
10 ways your data project can fail
(and how to avoid them)

Isaac Slavitt

isaac@drivendata.org

AC 297r, Spring 2017

mailto:isaac@drivendata.org
mailto:isaac@drivendata.org

First, some motivation
● Capstone projects are excellent practice for being a

quantitative professional in the “real world”

● You will learn from this experience

● This is a difficult technical and professional real-world

project that you can discuss at an expert level

○ “Tell me about a data project that you’ve done with a team.

What did you add to the group?”

○ “Tell me about a dataset that you’ve analyzed. What techniques

did you find helpful and which ones didn’t work?”

○ “Can you give an example of how you have approached missing

data?”

http://www.datasciencequestions.com/

Data scientist assets
● Creative

● Optimistic

● Detail oriented

● Highly technical

● Makes a plan and sticks to it

● Rigorous and concerned with correctness

● Can work without seeking external guidance

● Sense of craftsmanship and takes pride in work

● Immediately thinks of edge cases and failure modes

Data scientist liabilities
● Creative

● Optimistic

● Detail oriented

● Highly technical

● Makes a plan and sticks to it

● Rigorous and concerned with correctness

● Can work without seeking external guidance

● Sense of craftsmanship and takes pride in work

● Immediately thinks of edge cases and failure modes

Pitfalls specific to smart & conscientious people
1. Scope. Your scope will be too ambitious, vague, and open ended.

2. Data quality. You will not get data early enough and it will be messy.

3. Data familiarity. You will not spend enough time exploring the data.

4. Perfectionism. You will spend too long looking for the “perfect” solution.

5. Priorities. You will spend too long worrying about non-value adding details.

6. Communication. You will not ask questions and get feedback early enough.

7. Time management. You will not start working on final deliverables early enough.

8. Organization. Your research and code will be hard to maintain, explain,

reproduce.

9. Simplicity. Your solution will be overly complicated and under documented.

10. Delivery. You will not communicate your solution clearly enough.

1. Scope Your scope will be too ambitious, vague, and open ended

Problems

● The beginning of a project is the optimism danger zone

● Most problems have many plausible solutions and promising methods

● “This should only take a few days” syndrome

https://xkcd.com/1425/

1. Scope Your scope will be too ambitious, vague, and open ended

Ways to avoid this

● First, brainstorm all possible ideas and deliverables

○ Write down all the most promising research directions

○ Cut it down to a plausible number for ~4 weeks of work

○ Now, cut it down again — seriously, you will not have time for it

○ You don’t have to delete ideas, they’re now called “nice to haves”

● Define the MVP

○ Create a short (1-2 page) scoping document

○ “SMART”: specific, measurable, achievable, relevant, and time-bound

○ Also explicitly define what is not in scope

○ You don’t have to delete ideas, they’re now called “nice to haves”

○ Get explicit feedback and then agreement on this scope before you start work

Choose your own adventure: ______promise and _____deliver

2. Data quality You will not get data early enough and it will be messy

Problems

● Different data formats even within the same field

● Weird file formats

● UnicƧde import/export errors

● Lack of consistent primary keys

● Way less data than originally implied

● Data is not stored consistently

● Values are pre-processed or pre-aggregated in some way

(e.g. somebody already averaged, rounded, or grouped)

● Misleading types (field looks numeric but they’re actually

ordinal or numbers representing category)

● Lots of duplicate values

http://www.edvardmunch.org/the-scream.jsp

2. Data quality You will not get data early enough and it will be messy

Ways to avoid this

● Get the data first

○ It will be missing something important

○ … that is why they need you!

● Don’t panic!

○ Find a principled (not perfect) way to get a sensible working proxy

○ Hint: this is called an assumption — it’s your job to document why you chose it, what implications

it might have on your analysis, and how they can potentially improve this on their end

● Consistency is usually more important than accuracy; being consistently wrong in the right direction is

usually OK

3. Data familiarity You will not spend enough time exploring the data

Problems

● Confusing or misleading data fields

● Data storage or entry practices changed over time

● Patterns that suggest non-random entry or label contamination

3. Data familiarity You will not spend enough time exploring the data

Ways to avoid this

● Ask a lot of questions early on, especially about how the data was collected and what things mean

○ Don’t make assumptions about what things mean unless you absolutely have to

○ Ask if they have a “data dictionary” or any other internal docs you can see

● Do a ton of the boring, exploratory work before you even think about applying algorithms

○ Do lots of value counts (e.g. df.value_counts().sort_index()) and pivot tables

○ Do lots of basic visualization like boxplots and histograms

○ Get a sense of imbalanced classes and missing values

● Forget your fancy tools until you really know what’s going on

○ Suck it up and open Excel

○ Yes, you are allowed to use Excel sometimes, nobody will retract your “data scientist” title

“There is no such thing as clean or dirty data, just data you don't understand.”

— Claudia Perlich, Chief Scientist at Dstillery

4. Perfectionism You will spend too long looking for the “perfect” solution

Problems

● It feels wrong to make decisions without

doing in depth analysis of all the

alternatives

● Edge cases or data problems make it seem

like there’s no way forward

● All the “but what if” questions are

demotivational

4. Perfectionism You will spend too long looking for the “perfect” solution

Ways to avoid this

● Ignore edge cases until later

○ Consider if you have to even deal with these

○ Many times they’re just not that relevant to the client, so focusing on them is a huge waste of time

● Ignore polished aesthetics until later

● Just remember:

○ You could write an entire master’s thesis for any of these problems

○ The literature review alone would take longer than you have for this project

● If you spend too long thinking about perfect solutions, your end result will actually be worse than if you

made some early decisions knowing that you can revisit them as time permits

5. Priorities You will spend too long worrying about non-value adding details

Problems

● yak shaving ● bikeshedding

[1] https://medium.com/@firehoseproject/a-guide-to-yak-shaving-your-code-d30f98dc759
[2] http://bikeshed.org

5. Priorities You will spend too long worrying about non-value adding details

Problems

● yak shaving [MIT AI Lab, after 2000: orig.

probably from a Ren & Stimpy episode.]

Any seemingly pointless activity which

[seems] necessary to solve a problem which

solves a problem which, several levels of

recursion later, solves the real problem

you're working on.

— The Jargon File, edited by Eric S. Raymond,

http://www.catb.org/~esr/jargon/html/Y/yak-shaving.html

● bikeshedding. “... a metaphor to illuminate

Parkinson’s Law of Triviality. Parkinson

observed that a committee whose job is to

approve plans for a nuclear power plant may

spend the majority of its time on relatively

unimportant but easy-to-grasp issues, such as

what materials to use for the staff bikeshed,

while neglecting the design of the power

plant itself, which is far more important but

also far more difficult to criticize

constructively.”

— Wiktionary, “bikeshedding,”

https://en.wiktionary.org/wiki/bikeshedding

5. Priorities You will spend too long worrying about small details

Ways to avoid this

● First, get all the pieces working — use placeholders or mocks wherever necessary

● Start with data samples, making something run on “big data” is a often huge waste of time if you’re still

exploring

● Remember the rules of optimization:

○ Make it work

○ Make it right

○ Make it fast (<- hint: you probably won’t need to even get to this one)

● Remember: “YAGNI”

● Don’t worry about aesthetics and minor style tweaks until the very end

● Always go back to the scoping document — remember your MVP

[1] http://wiki.c2.com/?MakeItWorkMakeItRightMakeItFast
[2] https://martinfowler.com/bliki/Yagni.html

6. Communication You will not ask questions and get feedback early enough

Problems

● Faulty assumptions lead you to do the wrong thing

● “Going dark” — sitting on problems, questions, and

bad news until it’s too late

● Clients have no idea what you’re doing and then

have issues with the final product, e.g.:

○ Delivering a solution that solves the wrong

problem

○ Delivering a technically advanced but

impractical solution

○ Delivering a technically advanced solution that

nobody understands

6. Communication You will not ask questions and get feedback early enough

Ways to avoid this

● Do not start writing code until you understand what you’re trying to do

○ Have the client get you up to speed

■ What is the greater context for their problem?

■ Ignore the tools and techniques for a minute — what are their actual goals?

■ Ask questions like “If you had ________, how would you use it to make different decisions?”

○ Don’t be embarrassed to ask basic questions or push back to get clarification

■ Protip: this is like not knowing somebody’s name… if you ask early on, it’s less embarrassing

● Stay in contact with your client and over-communicate

○ Give relatively frequent progress updates

○ Run concepts and questions by them to see if you’re on the right track

7. Time management You will not start working on final deliverables early enough

Problems

● By the time you’re ready to “prep things for delivery”

you are out of time

● The ninety-ninety rule: “The first 90 percent of the

code accounts for the first 90 percent of the

development time. The remaining 10 percent of the

code accounts for the other 90 percent of the

development time.”

— Tom Cargill, Bell Labs, via Wikipedia

https://www.smartsheet.com/agile-vs-scrum-vs-waterfall-vs-kanban

7. Time management You will not start working on final deliverables early enough

Ways to avoid this

● Just get something working then worry about making it correct

○ Break your solution up into loosely coupled pieces

○ Use placeholders at first, but get everything assembled

○ Work iteratively to improve pieces until you run out of time

● As early as possible, reach the “shape” of your final deliverable

○ There may still be a laundry list of things to improve —

“future work” is a thing, and clients actually appreciate it

○ But in theory, you could hand it off today and still meet the

requirements in your scoping doc

○ Guess what: now it’s ready in principle and you can work on

the “over delivering” part if you have time

● Note: if you thrive on stress and time anxiety, ignore this advice

https://www.quora.com/What-is-it-like-to-design-a-data-science-class/answer/Joe-Blitzstein

8. Organization Your research and code will be hard to maintain, explain, and reproduce

Problems

● “We can clean this up later”

● data_final-version_AGGREGATED-(EDITSv2)~v3_draft!USE_THIS_ONE!.xls
● Most data science projects look like this:

≈

8. Organization Your research and code will be hard to maintain, explain, and reproduce

8. Organization Your research and code will be hard to maintain, explain, and reproduce

8. Organization Your research and code will be hard to maintain, explain, and reproduce

8. Organization Your research and code will be hard to maintain, explain, and reproduce

8. Organization Your research and code will be hard to maintain, explain, and reproduce

an example Django project layout
myproject/
 manage.py
 myproject/
 __init__.py
 urls.py
 wsgi.py
 settings/
 __init__.py
 base.py
 dev.py
 prod.py
 blog/
 __init__.py
 models.py
 views.py
 urls.py
 static/
 css/
 js/
 templates/
 base.html
 index.html
 requirements/
 base.txt
 dev.txt
 prod.txt

8. Organization Your research and code will be hard to maintain, explain, and reproduce

8. Organization Your research and code will be hard to maintain, explain, and reproduce

Ways to avoid this

● Start organized and maintain discipline

● Write the documentation as you go

● Pull configuration out to specific config files

● Deterministic data flows

○ Everything should be buildable/trainable/runnable

from one interaction

○ Data is immutable

○ Notebooks are for exploration and communication,

not repetitive workflows

○ Keep secrets out of version control

○ USE VERSION CONTROL

● Consider using the Cookiecutter Data Science template

● More unsolicited opinions here: youtu.be/EKUy0TSLg04

https://drivendata.github.io/cookiecutter-data-science/
https://youtu.be/EKUy0TSLg04

9. Simplicity Your solution will be overly complicated and under documented

Problems

● What clients say they want ● What they actually want

9. Simplicity Your solution will be overly complicated and under documented

Ways to avoid this

● Use the least complicated algorithm or model that gets the job done

● Consider using “boring” (read: standard, well understood) tools and libraries

● Think about who will have to use and maintain your code

“The central enemy of reliability is complexity. Complex systems tend to not be entirely understood by anyone.

If no one can understand more than a fraction of a complex system, then, no one can predict all the ways that

system could [fail].”

— Geer et al., 2003

“Everyone knows that debugging is twice as hard as writing a program in the first place. So if you're as clever as

you can be when you write it, how will you ever debug it?”

— Brian Kernighan, The Elements of Programming Style, 2nd edition, chapter 2

10. Delivery You will not communicate your solution clearly enough

Problems

● What you hand over is surprising or unexpected

○ “We don’t have any GPUs…”

○ “Oh, we don’t have any Linux servers…”

● They don’t understand how it works because

○ You didn’t explain the assumptions

○ You didn’t explain the models or algorithms

● They can’t run your code because

○ It isn’t packaged well

○ They have no idea where to “enter” the code

○ Your results aren’t reproducible

○ You didn’t document the requirements so they can’t

get a working dev environment

10. Delivery You will not communicate your solution clearly enough

Ways to avoid this

● Refer back to the scoping doc (you did do this, right?)

● Review the overarching goals of the project

● Describe your process, including challenges, assumptions, and modeling decisions

● Show your solution

● Describe “future work”

● Know your audience

○ Technical or non-technical?

○ Use plain, clear language

A few intangibles
● Public service announcement from Pavlos and the teaching staff:

○ Please show up on time

○ Please dress appropriately

○ Be professional

○ Plan ahead (send calendar invites, confirm times, find a quiet place, reserve rooms)

○ Practice what you’re going to present in advance

● Framing as it relates to your career

○ “coder” versus “technical professional who solves business problems”

○ “cost center” versus “profit center”

Questions?

Isaac Slavitt

isaac@drivendata.org

AC 297r, Spring 2017

mailto:isaac@drivendata.org
mailto:isaac@drivendata.org

