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SUMMARY

Cells, the basic units of biological structure and
function, vary broadly in type and state. Single-
cell genomics can characterize cell identity and
function, but limitations of ease and scale have pre-
vented its broad application. Here we describe
Drop-seq, a strategy for quickly profiling thousands
of individual cells by separating them into nanoli-
ter-sized aqueous droplets, associating a different
barcode with each cell’s RNAs, and sequencing
them all together. Drop-seq analyzes mRNA tran-
scripts from thousands of individual cells simul-
taneously while remembering transcripts’ cell of
origin. We analyzed transcriptomes from 44,808
mouse retinal cells and identified 39 transcription-
ally distinct cell populations, creating a molec-
ular atlas of gene expression for known retinal
cell classes and novel candidate cell subtypes.
Drop-seq will accelerate biological discovery by
enabling routine transcriptional profiling at single-
cell resolution.

INTRODUCTION

Individual cells are the building blocks of tissues, organs, and or-

ganisms. Each tissue contains cells of many types, and cells of

each type can switch among biological states. In most biological

systems, our knowledge of cellular diversity is incomplete; for

example, the cell-type complexity of the brain is unknown and

widely debated (Luo et al., 2008; Petilla Interneuron Nomencla-

ture Group, et al., 2008). To understand how complex tissues
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work, it will be important to learn the functional capacities and re-

sponses of each cell type.

Amajor determinant of each cell’s function is its transcriptional

program. Recent advances now enable mRNA-seq analysis of

individual cells (Tang et al., 2009). However, methods of prepar-

ing cells for profiling have been applicable in practice to just hun-

dreds (Hashimshony et al., 2012; Picelli et al., 2013) or (with auto-

mation) a few thousand cells (Jaitin et al., 2014), typically after

first separating the cells by flow sorting (Shalek et al., 2013) or

microfluidics (Shalek et al., 2014) and then amplifying each cell’s

transcriptome separately. Fast, scalable approaches are needed

to characterize complex tissues with many cell types and states,

under diverse conditions and perturbations.

Here, we describe Drop-seq, a method to analyze mRNA

expression in thousands of individual cells by encapsulating

cells in tiny droplets for parallel analysis. Droplets—nanoliter-

scale aqueous compartments formed by precisely combining

aqueous and oil flows in a microfluidic device (Thorsen et al.,

2001; Umbanhowar et al., 2000)—have been used as tiny reac-

tion chambers for PCR (Hindson et al., 2011; Vogelstein and

Kinzler, 1999) and reverse transcription (Beer et al., 2008). We

sought here to use droplets to compartmentalize cells into nano-

liter-sized reaction chambers for analysis of all of their RNAs. A

basic challenge of using droplets for transcriptomics is to retain

a molecular memory of the identity of the cell from which each

mRNA transcript was isolated. To accomplish this, we developed

a molecular barcoding strategy to remember the cell-of-origin of

each mRNA. We critically evaluated Drop-seq, then used it to

profile cell states along the cell cycle.We then applied it to a com-

plex neural tissue, mouse retina, and from 44,808 cell profiles

identified 39 distinct populations, each corresponding to one or

a group of closely related cell types. Our results demonstrate

how large-scale single-cell analysis can help deepen our under-

standing of the biology of complex tissues and cell populations.
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Figure 1. Molecular Barcoding of Cellular Transcriptomes in Droplets

(A) Drop-Seq barcoding schematic. A complex tissue is dissociated into individual cells, which are then encapsulated in droplets together with microparticles

(gray circles) that deliver barcoded primers. Each cell is lysed within a droplet; its mRNAs bind to the primers on its companion microparticle. The mRNAs are

reverse-transcribed into cDNAs, generating a set of beads called ‘‘single-cell transcriptomes attached to microparticles’’ (STAMPs). The barcoded STAMPs can

then be amplified in pools for high-throughput mRNA-seq to analyze any desired number of individual cells.

(B) Sequence of primers on the microparticle. The primers on all beads contain a common sequence (‘‘PCR handle’’) to enable PCR amplification after STAMP

formation. Each microparticle contains more than 108 individual primers that share the same ‘‘cell barcode’’ (C) but have different unique molecular identifiers

(UMIs), enabling mRNA transcripts to be digitally counted (D). A 30-bp oligo dT sequence is present at the end of all primer sequences for capture of mRNAs.

(C) Split-and-pool synthesis of the cell barcode. To generate the cell barcode, the pool of microparticles is repeatedly split into four equally sized oligonucleotide

synthesis reactions, to which one of the four DNA bases is added, and then pooled together after each cycle, in a total of 12 split-pool cycles. The barcode

synthesized on any individual bead reflects that bead’s unique path through the series of synthesis reactions. The result is a pool of microparticles, each

possessing one of 412 (16,777,216) possible sequences on its entire complement of primers (see also Figure S1).

(D) Synthesis of a uniquemolecular identifier (UMI). Following the completion of the ‘‘split-and-pool’’ synthesis cycles, all microparticles are together subjected to

eight rounds of degenerate synthesis with all four DNA bases available during each cycle, such that each individual primer receives one of 48 (65,536) possible

sequences (UMIs).
RESULTS

Drop-seq consists of the following steps (Figure 1A): (1) prepare

a single-cell suspension from a tissue; (2) co-encapsulate each

cell with a distinctly barcoded microparticle (bead) in a nanoli-

ter-scale droplet; (3) lyse cells after they have been isolated in

droplets; (4) capture a cell’s mRNAs on its companion micropar-

ticle, forming STAMPs (single-cell transcriptomes attached to

microparticles); (5) reverse-transcribe, amplify, and sequence

thousands of STAMPs in one reaction; and (6) use the STAMP

barcodes to infer each transcript’s cell of origin.

A Split-Pool Synthesis Approach to Generate Large
Numbers of Distinctly Barcoded Beads
To deliver large numbers of distinctly barcoded primer mole-

cules into individual droplets, we use microparticles (beads).

We synthesized oligonucleotide primers directly on beads

(from 50 to 30, yielding free 30 ends available for enzymatic prim-

ing). Each oligonucleotide is composed of four parts (Figure 1B):

(1) a constant sequence (identical on all primers and beads) for

use as a priming site for downstream PCR and sequencing; (2)

a ‘‘cell barcode’’ (identical across all the primers on the surface

of any one bead, but different from the cell barcodes on other

beads); (3) a Unique Molecular Identifier (UMI) (different on

each primer, to identify PCR duplicates) (Kivioja et al., 2012);

and (4) an oligo-dT sequence for capturing polyadenylated

mRNAs and priming reverse transcription.
To efficiently generate massive numbers of beads, each with a

distinct barcode, we developed a ‘‘split-and-pool’’ DNA synthe-

sis strategy (Figure 1C). A pool of millions of microparticles is

divided into four equally sized groups; a different DNA base

(A, G, C, or T) is then added to each. All microparticles are

then re-pooled, mixed, and re-split at random into another four

groups, and then a different DNA base (A, G, C, or T) is added

to each of the four new groups. After 12 cycles of split-and-

pool DNA synthesis, the primers on any given microparticle

possess the same one of 412 = 16,777,216 possible 12-bp barc-

odes, but different microparticles have different sequences

(Figure 1C). The entire microparticle pool then undergoes eight

rounds of degenerate oligonucleotide synthesis to generate

the UMI on each oligo (Figure 1D); finally, an oligo-dT sequence

(T30) is synthesized on the 30 end of all oligos on all beads.

To confirm that we could distinguish RNAs based on attached

barcodes, we reverse-transcribed a pool of synthetic RNAs onto

11 microparticles and sequenced the resulting cDNAs (Fig-

ure S1A and Supplemental Experimental Procedures); 11 micro-

particle barcodes each constituted 3.5%–14% of the resulting

sequencing reads, whereas the next-most-abundant 12-mer

constituted only 0.06% (Figure S1A). These results suggested

that the microparticle-of-origin for most cDNAs can be recog-

nized by sequencing. We also found that each bead contained

more than 108 barcoded primer sites and that the sequence

complexity of the barcodes approached theoretical limits (Fig-

ures S1B and S1C, Supplemental Experimental Procedures).
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Microfluidics Device for Co-encapsulating Cells with
Beads
We designed a microfluidic ‘‘co-flow’’ device (Utada et al., 2007)

to co-encapsulate cells with barcoded microparticles (Figures

2A and S2 and Data S1). This device quickly co-flows two

aqueous solutions across an oil channel to form more than

100,000 nanoliter-sized droplets per minute. One flow contains

the barcoded microparticles suspended in a lysis buffer; the

other flow contains a cell suspension (Figure 2A, left, and 2B).

The number of droplets created greatly exceeds the number of

beads or cells injected, so that a droplet will generally contain

zero or one cells, and zero or one beads. Millions of nanoliter-

sized droplets are generated per hour, of which thousands

contain both a bead and a cell (Movie S1). STAMPs are produced

in the subset of droplets that contain both a bead and a cell.

Sequencing and Analysis of Many STAMPs in a Single
Reaction
To efficiently process thousands of STAMPs at once, we break

droplets, collect the mRNA-bound microparticles, and reverse-

transcribe the mRNAs (from the microparticle-attached primers)

together in one reaction, forming covalent, stable STAMPs (Fig-

ure 2A, step 7, and Experimental Procedures). A scientist can

then select any desired number of STAMPs for the preparation

of 30-end digital expression libraries (Figure 2C, Experimental

Procedures). We sequence the resulting molecules from each

end (Figure 2C) using high-capacity parallel sequencing. We

digitally count the number of mRNA transcripts of each gene as-

certained in each cell, using the UMIs to avoid double-counting

sequence reads that arose from the same mRNA transcript. We

thereby create a matrix of digital gene-expression measure-

ments (one measurement per gene per cell) for further analysis

(Figure 2D, Experimental Procedures).

The Single-Cell Accuracy and Sensitivity of Drop-Seq
Libraries
To measure the accuracy with which Drop-seq remembers the

cell-of-origin of each mRNA, we analyzed mixtures of cultured

human (HEK) and mouse (3T3) cells, scoring the numbers of hu-

man and mouse transcripts that associated with each cell bar-

code (Figures 3A, 3B, and S3A). We found that the individual

STAMPs created by Drop-seq were highly organism-specific

(Figures 3A and 3B), indicating high single-cell integrity of the li-

braries. At saturating levels of sequence coverage, we detected

an average of 44,295mRNA transcripts from 6,722 genes in HEK

cells and 26,044 transcripts from 5,663 genes in 3T3 cells (Fig-

ures 3C and 3D).

To understand how Drop-seq libraries compare to other

single-cell methods, we used three quality metrics: (1) the fre-

quency of cell-cell doublets; (2) single-cell purity; and (3) tran-

script capture rates.

Cell Doublets

One potential mode of failure in any single-cell method involves

cells that stick together or happen to otherwise be co-isolated for

library preparation. In Drop-seq, across four conditions spanning

12.5 cells/ml to 100 cells/ml, the fraction of species-mixed

STAMPs correlated with cell concentration (Figures 3A, 3B,

and S3B; Experimental Procedures), with cell doublet estimates
1204 Cell 161, 1202–1214, May 21, 2015 ª2015 Elsevier Inc.
ranging from 0.36% to 11.3% for the various cell concentrations

tested (under the assumption that human-mouse doublets ac-

count for half of all doublets). This reflects the greater chance

at higher cell concentrations that a droplet could encapsulate

multiple cells. By comparison, previous studies that used

FACS (Jaitin et al., 2014) or a commercial microfluidics platform

(Shalek et al., 2014) to isolate single cells reported doublet rates

of 2.3% and 11% respectively, based upon examining micro-

scopy images of captured cells. In analyzing the above mouse-

human cell suspension mixture in a commercial microfluidics

system (FluidigmC1), we found that 30%of the resulting libraries

in that experiment were species-mixed (Figure S3C); about one-

third of these doublets were visible in the microscopy images.

Single-Cell Impurity

Species-mixing experiments enabled us to measure single-cell

purity across thousands of libraries prepared at different cell

concentrations. We found that purity was strongly related to

cell concentration, ranging from 98.8% at 12.5 cells / ml to

90.4% at 100 cells / ml (Figure S3B). The largest source of sin-

gle-cell impurity appeared to be ambient RNA that is present in

the cell suspension (a first step of almost all single-cell methods)

and presumably results fromcells that are damaged during prep-

aration (Figure S3D). We measured a mean single-cell purity

of 95.8% for the same cell mixtures in the Fluidigm C1 system

(Figure S3C), similar to Drop-seq at 50 cells /ml.

Conversion Efficiency

The use of synthetic RNA ‘‘spike-in’’ controls at known concen-

trations, together with UMIs to avoid double-counting, allows

estimation of capture rates for digital single-cell expression tech-

nologies (Brennecke et al., 2013; Islam et al., 2014).We identified

evidence that PCR and sequencing errors inflate the numbers of

apparently unique UMIs (Table S1 and Supplemental Experi-

mental Procedures), so we developed a more conservative esti-

mation method than has been used in earlier studies (Islam et al.,

2014); in our approach, we collapse similar UMI sequences into a

single count. Using this approach we calculated a capture rate of

12.8% for Drop-seq (Figure 3G). We corroborated this estimate

by making independent digital expression measurements (on

bulk RNA from 50,000 HEK cells) on ten genes using droplet dig-

ital PCR (ddPCR) (Hindson et al., 2011), calculating an average

conversion efficiency of 10.7% (Figures S4A, S4B, and S4C).

To further evaluate how the digital transcriptomes ascertained

by Drop-seq related to the underlying mRNA content of cells,

we compared Drop-seq log-expression measurements to those

made by a commonly used in-solution amplification process,

finding strong correlation (r = 0.94, Figure 3E), though Drop-

seq ascertained GC-rich transcripts at a lower rate (Figure S4D).

We also compared Drop-seq single-cell log-expression mea-

surements with measurements from bulk mRNA-seq, observing

a correlation of r = 0.90 (Figures 3F, S4E, and S4F).

Cell States: Drop-Seq Analysis of the Cell Cycle
To evaluate the visibility of cell states in Drop-seq, we first exam-

ined cell-to-cell variation among the 589 HEK and 412 3T3

STAMPs shown in Figure 3B. Both cultures consisted of asyn-

chronously dividing cells; principal components analysis (PCA)

of the single-cell expression profiles showed the top principal

components to be dominated by genes with roles in protein
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Figure 2. Extraction and Processing of Single-Cell Transcriptomes by Drop-Seq

(A) Schematic of single-cell mRNA-seq library preparation with Drop-seq. A custom-designed microfluidic device joins two aqueous flows before their

compartmentalization into discrete droplets. One flow contains cells, and the other flow contains barcoded primer beads suspended in a lysis buffer. Immediately

following droplet formation, the cell is lysed and releases its mRNAs, which then hybridize to the primers on the microparticle surface. The droplets are broken by

adding a reagent to destabilize the oil-water interface (Experimental Procedures), and the microparticles collected and washed. The mRNAs are then reverse-

transcribed in bulk, forming STAMPs, and template switching is used to introduce a PCR handle downstream of the synthesized cDNA (Zhu et al., 2001).

(B) Microfluidic device used in Drop-seq. Beads (brown in image), suspended in a lysis agent, enter the device from the central channel; cells enter from the top

and bottom. Laminar flow prevents mixing of the two aqueous inputs prior to droplet formation (see alsoMovie S1). Schematics of the device design and how it is

operated can be found in Figure S2.

(C) Molecular elements of a Drop-seq sequencing library. The first read yields the cell barcode and UMI. The second, paired read interrogates sequence from the

cDNA (50 bp is typically sequenced); this sequence is then aligned to the genome to determine a transcript’s gene of origin.

(D) In silico reconstruction of thousands of single-cell transcriptomes. Millions of paired-end reads are generated from a Drop-seq library on a high-throughput

sequencer. The reads are first aligned to a reference genome to identify the gene-of-origin of the cDNA. Next, reads are organized by their cell barcodes,

and individual UMIs are counted for each gene in each cell (Supplemental Experimental Procedures). The result, shown at far right, is a ‘‘digital expressionmatrix’’

in which each column corresponds to a cell, each row corresponds to a gene, and each entry is the integer number of transcripts detected from that gene, in

that cell.
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Figure 3. Critical Evaluation of Drop-Seq Using Species-Mixing Experiments

(A and B) Drop-seq analysis of mixutres of mouse and human cells. Mixtures of human (HEK) and mouse (3T3) cells were analyzed by Drop-seq at the con-

centrations shown. The scatter plot shows the number of human and mouse transcripts associating to each STAMP. Blue dots indicate STAMPs that were

designated from these data as human-specifiic (average of 99% human transcripts); red dots indicate STAMPs that were mouse-specific (average 99%). At the

lower cell concentration, one STAMP barcode (of 570) associated with a mixture of human and mouse transcripts (A, purple). At the higher cell concentration,

about 1.9% of STAMP barcodes associated with mouse-humanmixtures (B). Data for other cell concentrations and a different single-cell analysis platform are in

Figures S3B and S3C.

(C and D) Sensitivity analysis of Drop-seq at high read-depth. Violin plots show the distribution of the number of transcripts (C, scored by UMIs) and genes (D)

detected per cell for 54 HEK (human) STAMPs (blue) and 28 3T3 (mouse) STAMPs (green) that were sequenced to a mean read depth of 737,240 high-quality

aligned reads per cell.

(E and F) Correlation between gene expression measurements in Drop-seq and non-single-cell RNA-seq methods. Comparison of Drop-seq gene expression

measurements (averaged across 550 STAMPs) to measurements from bulk RNA analyzed by: (E) an in-solution template switch amplification (TSA) procedure

similar to Smart-seq2 (Picelli et al., 2013) (Supplemental Experimental Procedures); and (F) Illumina TruSeqmRNA-seq. All comparisons involve RNAderived from

the same cell culture flask (3T3 cells). All expression counts were converted to average transcripts per million (ATPM) and plotted as log (1+ATPM).

(G) Quantitation of Drop-seq capture efficiency by ERCC spike-ins. Drop-seq was performed with ERCC control synthetic RNA at an estimated concentration of

100,000 ERCC RNAmolecules per droplet. 84 beads were sequenced at a mean depth of 2.4 million reads, aligned to the ERCC reference sequences, and UMIs

counted for each ERCC species, after applying a stringent down-correction for potential sequencing errors (Table S1 and Supplemental Experimental Pro-

cedures). For each ERCC RNA species above an average concentration of one molecule per droplet, the predicted number of molecules per droplet was plotted

in log space (x-axis), versus the actual number of molecules detected per droplet by Drop-seq, also in log space (y-axis). Error bars indicate SD. The intercept of a

regression line, constrained to have a slope of 1 and fitted to the seven highest points, was used to estimate a conversion factor (0.128). A second estimation,

using the average number of detected transcripts divided by the number of ERCC molecules used (100,000), yielded a conversion factor of 0.125.
synthesis, growth, DNA replication, and other aspects of the cell

cycle. We inferred the cell-cycle phase of each of the 1,001 cells

by scoring for gene sets (signatures) reflecting five phases of the

cell cycle previously characterized in chemically synchronized

cells (G1/S, S, G2/M, M, and M/G1) (Figure 4A, Table S2) (Whit-
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field et al., 2002).We identified 544 human and 668mouse genes

with expression patterns that varied along the cell cycle (at a

false discovery rate of 5%;Experimental Procedures) (Figure 4B),

including 200 orthologous gene pairs (p < 10�65 by hyper-

geometric test). Of these orthologous gene pairs, most (82.5%)
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Figure 4. Cell-Cycle Analysis of HEK and

3T3 Cells Analyzed by Drop-Seq

(A) Cell-cycle state of 589 HEK cells (left) and 412

3T3 cells (right) measured by Drop-seq. Cells were

assessed for their progression through the cell

cycle by comparison of each cell’s global pattern

of gene expression with gene sets known to

be enriched in one of five phases of the cycle

(horizontal rows). A phase-specific score was

calculated for each cell across these five phases

(Supplemental Experimental Procedures), and the

cells ordered by their phase scores.

(B) Discovery of cell-cycle regulated genes. Heat

map showing the average normalized expression

of 544 human and 668 mouse genes found to be

regulated by the cell cycle. Maximal and minimal

expression was calculated for each gene across a

sliding window of the ordered cells, and compared

with shuffled cells to obtain a false discovery

rate (FDR) (Experimental Procedures). The plotted

genes (FDR threshold of 5%) were then clustered

by k-means analysis to identify sets of genes with

similar expression patterns. Cluster boundaries

are represented by dashed gray lines.

(C) Representative cell-cycle regulated genes

discovered by Drop-seq. Selected genes that

were found to be cell-cycle regulated in both the

HEK and 3T3 cell sets. Left: genes that are

well-known to be cell-cycle regulated. Right: some

genes identified in this analysis that were not

previously known to be associated with the cell

cycle (Experimental Procedures). A complete

list of cell-cycle regulated genes can be found in

Table S2.
have been previously annotated as related to the cell cycle in at

least one species; among the other 17.5%, we found some that

would be expected to show cell-cycle variation (e.g., E2F7 and

PARPBP) and many that to our knowledge were not previously

connected to the cell cycle (Figure 4C and Table S2). Single-

cell analysis at this scale enabled characterization of cell-cycle

gene expression without chemical synchronization and at high

temporal resolution.

Cell Types: Drop-Seq Analysis of the Retina
We selected the retina as the first tissue to study with Drop-seq

because decades of work has generated molecular information

about many retinal cell types (Masland, 2012; Sanes and Zipur-

sky, 2010), allowing us to relate our RNA-seq data to prior clas-

sification. The retina contains five neuronal classes—retinal gan-

glion, bipolar, horizontal, photoreceptor, and amacrine—each

defined by morphological, physiological, and molecular criteria

(Figure 5A). Most of the classes are divisible into discrete

types—a total currently estimated at about 100—but well under

half of these types possess known, distinguishing molecular

markers.

We sequenced 49,300 STAMPs prepared from the retinas of

14-day-old mice (STAMPs were collected in seven batches

over 4 days). We performed principal components analysis on

the 13,155 largest libraries (Figure S5, Table S3), then reduced

the 32 statistically significant PCs (Experimental Procedures)

to two dimensions using t-Distributed Stochastic Neighbor
Embedding (tSNE) (Amir et al., 2013; van der Maaten and Hinton,

2008). We projected the remaining 36,145 cells in the data into

the tSNE analysis. We then combined a density clustering

approach with post hoc differential expression analysis to divide

44,808 cells among 39 transcriptionally distinct clusters (Supple-

mental Experimental Procedures) ranging from 50 to 29,400

cells in size (Figures 5B and 5C). Finally, we organized the 39

cell populations into larger categories (classes) by building a

dendrogram of similarity relationships among the 39 cell popula-

tions (Figure 5D, left).

The cell populations inferred from this analysis were readily

matched to the known retinal cell types, including all five

neuronal cell classes, based on the specific expression of known

markers for these cell types (Figure 5D, right, and Figure S6A).

Additional clusters corresponded to astrocytes (associated

with retinal ganglion cell axons exiting the retina), resident micro-

glia, endothelial cells (from intra-retinal vasculature), pericytes,

and fibroblasts (Figure 5D). The relative abundances of the

major cell classes in our data agreed with earlier estimates

from microscopy (Jeon et al., 1998) (Table 1).

Replication and Cumulative Power of Drop-Seq Data
Replication across experimental sessions enables the construc-

tion of cumulatively powerful datasets—but only if data are repli-

cable and comparable. The retinal STAMPswere generated on 4

different days (weeks apart), utilizing different litters and multiple

runs in several sessions, for a total of seven replicates. One of the
Cell 161, 1202–1214, May 21, 2015 ª2015 Elsevier Inc. 1207



Figure 5. Ab Initio Reconstruction of Retinal Cell Types from 44,808 Single-Cell Transcription Profiles Prepared by Drop-Seq

(A) Schematic representation of major cell classes in the retina. Photoreceptors (rods or cones) detect light and pass information to bipolar cells, which in turn

contact retinal ganglion cells that extend axons into other CNS tissues. Amacrine, bipolar and horizontal cells are retinal interneurons; Müller glia act as support

cells for surrounding neurons.

(B) Clustering of 44,808 Drop-seq single-cell expression profiles into 39 retinal cell populations. The plot shows a two-dimensional representation (tSNE) of global

gene expression relationships among 44,808 cells; clusters are colored by cell class, according to Figure 5A.

(C) Differentially expressed genes across 39 retinal cell populations. In this heat map, rows correspond to individual genes found to be selectively upregulated in

individual clusters (p < 0.01, Bonferroni corrected); columns are individual cells, ordered by cluster (1–39). Clusters with > 1,000 cells were downsampled to 1,000

cells to prevent them from dominating the plot.

(D) Gene expression similarity relationships among 39 inferred cell populations. Average expression across all detected genes was calculated for each of 39 cell

clusters, and the relative (Euclidean) distances between gene-expression patterns for the 39 clusters are represented by a dendrogram. The branches of the

dendrogram were annotated by examining the differential expression of known markers for retina cell classes and types. Twelve examples are shown at right,

using violin plots to represent the distribution of expression within the clusters. Violin plots for additional genes are in Figure S6A.

(legend continued on next page)
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Table 1. Ascertainment of Cell Types and Frequencies in the

Mouse Retina by Drop-Seq

Cell Class

Percentage of Retina

(Jeon et al., 1998) (%)

Percentage of

Cell Population

in Drop-Seq (%)

Rod photoreceptors 79.9 65.6

Cone photoreceptors 2.1 4.2

Muller glia 2.8 3.6

Retinal ganglion cells 0.5 1.0

Horizontal cells 0.5 0.6

Amacrine cells 7.0 9.9

Bipolar cells 7.3 14.0

Microglia — 0.2

Retinal endothelial cells — 0.6

Astrocytes 0.1

The sizes of the 39 annotated cell clusters produced from Drop-seq were

used to estimate their fractions of the total cell population. These data

were compared with those obtained by microscopy techniques (Jeon

et al., 1998).
runs was performed at a particularly low cell concentration (15

cells/ml) and thus high purity, to evaluate whether results were ar-

tifacts of cell-cell doublets or single-cell impurity. We found that

all 39 clusters contained cells from every experiment. One clus-

ter (arrow in Figure 5E; star in Figure S6B), which drew dispropor-

tionately from two replicates, expressedmarkers of fibroblasts, a

non-retinal cell type that is present in tissue surrounding the

retina, and hence likely represents imprecise dissection.

We examined how the classification of cells (based on their

patterns of gene expression) evolved as a function of the

numbers of cells in analysis. We used 500, 2,000, or 9,731 cells

from our dataset, and asked how (for example) cells identified as

amacrines in the full dataset clustered in analyses of smaller

numbers of cells (Figure 5F). As the number of cells in the data

increased, distinctions between related clusters become clearer,

stronger, and finer in resolution, with the result that a greater

number of rare amacrine cell sub-populations (each represent-

ing 0.1%–0.9% of the cells in the experiment) could ultimately

be distinguished from one another (Figure 5F).

Profiles of Amacrine Cell Types
To characterize distinctions among closely related cell popula-

tions, we focused on the 21 clusters of amacrines. Amacrines

are the most morphologically diverse neuronal class (Masland,

2012), but the majority of types lack defining molecular markers.

Most amacrine cells are inhibitory, utilizing either GABA or

glycine as a neurotransmitter. Excitatory amacrine cells that

release glutamate have also been identified (Haverkamp and
(E) Representation of experimental replicates in each cell population. tSNE plot f

clarity, the central rod cluster was downsampled to 10,000 cells). Each of the sev

these replicates are unevenly represented, expressed markers of fibroblasts, whic

Figure S6B).

(F) Trajectory of amacrine clustering as a function of number of cells analyzed. T

9,731 cells (Supplemental Experimental Procedures). Cells identified as amacrine

that analysis. Analyses of smaller numbers of cells incompletely distinguished th
Wässle, 2004). Another amacrine cell population expresses no

GABAergic, glycinergic or glutamatergic markers; its neuro-

transmitter is unidentified (nGnG amacrines) (Kay et al., 2011).

We first identified markers that were most universally ex-

pressed by amacrines relative to other cell classes (Figure 6A).

We then assessed the expression of known glycinergic and

GABAergic markers; their mutually exclusive expression is a

fundamental distinction among amacrines. Of the 21 amacrine

clusters, 12 were identifiable as GABAergic (Gad1 and/or

Gad2-positive) and 5 others were glycinergic (glycine transporter

Slc6a9-positive) (Figure 6B). An additional cell population was

identified as excitatory by its expression of a glutamate trans-

porter,Slc17a8 (Figure 6B). The remaining three clusters (clusters

4, 20, and 21) had low levels of GABAergic, glycinergic, and glu-

tamatergic markers; these likely include nGnG amacrines.

Among the glycinergic and GABAergic clusters, we found

many amacrine types with known markers. The most divergent

glycinergic cluster appeared to correspond to the A-II amacrine

neurons (Figure 6B, cluster 16), as this was the only cluster to

strongly express the Gjd2 gene encoding the gap junction pro-

tein connexin 36 (Feigenspan et al., 2001). Ebf3, a transcription

factor found in SEG glycinergic as well as nGnG amacrines,

was specific to clusters 17 and 20. Starburst amacrine neurons

(SACs), the only retinal cells that use acetylcholine as a co-trans-

mitter, were identifiable as cluster 3 by their expression of the

cholinergic marker Chat (Figure 6B). Unlike other GABAergic

cells, SACs expressed Gad1 but not Gad2, as previously

observed in rabbit (Famiglietti and Sundquist, 2010).

We then identified selectively expressedmarkers for eachof the

21 amacrine cell populations (Figure 6C and Table S4). We vali-

dated two of the markers immunohistochemically. First, we co-

stained retinal sections with antibodies to the transcription factor

MAF, the topmarker of cluster 7, plus antibodies to eitherGAD1or

SLC6A9, markers of GABAergic and glycinergic transmission,

respectively. As predicted by the Drop-seq analysis, MAF was

found in a small subset of amacrine cells that were GABAergic

and not glycinergic (Figure 6D). Cluster 7 had numerous genes

that were enriched relative to its nearest neighbor, cluster 6 (Fig-

ure 6E, 16 genes > 2.8-fold enrichment, p < 10�9), including

Crybb3, which belongs to the crystallin family of proteins that

are known to be directly upregulated by Maf (Yang and Cvekl,

2005), and another, the proteaseMmp9, which accepts crystallins

as substrates (Descamps et al., 2005). Second, we stained sec-

tions with antibodies to PPP1R17 (Figure 6F), a nominatedmarker

of cluster 20. Cluster 20 shows weak, infrequent glycine trans-

porter expression and is one of only two clusters (with cluster

21) that express Neurod6, a marker of nGnG neurons (Kay et al.,

2011). We used a transgenic strain (MitoP) that has been shown

to express CFP specifically in nGnG amacrines (Kay et al.,

2011). PPP1R17 stained 85% of all CFP-positive amacrines in
rom Figure 2B, with each cell now colored by experimental replicate (for visual

en replicates contributes to all 39 cell populations. Cluster 36 (arrow), in which

h are not native to the retina and are presumably a dissection artifact (see also

hree different downsampled datasets were generated: (1) 500, (2) 2,000, or (3)

s (clusters 3–23) in the full analysis are here colored by their cluster identities in

ese subpopulations from one another.
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Figure 6. Finer-Scale Expression Distinctions among Amacrine Cells, Cones, and Retinal Ganglion Cells
(A) Pan-amacrine markers. The expression levels of the six genes identified (Nrxn2, Atp1b1, Pax6, Slc32a1, Slc6a1, Elavl3) are represented as dot plots across all

39 clusters; larger dots indicate broader expression within the cluster; deeper red denotes a higher expression level.

(legend continued on next page)
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theMitoP line, validating this as amarker of nGnGcells (Figure 6F).

PPP1R17 was one of several markers that distinguished Cluster

20 from its closest neighbor, Cluster 21 (Figure 6G; 12 genes >

2.8-fold enrichment, p < 10�9). The differences between Clusters

20 and 21 suggest a hitherto unsuspected level of heterogeneity

among nGnG amacrines.

Supervised Analysis Reveals Additional Diversity
Our unsupervised analysis grouped cells into 39 transcription-

ally distinct populations, but morphological and functional

criteria suggest that there are �100 retinal cell types. We asked

whether supervised analysis could reveal multiple types within

individual clusters. For example, retinal ganglion cells (RGCs),

which consist of about 30 types (Sanes and Masland, 2015),

formed a single cluster in our analysis, perhaps because it is

a rare cell population (1%, Table 1). Five RGC types, called

intrinsically photosensitive RGCs (ipRGCs), express Opn4, the

gene encoding the photopigment melanopsin. Opn4+ RGCs

(26/432) expressed nine genes at levels 2-fold higher than

Opn4- RGCs (p < 109, Figure 6H), including Tbr2/Eomes,

known to be a selective marker for this population (Sweeney

et al., 2014). This result reveals additional heterogeneity that

may also emerge ab initio as analyses expand to include

more cells.

DISCUSSION

Ascertaining transcriptional variation across individual cells is a

valuable way of learning about complex tissues and functional

responses, but single-cell analysis has been limited by the time

and cost of preparing libraries from many individual cells. A sci-

entist employing Drop-seq can prepare 10,000 single-cell li-

braries for sequencing in 12 hr, for about 6.5 cents per cell (Table

S5), representing a >100-fold improvement in both time and cost

relative to existing methods. A Drop-seq setup can be con-

structed quickly and inexpensively in a standard biology lab us-

ing readily available equipment (Figure S2B and Supplemental

Experimental Procedures). We hope that ease, speed, and low

cost facilitate exuberant experimentation, careful replication,

and many cycles of experiments, analyses, ideas, and more

experiments.
(B) Identification of known amacrine types among clusters. The 21 amacrine clus

non-GABAergic non-glycinergic clusters. Starburst amacrines were identified in

Slc17a8; A-II amacrines by their expression of Gjd2; and SEG amacrine neurons

(C) Nomination of novel candidate markers of amacrine subpopulations. Each clu

other amacrine clusters (p < 0.01, Bonferroni corrected) (McDavid et al., 2013),

candidate marker for each cluster is shown across all amacrines.

(D) Validation of MAF as amarker for a GABAergic amacrine population. Staining o

and vii), GAD1 (iii and iv, red staining), and SLC6A9 (vi and vii, red staining), dem

(E) Differential expression of cluster 7 (Maf+) with nearest neighboring amacrine c

and 7; 16 genes (red dots) were identified with >2.8-fold enrichment in cluster 7

(F) Validation of PPP1R17 as a marker for an amacrine subpopulation. Staining

amacrines and type 1 bipolars (Kay et al., 2011). Overlapping labeling by PPP1R

Ppp1r17 expression in the nGnG amacrine neurons. 85% of CFP+ cells were P

amacrine type expressing this marker. Blue staining is for VSX2, a marker of bip

(G) Differential expression of cluster 20 (Ppp1r17+) with nearest neighboring ama

clusters 20 and 21; 12 genes (red dots) were identified with >2.8-fold enrichmen

(H) Differential expression of melanopsin-positive and negative RGCs. Average ex

2. Seven genes were identified as enriched in Opn4-positive cells (red dots, > 2-
In validating Drop-seq, we developed stringent species-mix-

ing experiments to measure single-cell purity and cell doublet

rates in our libraries. In another article in this issue, Klein et al.

(Klein et al., 2015) describe a droplet-based approach to sin-

gle-cell RNA-seq and also use species-mixing experiments to

evaluate it. Our results indicate that all methods of isolating

single cells from a cell suspension, including Drop-seq, fluores-

cence activated cell sorting (FACS) andmicrofluidics, are vulner-

able to impurities, and highlight the value of performing species

mixing experiments to assess single-cell approaches. In our

retina analysis, even relatively impure libraries generated in

‘‘ultra-high-throughput’’ modes (100 cells per ml, allowing the

processing of 10,000 cells per hour at �10% doublet and impu-

rity rates) appeared to yield a robust and biologically validated

cell classification, but other tissues or applications may require

using Drop-seq in purer modes.

Unsupervised computational analysis of Drop-seq data

identified 39 transcriptionally distinct retinal cell populations,

many representing specific subtypes of the major retinal cell

classes (Figures 5 and 6). It is a particular strength of the

retina that establishing correspondence between cluster and

type was in many cases straightforward; an important direc-

tion will be to identify cell types and states in other parts of

the brain—as well as in other tissues—about which less is

currently known.

We see many applications of Drop-seq, beyond the identifica-

tion of cell types and cell states. Genome-scale genetic studies

are identifyingmanygeneswhose variation contributes to disease

risk, but biology has lacked similarly high-throughput ways of

connecting these genes to specific cell populations and unique

functional responses. Drop-seq could be used to provide initial in-

sights into how these genes function in the diverse cell types

composing each tissue. In addition, coupling Drop-seq to pertur-

bations—suchassmallmolecules,mutations,pathogens,orother

stimuli—could generate an information-rich, multi-dimensional

readout of the influence of perturbations on many kinds of cells.

The functional implications of a gene’s expression are a prod-

uct not just of that gene’s intrinsic properties, but also of the

entire cell-level context in which the gene is expressed. We

hope Drop-seq enables the abundant and routine discovery of

such relationships in many areas of biology.
ters consisted of 12 GABAergic, five glycinergic, one glutamatergic, and three

cluster 3 by their expression of Chat; excitatory amacrines by expression of

by their expression of Ebf3.

ster was screened for genes differentially expressed in that cluster relative to all

and filtered for those with highest relative enrichment. Expression of a single

f a fixed adult retina fromwild-type mice for MAF (i, ii, v, and green staining in iv

onstrating co-localization of MAF with GAD1, but not SLC6A9.

luster (#6). Average gene expression was compared between cells in clusters 6

(p < 10�9).

of a fixed adult retina from Mito-P mice, which express CFP in both nGnG

17 antibody (green) and Mito-P CFP (red) supports Drop-seq identification of

PP1R17+ and 50% of the PPP1R17+ cells were CFP�, suggesting a second

olar neurons.

crine cluster (#21). Average gene expression was compared between cells in

t in cluster 20 (p < 10�9).

pression was compared betweenOpn4-positive and -negative RGCs in cluster

fold, p < 10�9).
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EXPERIMENTAL PROCEDURES

Device Design and Fabrication

Microfluidic devices were designed using AutoCAD software (Autodesk), and

the components tested using COMSOL Multiphysics (COMSOL). Full details

are described in Supplemental Experimental Procedures.

Barcoded Microparticle Synthesis

Bead functionalization and reverse-direction phosphoramidite synthesis were

performed by Chemgenes Corp (Wilmington, MA). ‘‘Split-and-pool’’ cycles

were accomplished by removing the dry resin from each column, handmixing,

andweighing out four equal portions before returning the resin for an additional

cycle of synthesis. Full details are described in Supplemental Experimental

Procedures.

Drop-Seq Procedure

Monodisperse droplets�1 nl in size were generated using the microfluidic de-

vice described in Supplemental Experimental Procedures, in which barcoded

microparticles, suspended in lysis buffer, were flowed at a rate equal to that of

a single-cell suspension, so that resulting droplets were composed of an equal

amount of each component. As soon as droplet generation was complete,

droplets were broken with perfluorooctanol in 30 ml of 63 SSC. The addition

of a large aqueous volume to the droplets reduces hybridization events after

droplet breakage, because DNA base pairing follows second-order kinetics

(Britten and Kohne, 1968; Wetmur and Davidson, 1968). The beads were

then washed and resuspended in a reverse transcriptase mix, followed by a

treatment with exonuclease I to remove unextended primers. The beads

were then washed, counted, aliquoted into PCR tubes, and PCR amplified.

The PCR reactions were purified and pooled, and the amplified cDNA quanti-

fied on a BioAnalyzer High Sensitivity Chip (Agilent). The cDNA was frag-

mented and amplified for sequencing with the Nextera XT DNA sample prep

kit (Illumina) using custom primers that enabled the specific amplification of

only the 30 ends (Table S6). The libraries were purified, quantified, and then

sequenced on the Illumina NextSeq 500. All details regarding reaction

conditions, primers used, and sequencing specifications can be found in the

Supplemental Experimental Procedures.

Cell-Cycle Analysis of HEK and 3T3 Cells

Gene sets reflecting five phases of the HeLa cell cycle (G1/S, S, G2/M, M and

M/G1) were taken from Whitfield et al. (Whitfield et al., 2002) with some modi-

fication (Supplemental Experimental Procedures and Table S2). A phase-spe-

cific score was generated for each cell, across all five phases, using averaged

normalized expression levels (log2(TPM+1)) of the genes in each set. Cells

were then ordered along the cell cycle by comparing the patterns of these

five phase scores per cell. To identify cell-cycle-regulated genes, we used a

sliding window approach, and identified windows of maximal and minimal

average expression, both for ordered cells, and for shuffled cells, to evaluate

the false-discovery rate. Full details may be found in Supplemental Experi-

mental Procedures.

Principal Components and Clustering Analysis of Retina Data

The clustering algorithm for the retinal cell data was implemented and per-

formed using Seurat, a recently developed R package for single-cell analysis

(Satija et al., 2015). PCA was first performed on a 13,155-cell ‘‘training set’’

of the 49,300-cell dataset, using single-cell libraries in which transcripts from

>900 genes were detected. We found this approach was more effective in

discovering structures corresponding to rare cell types than performing PCA

on the full dataset, which was dominated by numerous, tiny rod photorecep-

tors (Supplemental Experimental Procedures). Thirty-two statistically signifi-

cant PCs were identified using a permutation test and independently

confirmed using a modified resampling procedure (Chung and Storey, 2015).

We projected individual cells within the training set based on their PC scores

onto a single two-dimensional map using t-Distributed Stochastic Neighbor

Embedding (t-SNE) (van der Maaten and Hinton, 2008). The remaining

36,145 single-cell libraries (<900 genes detected) were next projected on

this t-SNE map, based on their representation within the PC-subspace of

the training set (Berman et al., 2014; Shekhar et al., 2014). This approach mit-
1212 Cell 161, 1202–1214, May 21, 2015 ª2015 Elsevier Inc.
igates the impact of noisy variation in the lower complexity libraries due to

gene dropouts. It was also reliable in the sense that when we withheld from

the t-SNE all cells from a given cluster and then tried to project them, these

withheld cells were not spuriously assigned to another cluster by the projection

(Table S7). Point clouds on the t-SNEmap represent candidate cell types; den-

sity clustering (Ester et al., 1996) identified these regions. Differential expres-

sion testing (McDavid et al., 2013) was then used to confirm that clusters

were distinct from each other. Hierarchical clustering based on Euclidean dis-

tance and complete linkage was used to build a tree relating the clusters. We

noted expression of several rod-specific genes, such as Rho and Nrl, in every

cell cluster, an observation that has been made in another retinal cell gene

expression study (Siegert et al., 2012) and likely arises from solubilization

of these high-abundance transcripts during cell suspension preparation.

Additional information regarding retinal cell data analysis can be found in the

Supplemental Experimental Procedures.
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