left;
 margin-left: 3.33333%;
 min-height: 1px;
}
.col-1-2,
.col-1-4 {
 width: 20.83333%;
}
.col-2 {
 width: 44.99999%;
}

.col-3 {
 width: 69.16666%;
}
.col-4 {
 width: 93.33333%;
 margin-right: 3.33333%;
}

Next,	add	our	two	media	queries:		

/* Mobile Landscape Screen Sizes */
@media only screen and (min-width: 480px) and (max-width: 767px) {
 [class*='col-'] {
 float: left;
 margin-left: 3.33333%;
 min-height: 1px;
 }
 .col-1-2 {
 width: 44.99999%;
 }
 .col-1-4 {
 width: 93.33333%;
 }
 .col-2 {
 width: 44.99999%;
 }
 .col-3 {
 width: 93.33333%;
 margin-right: 3.33333%;
 }
 .col-4 {
 width: 93.33333%;
 margin-right: 3.33333%;
 }

}

/* Mobile Portrait Screen Sizes */
@media only screen and (max-width: 479px) {
 [class*='col-'] {
 width: 100%;
 margin: 0;
 min-height: 1px;
 }
}

Check	the	design.	Are	these	default	breakpoints	still	OK,	or	do	they	need	tweaking?	
	
The	“Discover	Arlington”	box	doesn’t	look	too	awesome…	maybe	some	additional	tweaking	is	needed?	
We	can	reduce	the	font	size	as	the	screen	get	smaller,	for	example.	(We’ll	deal	with	resizing	this	image	
the	right	way	in	phase	7.)	
	
/* adjust "discover" box for smaller width */
@media only screen and (min-width: 702px) and (max-width: 866px) {
main h2 {
 font-size: 2.5em;
 padding-top: 0em;
}
main p {
 font-size: 1.5em;
 font-family: 'Cabin Condensed', sans-serif;
}
}

OK,	better…	maybe	time	to	add	another	tweak	for	smaller	screens?	And	how	about	that	nav	bar?	You	
could	add	some	JavaScript	to	make	that	appear/disappear	(maybe	behind	a	Hamburger	Button!),	or	you	
could	shorten	it	using	the	styles	below.	
	
/* adjust "discover" box again and change nav layout */
@media only screen and (max-width: 701px) {
main {
 padding: 0 3.333333%; /* aligns with boxes underneath */
}
main h2 {
 font-size: 2em;
 padding-top: 0em;
}
main p {
 font-size: 1.2em;
 font-family: 'Cabin Condensed', sans-serif;
}
main img {
 float: none;
 margin: 0;
 width: 100%;
 max-width: 400px;
}
nav ul a {
 display: block;
 float: none;

 padding-left:3.333333%;
}
/* splits nav into 2 columns
http://stackoverflow.com/questions/13104818/simple-2-column-
navigation-with-css-and-a-single-list */
nav li:nth-child(even) {
 width: 50%;
 float: right;
}
nav li:nth-child(odd) {
 width: 50%;
 float: left;
}
}

Phase	6:	Using	media	queries	to	load	the	right	background	image,	without	loading	all	
options	

It’s	probably	best	to	go	read	this	article	first.		
http://timkadlec.com/2012/04/media-query-asset-downloading-results/	
	
This	describes	a	series	of	tests	to	find	out	the	best	way	of	handling	multiple	images	within	a	web	page	
with	media	queries.	The	goal	is	to	have	only	the	image	relevant	for	the	current	dimensions	to	download.	
Remember	with	most	CSS	that	you	write,	you’ll	arrange	it	so	only	one	image	shows	—	that’s	not	hard.	
But	making	sure	only	one	image	downloads	is	tricky!	
	
In	addition	to	the	following	styles	in	this	media	query,	add	these:	
@media only screen and (max-width: 701px) {
header {
 background: url(../img/boston-710.jpg) no-repeat;
 width: 100%;
 height: 149px;
}
header h1 {
 padding: 100px 0 0 10px;
 margin: 0;
 font-size: 1.6em;
}
header h1 a {
 color: #fff;
 text-decoration: none;
}
}

For	the	larger	version	of	the	header,	this	is	currently	specified	in	the	portion	of	the	stylesheet	without	
media	queries	(around	lines	29-43).	We	need	to	remove	these	styles	from	this	part	of	the	stylesheet	and	
put	them	in	an	appropriate	media	query.	Otherwise,	the	boston-1200.jpg	image	may	always	load,	even	
if	it’s	then	overridden	by	the	media	query	for	a	smaller	image.	
	
Add	this	media	query:	
@media only screen and (min-width: 702px) {
header {
 background: url(../img/boston-1200.jpg) no-repeat;
 width: 100%;
 height: 218px;
 font-family: 'Cabin Condensed', sans-serif;
 color: #fff;
}
header h1 {
 padding: 0.5em;
 margin: 0;
}
header h1 a {
 color: #fff;
 text-decoration: none;
}

Phase	7:	Using	responsive	images	with	Picturefill	
Choosing	a	Responsive	Image	Solution		
http://www.smashingmagazine.com/2013/07/08/choosing-a-responsive-image-solution/	
	
Which	Responsive	Image	Solution	Should	You	Use		
http://css-tricks.com/which-responsive-images-solution-should-you-use/	
	
PictureFill:	A	responsive	image	polyfill		
http://scottjehl.github.io/picturefill/	
	
PictureFill	makes	use	of	the	<picture>	element,	a	new	tag	not	supported	with	many	browsers	(yet).	
PictureFill	uses	a	polyfill	to	make	the	browser	respond	to	this	tag.	We	are	working	with	PolyFill	2.1,	
which	offers	native	<picture>	support	—	a	great	way	to	make	your	page	future-forward.	
	
	
1.	Download	PictureFill	from	above	link	and	place	in	a	js	folder.	
	
2.	Add	the	following	code	to	the	HTML	page	just	before	</head>	

 <script>
 // Picture element HTML5 shiv
 document.createElement("picture");
 </script>

 <script src="js/picturefill.min.js" async></script>

3.	Change	the	HTML	in	the	document	for	<main>,	starting	around	line	33:	

<main class="col-4">
 <!-- Substituting image using Picturefill
 -->

 <picture>
 <!--[if IE 9]><video style="display: none;"><![endif]-->
 <source srcset="img/townhall-400.jpg" media="(min-width:
1014px)">
 <source srcset="img/townhall-300.jpg" media="(min-width: 702px)
and (max-width: 1013px) ">
 <!--[if IE 9]></video><![endif]-->

 </picture>

 <h2>Discover the world of Arlington!</h2>
 <p>Beautiful parks, great schools, and a strong sense of history
makes Arlington one of the great places to live in eastern
Massachusetts.</p>
 <p>Read more
>></p>
</main>

4.	Our	CSS	will	cause	this	JS	to	break!	The	problem	is	here:	

main img {
 float: left;
 margin-right: 1.875em;
 width: 100%;
 max-width: 400px;
}

This	is	causing	the	images	to	take	up	more	width	than	you’d	expect.	Comment	out	this	style	(or	delete	it)	
and	change	it	to	this:	

main img {
 width: auto;
 max-width: auto;
 float: left;
 margin-right: 1.875em;
}

Why	the	auto	settings	for	width	and	max-width?	Remember	the	div	img	style	applies	to	the	main	image	
as	well,	since	main	is	inside	a	div!		
	
	
5.	The	media	query	for	the	<main>	section	of	the	page	isn’t	working	for	me	with	the	newly	subbed	
images.	
	
Change		
@media only screen and (min-width: 702px) and (max-width: 866px) {
	
to	
@media only screen and (min-width: 1014px) {
	
Change		
@media only screen and (max-width: 701px) {
main {
 padding: 0 3.333333%; /* aligns with boxes underneath */
}
	
to		
	
@media only screen and (max-width: 1013px) {
(get	rid	of	the	main	padding	—	it	doesn’t	work	anymore!)	

Also	within	this	media	query,	get	rid	of	main	img	styling	-	this	conflicts	with	PictureFill	(same	as	
described	above)	
	
So	the	new	media	query	reads	like	this:	

/* adjust "discover" box again */
@media only screen and (max-width: 1013px) {
main h2 {
 font-size: 2em;
 padding-top: 0em;
}
main p {
 font-size: 1.2em;
 font-family: 'Cabin Condensed', sans-serif;
}
/* main img {
 float: none;
 margin: 0;
 width: 100%;
 max-width: 400px;
} */
}

Maintain	the	rest	of	the	old	media	query,	which	should	look	like	this:	

/* adjust nav layout */
@media only screen and (max-width: 701px) {
nav ul a {
 display: block;
 float: none;
 padding-left:3.333333%;
}
/* splits nav into 2 columns
http://stackoverflow.com/questions/13104818/simple-2-column-
navigation-with-css-and-a-single-list */
nav li:nth-child(even) {
 width: 50%;
 float: right;
}
nav li:nth-child(odd) {
 width: 50%;
 float: left;
}
header {
 background: url(../img/boston-710.jpg) no-repeat;
 width: 100%;
 height: 149px;
}
header h1 {
 padding: 100px 0 0 10px;
 margin: 0;
 font-size: 1.6em;
}
header h1 a {
 color: #fff;
 text-decoration: none;
}
}

Finally,	I’d	like	to	modify	the	styling	for	the	smallest	mobile	version	with	the	new	picture.	To	that	mobile	
media	query	(max	width	479px),	add	the	following:	

main {
 padding-right: 1em;
}
main h2 {

 font-size: 1.5em;
 padding-top: 0em;
}
main p {
 font-size: 1em;
 font-family: 'Cabin Condensed', sans-serif;
}
main img {
 padding-right: 0em;
}

	

Phase 8: Bonus! Fix those columns that just won’t go to the same
height

I	know	those	columns	with	the	equal-height	problem	have	been	driving	you	CRAZY.	I	wanted	to	be	sure	
to	get	through	all	of	the	most	important	material	first,	so	if	there’s	time,	I’ll	show	you	how	you	can	make	
your	columns	equal	height	and	get	around	the	wrapping	problem	the	grid	is	introducing.	
	
1.	Download	grids.min.js	from	here:	
https://github.com/Sam152/Javascript-Equal-Height-Responsive-Rows	 	
	
Save	in	your	js	folder.	
	
2.	You	will	need	jQuery	to	make	this	code	work.	Also,	grids.min.js	must	be	in	the	head	of	the	document,	
not	near	</body>.	Therefore,	we’ll	load	jQuery	in	the	head	of	the	document	as	well.		
	
Link	to	jQuery	and	to	grids.min.js	BEFORE	the	PictureFill	code,	around	lines	10-11.	
	
<script src="http://code.jquery.com/jquery-1.11.0.min.js"></script>"
<script src="js/grids.min.js"></script>

3.	Select	the	elements	that	need	to	be	equal	height.	In	this	case,	each	of	our	elements	has	a	class	of	col-
1-2,	so	let’s	leverage	that	to	bind	the	grids	JS.		

 jQuery(function($) {
 $('.col-1-2').responsiveEqualHeightGrid();
 });

This	can	be	combined	with	the	<script>	tag	that	already	exists	for	PictureFill:	

 <script>
 jQuery(function($) {
 $('.col-1-2').responsiveEqualHeightGrid();
 });
 // Picture element HTML5 shiv

 document.createElement("picture");
 </script>

Grid	reordering	overview	
Look	at	inside.html.	This	is	the	design	for	an	inside	page	to	match	the	home	page	we’ve	been	working	
with.	
	
I	have	listed	the	styles	specific	to	this	page	as	an	additional	stylesheet	called	inside.css.	It’s	more	
efficient	to	combine	these	styles	with	those	from	the	home	page,	but	you	can	leave	them	as	separate	
files	if	you	wish.	
	
This	has	a	left	aside	bar	with	some	facts	about	Arlington.	The	main	content	is	on	the	right	side	of	the	
page.	The	layout	is	a	1	col/3	col	split.	
	
When	the	browser	width	is	reduced,	the	left	column	stacks	on	top	of	the	right	–	exactly	what	you’d	
expect	to	do.	But	is	this	good	user	experience?	
	
Probably	not	for	a	mobile	device.	Ideally,	you’d	see	the	main	content	first	(the	article	tag),	and	after	that	
would	be	the	left	column	information	(the	aside	tag).		
	
We	can	rearrange	the	HTML	such	that	the	article	comes	first	and	the	aside	comes	second.	Now	our	
“Arlington	by	the	Numbers”	feature	is	on	the	right	side	of	the	screen	at	desktop	resolutions,	but	it’s	
stacking	in	the	right	order	at	mobile	resolutions.	
	
But	Marketing	demands	a	left	column	on	the	desktop,	but	the	left	column	should	go	to	the	bottom	on	
mobile.	What’s	a	developer	to	do?	
	

1:	Reorder	the	HTML	
In	the	HTML	ordering,	place	the	article	first,	and	the	aside	second.	This	ensures	that	the	stacking	is	
correct	on	mobile	devices.	The	source	order	is	also	correct	for	a	search	engine,	which	will	read	the	
article	before	the	aside.	
<article class="col-3">
 <h2>About Samuel Whittemore</h2>
 <img src="img/whittemore-300.jpg" alt="Monument to Samuel
Whittemore." class="">
 <p>Samuel Whittemore served in the British Army for many years,
but on April 19, 1775, at the age of 80, he was on the side of the
American Revolution.</p>
…
</article>
<aside class="col-1-4">
 <h3>Arlington by the Numbers</h3>

 Arlington population, <a
href="http://quickfacts.census.gov/qfd/states/25/2501640.html"
target="_blank">2010 census: 42,844

…
</aside>

2:	Set	the	columns	to	a	position	of	relative	
Relative	positioning:	positions	elements	from	a	position	relative	to	their	containing	element.	Element	
retains	the	shape	it	would	have	had	if	it	were	not	positioned.	The	space	the	element	normally	occupies	
is	preserved.
	
By	default,	our	content	doesn’t	move	at	all	with	a	position	of	relative.	We	have	not	set	the	properties	of	
left,	top,	bottom,	or	right,	so	the	content	stays	in	place.	However,	we	now	have	the	option	to	move	it.	
	
[class*='col-'] {
 position: relative;
}
	

3:	Create	new	push	and	pull	classes	
Frequently	these	types	of	classes	that	reorder	our	grid	are	referred	to	as	“push”	and	“pull”.	Imagine	
standing	on	the	left	side	of	your	web	page,	looking	at	the	row	containing	the	aside	and	the	article.	To	
reorder	these	at	the	desktop	dimension,	what	you	want	to	do	is	push	the	article	to	the	right	by	one	
column,	then	pull	the	aside	over	to	the	left	by	3	columns.	That	would	change	the	look	of	the	page,	even	
though	the	HTML	would	be	in	the	opposite	order	inside.	
	
The	HTML	in	the	article	and	aside	tags	changes	to	this:	
	
<article class="col-3 col-push-1">
<aside class="col-1-4 col-pull-3">
	
The	corresponding	CSS	looks	like	this:	
	
.col-push-1 {
 left: 24.16666%;
/* push over 1 column, 20.83333% plus one margin of 3.3333% */
}
.col-pull-3 {
 left: -72.49999%;
/* pull over 3 columns, 69.1666% plus one margin of 3.3333% */
}
	
These	classes	are	default	desktop	classes,	so	they	should	NOT	be	in	a	media	query.		
	
Look	at	your	web	page	–	looks	great	on	a	desktop!!!	Shrink	the	browser	down	–	how	does	it	look	on	
smaller	devices?...	
	
OK,	so	we	need	to	fix	that.		

	
If	you	look	at	the	media	queries	we	have,	for	the	classes	.col-3	and	.col-1-4,	they	have	two	display	
options	–	a	desktop	option	(where	these	are	next	to	each	other)	and	a	tablet	AND	mobile	option	(where	
they	stack	vertically).		
	
Therefore,	we	can	write	a	media	query	to	address	both	tablet	and	mobile	for	these	classes,	or	we	can	
slot	these	styles	into	the	existing	queries:	
	
/* Mobile Landscape Screen Sizes */
@media (max-width: 767px) {
 .col-push-1 {
 left: 0;
 }
 .col-pull-3 {
 left: 0;
 }
}

These	styles	reset	the	upper	left	corner	of	these	classes	to	the	left	side	of	the	mobile	screen,	so	they	are	
not	displaced	from	the	side	of	the	page.	
	

