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First, some motivation

e (apstone projects are excellent practice for being a
quantitative professional in the “real world”

e You will learn from this experience

e This is a difficult technical and professional real-world

project that you can discuss at an expert level
o “Tell me about a data project that you've done with a team.
What did you add to the group?”
o  “Tell me about a dataset that you've analyzed. What techniques
did you find helpful and which ones didn’t work?”
o  “Can you give an example of how you have approached missing
data?”
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Data scientist

Creative

Optimistic

Detail oriented

Highly technical

Makes a plan and sticks to it

Rigorous and concerned with correctness

Can work without seeking external guidance

Sense of craftsmanship and takes pride in work
Immediately thinks of edge cases and failure modes
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Pitfalls specific to smart & conscientious people
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10.

Scope. Your scope will be too ambitious, vague, and open ended.

Data quality. You will not get data early enough and it will be messy.

Data familiarity. You will not spend enough time exploring the data.
Perfectionism. You will spend too long looking for the “perfect” solution.
Priorities. You will spend too long worrying about non-value adding details.
Communication. You will not ask questions and get feedback early enough.
Time management. You will not start working on final deliverables early enough.
Organization. Your research and code will be hard to maintain, explain,
reproduce.

Simplicity. Your solution will be overly complicated and under documented.
Delivery. You will not communicate your solution clearly enough.



1. Scope

Problems

The beginning of a project is the optimism danger zone
Most problems have many plausible solutions and promising methods
“This should only take a few days” syndrome

Your scope will be too ambitious, vague, and open ended

WHEN A USER TAKES A PHOTO,
THE. APP SHOULD CHECK WHETHER
THEYRE IN A NATIONAL PARK...

SURE, ERSY GI5 LOOKUP

GIMVE A FEV HUURS

.. AND CHECK UHETHER
T[-EPHOTDISOFP‘.BJRD
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i

IN 65 IT CAN BE HARD TO EXPLAIN
THE DIFFERENCE BET\JEEN THE EASY
AND THE VIRTUALLY IMPOSSIBLE..

https://xkcd.com/1425/



1. Scope

Ways to avoid this

First, brainstorm all possible ideas and deliverables

o  Write down all the most promising research directions

o  Cut it down to a plausible number for ~4 weeks of work

o Now, cut it down again — seriously, you will not have time for it

o Youdon’t have to delete ideas, they’re now called “nice to haves”
Define the MVP

o  Create a short (1-2 page) scoping document

o  “SMART?”: specific, measurable, achievable, relevant, and time-bound

o Also explicitly define what is not in scope

o  Youdon’t have to delete ideas, they’re now called “nice to haves”

o

Your scope will be too ambitious, vague, and open ended

THE NEW YORR™FTTEWES BESTSELLER

THE LEAN

How Today's Entreprencurs Use
Continuous Innovation to Create
Radically Successful Businesses

Get explicit feedback and then agreement on this scope before you start work

Choose your own adventure: ______promise and

deliver



2. Data quality

Problems

Different data formats even within the same field
Weird file formats

Unic@:de import/export errors

Lack of consistent primary keys

Way less data than originally implied

Data is not stored consistently

Values are pre-processed or pre-aggregated in some way
(e.g. somebody already averaged, rounded, or grouped)
Misleading types (field looks numeric but they’re actually
ordinal or numbers representing category)

Lots of duplicate values

You will not get data early enough and it will be messy

http://www.edvardmunch.org/the-scream.jsp
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Ways to avoid this

e Get the data first
o It will be missing something important
o ..that is why they need youl!
e Don’t panic!
o  Find a principled (not perfect) way to get a sensible working proxy
o  Hint: this is called an assumption — it’s your job to document why you chose it, what implications
it might have on your analysis, and how they can potentially improve this on their end
e Consistency is usually more important than accuracy; being consistently wrong in the right direction is

usually OK



n at a fa m I I a rI ty You will not spend enough time exploring the data

Problems

e Confusing or misleading data fields
e Data storage or entry practices changed over time
e Patterns that suggest non-random entry or label contamination
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Ways to avoid this

e Askalot of questions early on, especially about how the data was collected and what things mean
o  Don’t make assumptions about what things mean unless you absolutely have to
o  Askif they have a “data dictionary” or any other internal docs you can see
e Do aton of the boring, exploratory work before you even think about applying algorithms
o Do lots of value counts (e.g. df . value counts () .sort index () ) and pivot tables
o Do lots of basic visualization like boxplots and histograms
o  Get a sense of imbalanced classes and missing values
e Forget your fancy tools until you really know what’s going on
o Suck it up and open Excel
o  Yes, you are allowed to use Excel sometimes, nobody will retract your “data scientist” title

“There is no such thing as clean or dirty data, just data you don't understand.”
— Claudia Perlich, Chief Scientist at Dstillery



4. Perfectionism

Problems

o [t feels wrong to make decisions without
doing in depth analysis of all the
alternatives

e [Edge cases or data problems make it seem
like there’s no way forward

o All the “but what if” questions are
demotivational

You will spend too long looking for the “perfect” solution
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Ways to avoid this

e Ignore edge cases until later
o  Consider if you have to even deal with these
o  Many times they’re just not that relevant to the client, so focusing on them is a huge waste of time
e Ignore polished aesthetics until later
e Just remember:
o You could write an entire master’s thesis for any of these problems
o  The literature review alone would take longer than you have for this project
e If you spend too long thinking about perfect solutions, your end result will actually be worse than if you
made some early decisions knowing that you can revisit them as time permits
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Problems

e bikeshedding
i el

[1] https://medium.com/@firehoseproject/a-guide-to-yak-shaving-your-code-d30f98dc759
[2] http://bikeshed.org



5. Priorities

Problems

e yak shaving [MIT Al Lab, after 2000: orig.
probably from a Ren & Stimpy episode.]
Any seemingly pointless activity which
[seems] necessary to solve a problem which
solves a problem which, several levels of
recursion later, solves the real problem

you're working on.

— The Jargon File, edited by Eric S. Raymond,
http:/[www.catb.org/~esr/jargon/html/Y/yak-shaving.html

You will spend too long worrying about non-value adding details

bikeshedding. “.. a metaphor to illuminate
Parkinson’s Law of Triviality. Parkinson
observed that a committee whose job is to
approve plans for a nuclear power plant may
spend the majority of its time on relatively
unimportant but easy-to-grasp issues, such as
what materials to use for the staff bikeshed,
while neglecting the design of the power
plant itself, which is far more important but
also far more difficult to criticize

constructively.”

— Wiktionary, “bikeshedding,”
https://en.wiktionary.org/wiki/bikeshedding



5 P . It
(] rI 0 rI t I e S You will spend too long worrying about small details

Ways to avoid this

e  First, get all the pieces working — use placeholders or mocks wherever necessary
e Start with data samples, making something run on “big data” is a often huge waste of time if you're still
exploring
e Remember the rules of optimization:
o  Make it work
o  Make it right
o  Make it fast (<- hint: you probably won’t need to even get to this one)
e Remember: “YAGNI”
e Don’t worry about aesthetics and minor style tweaks until the very end
e Always go back to the scoping document — remember your MVP

[1] http://wiki.c2.com/?MakeltWorkMakeltRightMakeltFast
[2] https://martinfowler.com/bliki/Yagni.html
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Problems

e Faulty assumptions lead you to do the wrong thing
e “Going dark” — sitting on problems, questions, and
bad news until it’s too late

e (lients have no idea what you’re doing and then 3 A
have issues with the final product, e.g:: ' %
o Delivering a solution that solves the wrong 1
problem
o Delivering a technically advanced but
impractical solution

o Delivering a technically advanced solution that
nobody understands
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Ways to avoid this

e Do not start writing code until you understand what you're trying to do
o  Have the client get you up to speed
m  What is the greater context for their problem?
m  Ignore the tools and techniques for a minute — what are their actual goals?

m  Ask questions like “If you had _ how would you use it to make different decisions?”

o Don’t be embarrassed to ask basic questions or push back to get clarification
m  Protip: this is like not knowing somebody’s name... if you ask early on, it’s less embarrassing
e Stay in contact with your client and over-communicate
o  Give relatively frequent progress updates

o  Run concepts and questions by them to see if you’re on the right track
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Problems

e By the time you’re ready to “prep things for delivery”
you are out of time

e The ninety-ninety rule: “The first 90 percent of the
code accounts for the first 90 percent of the
development time. The remaining 10 percent of the

code accounts for the other 90 percent of the -
Verification

development time.”

— Tom Cargill, Bell Labs, via Wikipedia R

Maintenance

https://www.smartsheet.com/agile-vs-scrum-vs-w Il-vs-kanban
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Ways tO aVOId thIS The Data Science Process
X . . . ¢ Ask an interesting 2 et WIhTI is ige sfciemi'f‘itdgo”al:l“ et
e Just get something working then worry about making it correct G QUESLION. 57 Wi tovmeanto eds o s
S
o  Break your solution up into loosely coupled pieces < wﬁ‘b
. . l'L-\ How were the data sampled?
o  Use placeholders at first, but get everything assembled § Cetthedata 3 s
o  Work iteratively to improve pieces until you run out of time b
® Asearly as possible, reach the “shape” of your final deliverable Gl -
Plot the data.
. . . . ; Are there anomalies?
o  There may still be a laundry list of things to improve — :

“future work” is a thing, and clients actually appreciate it
o Butin theory, you could hand it off today and still meet the : ey

requirements in your scoping doc
o  Guess what: now it’s ready in principle and you can work on

Communicate and ik dda laari

. . . . | S . : Do the results make sense?
the “over delivering” part if you have time “istalizg the kesuitsr ™ s
hq"“-—-_,-_,a_)»f"
. Note: if you thrive On StreS S and time anXiety’ ignore this advice Joe Blitzstein and Hanspeter Pfister, created for the Harvard data science course http://cs109.org/.

https://www.quora.com/What-is-it-like-to-design-a-data-science-class/answer/Joe-Blitzstein
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Problems

e “We can clean this up later”
e data final-version AGGREGATED- (EDITSvZ2)~v3 draft!USE THIS ONE!.xls
e Most data science projects look like this:

— Step\ 1\ -\ install\ necessary\ software\ and\ packages.txt

— Step\ 2\ -\ one-off\ step\ to\ create\ postgresql\ server\ instance\ and\ a\ database.txt

— Step\ 3\ -\ one-off\ step\ to\ create\ tables\ and\ views\ in\ postgresql.py

— Step\ 4\ -\ The\ only\ file\ to\ run\ when\ you\ want\ to\ run\ models\ and\ generate\ new\ scores.py

}— Inspection_count_min. jpeg

2 }— README.Rnd
— Allviolations.csv — README. htmil
— BusinessClass.py L et b
— GenLearningData.py I— scripts\ and\ data

— Allviolations.csv

— PhaselTSubmissionFormat .csv

F— build_rev_tm.R

}— docsAsTopi csProbs_noStopwords.. txt
F— feature_eng.R

}— features_test_phase2.csv

— features_train_phase2.csv

— GenTestingData.py !
F— InspectionClass.py 1
— LearnTest.py :
— PhaseIISubmissionFormat.csv |
— PhaseIISubmissionFormat_final.csv : T e
— PhaseIISubmissionFormat_test.csv | b= negative-words.txt
— README. txt : — positive-words. txt
i
I
I
1
1
I
1
I

F— rand_neg.txt

— RevienClass.py f— restaurant._ids._to_yelp_ids.csv
— rev_tm. txt

#— restourant._ids_to_yelp_ids.csv f— review_ sentiscored. csv

— yelp. to C. — run.R

F— sentiment_script.R

— sub_2_PhaseII_h2d.csv

— yelp.stops

— yelp_academic_dataset_business. json

— yelp_duplicate_ids.csv

— varimp_gbml. jpeg
= varimp_gbmZ. jpeg
‘— varimp_sev. jpeg




8. Organization

Your research and code will be hard to maintain, explain, and reproduce

NEW YORK TIMES
BEST SELLER

2 HILLEON COFES
SOLD WORLDWIDE

the life-changing
magic of tidying up

the Jag

and ¢




8. Organization

OPEN aACCESS Freely available online

Education

Your research and code will be hard to maintain, explain, and reproduce

PLOS compurationaL sioLoGY

A Quick Guide to Organizing Computational Biology

Projects

William Stafford Noble'-2*

1 Department of Genome Sciences, School of Medicing University of Washington, Seattle, Washington, United States of America, 2 Department of Computer Science and
Engineering, University of Washington, Seattle, Washington, United States of America
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@PLOS ‘ SUBMISSION

ymputing

Justin Kitzes

Abstract

‘We present a set of computing tools and techniques that every researcher can and
should adopt. These recommendations synthesize imspiration from our own work, from
the experiences of the thousands of people Tiho have taken part in Software Carpentry
and Data Carpentry workshops over the past ars, and from a variety of other
guides. Our recommendations are aimed specifically at people who are new to research
computing.




8. Organization

Your research and code will be hard to maintain, explain, and reproduce

]Linux File System Hierarchy v2.0

"STATIC FILES OF
BOOT LOADER”

“ESSENTIAL BINARIES”

CAT
CHGRP KERNEL
CHMOD SYSTEM.MAP
CHOWN VMLINUZ

cp INITRD.

DATA GRUB

Db MODULEINFO
DF BOOT
DMESG

ECHO

FALSE

HOSTNAME

KILL

LN

LOGIN

Ls

MKDIR

MKNOD

MORE

MOUNT

MV

Version 2.0 17-06-2015.
Improved: Added title and version history.

~Improved: Added /srv, /media and /proc.

- Improved: Updated descriptions o reflect modern Linu File Systems.
Fixed: Multiple typo's
Fixed: Appearance and colour.

Version 1.0 14-02.2015.

- Created: Initial diagram.

- Note: Discarded lowercase version.

Created by: http://www.blackmoreops.com/

"HOST SPECFIC
SYSTEM CONFIG"

CSH.LOGIN
EXPORTS
FSTAB
FTPUSERS
GATEWAYS
GETTYDEFS
GROUP
HOST.CONF
HOSTS
HOSTS.ALLOW
HOSTS.DENY
HOSTS.EQUIV
HOSTS.LPD
INETD.CONF
INITTAB
ISSUE
LS.SO.CONF
MOTD

MTAB
MTOOLS
NETWORKS
PASSWD
PRINTCAP
PROFILE
PROTOCOLS
RESOLV.CONF
RPC
SECURETTY
SERVICES
SHELLS
SYSLOG.CONF

"CONFIG FILES
FOR ADD ON
APPLICATIONS"

"X WINDOW
CONFIG FILES”

"MULTI-USER SHARE AND
READ-ONLY DATA"

"LOCAL SOFTWARES"

"ARCHITECTURE
INDEPENDENT SHARED
DATA"

"MANUAL PAGES"

"MOST USER COMMANDS"

"STANDARD INCLUDE
FILES FOR 'C' PROG."

".0BJ .BIN .LIB
FILES FOR PROG
AND PACKAGES"

"NON ESSENTIAL
BINARIES"

"VARIABLE DATA FILES" "SYSTEM BINARIES"

FASTBOOT
f— FASTHALT
"APPLICATION FDISK
CACHE DATA" FSCK
GETTY
— . HALT
VARIABLE STATE FconbE
INFORMATION o
REMAINS AF”TER MKES
REBOO) MKSWAP
— REBOOT
"DATA FOR ROUTE
NIS SERVICES” TGl
SWAPOFF
- UPDATE

"LOCK FILES FOR
SHARED RESOURCES"

"VARIABLE DATA OF
PACKAGES INSTALLED"

"INFO OF SYSTEM
SINCE IT WAS BOOTED"

"AVAILABLE FOR PROG"

"DATA AWAITING
PROCESSING"

"LOG FILES”
LASTLOG
MESSAGES
WTMP

"TEMPORARY FILES
DELETED ON BOOTUP"

"ESSENTIAL DEVICES
(CONTAINS MAKEDEV)"

"USER HOME
DIRECTORIES"

"LIBRARY AND
KERNEL MODULES"

"TEMPERORY
FILESYSTEM
MOUNTPOINT"

"ADD-ON APPLICATION
SOFTWARE"

"HOME DIR FOR
ROOT USER"

"SERVER DATA”

"CD/DVD MOUNT
POINT”

"PROCESS FILESYSTEM"

Updated on: June 17, 2015
1|




# an example Django project layout
myproject/
manage.py
myproject/
__init  .py
urls.py
wsgl.py
settings/
__init_ .py
base.py
dev.py
prod.py
blog/
__init_ .py
models.py
views.py
urls.py
static/
css/
js/
templates/
base.html
index.html
requirements/
base.txt
dev.txt
prod.txt
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€ GitHub

Cookiecutter Data Science

Why use this project structure?

Cookiecutter Data Science

You will thank you

e i A logical, reasonably standardized, but flexible project structure for doing and sharing data science work.
‘othing here is Dinding

Getting started

Requirements

e nepraee Why use this project structure?

Example

ntic formatting
lucibility.

Directory structure We're not talking a
standards

Opinions

Data is immutable
When we think about data analysis, we often think just about the resulting reports, insights, or visualizations.
Motebooks are for exploration and : . 32 . ’
R While these end products are generally the main event, it's easy to focus on making the products look nice and
Analysis s 2 DAG ignore the quality of the code that generates them. Because these end products are created programmatically,
Analysis s a DA
code quality is still important! And we're not talking about bikeshedding the indentation aesthetics or
Build from the environment up : " . ; A o
pedantic formatting standards — ultimately, data science code quality is about correctness and reproducibility.
Keep secrets and configuration out

of version control It's no secret that good analyses are often the result of very scattershot and serendipitous explorations.
Be conservative in changing the Tentative experiments and rapidly testing approaches that might not work out are all part of the process for
default folder structure getting to the good stuff, and there is no magic bullet to turn data exploration into a simple, linear

Contributing progression.
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Ways to avoid this

Data Science is Software | SciPy 2016 Tutorial | Peter Bull & Isaac Slavitt

Start organized and maintain discipline
Write the documentation as you go

Pull configuration out to specific config files SciPy 2016
Deterministic data flows

. . . Scientific Computing with Python
o  Everything should be buildable/trainable/runnable Austin, Texas » July 11-17, 2016

from one interaction
o Data is immutable

-p »l 19 001/ 212:25

o Notebooks are for exploration and communication,

Data Science is Software | SciPy 2016 Tutorial | Peter Bull & Isaac
oy Slavitt
not repetitive workflows S

o  Keep secrets out of version control ——

o USE VERSION CONTROL
e Consider using the Cookiecutter Data Science template
e More unsolicited opinions here: youtube/EKUy0TSIL.g04


https://drivendata.github.io/cookiecutter-data-science/
https://youtu.be/EKUy0TSLg04
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Problems

e  What clients say they want e  What they actually want

v \
/ ’ 2
" Y DEFINITELY \
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Ways to avoid this

e Use the least complicated algorithm or model that gets the job done
e Consider using “boring” (read: standard, well understood) tools and libraries
e Think about who will have to use and maintain your code

“Everyone knows that debugging is twice as hard as writing a program in the first place. So if you're as clever as
you can be when you write it, how will you ever debug it?”
— Brian Kernighan, The Elements of Programming Style, 2nd edition, chapter 2

“The central enemy of reliability is complexity. Complex systems tend to not be entirely understood by anyone.
If no one can understand more than a fraction of a complex system, then, no one can predict all the ways that
system could [fail].”

— Geer et al,, 2003



10. Delivery

Problems

e  What you hand over is surprising or unexpected

(@)

(@)

“We don’t have any GPUs...”
“Oh, we don’t have any Linux servers...”

e They don’t understand how it works because

(@)

(@)

You didn’t explain the assumptions
You didn’t explain the models or algorithms

e They can’t run your code because

(@)

(@)
(@)
(@)

It isn’t packaged well

They have no idea where to “enter” the code

Your results aren’t reproducible

You didn’t document the requirements so they can’t
get a working dev environment

You will not communicate your solution clearly enough
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Ways to avoid this

Refer back to the scoping doc (you did do this, right?)

Review the overarching goals of the project

Describe your process, including challenges, assumptions, and modeling decisions
Show your solution

Describe “future work”

Know your audience
o Technical or non-technical?

o Use plain, clear language



A few intangibles

e Public service announcement from Pavlos and the teaching staff:
o  Please show up on time
Please dress appropriately
Be professional
Plan ahead (send calendar invites, confirm times, find a quiet place, reserve rooms)

O O O O

Practice what you’re going to present in advance

e Framing as it relates to your career

o  “coder” versus “technical professional who solves business problems”
o  “cost center” versus “profit center”



Questions?

Isaac Slavitt

isaac@drivendata.org
AC 297r, Spring 2017
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