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Summary

Nucleosome positioning varies between cell types. By deep sequencing cell-free DNA (cfDNA) 

isolated from circulating blood plasma, we generated maps of genome-wide in vivo nucleosome 

occupancy, and found that short cfDNA fragments harbor footprints of transcription factors. The 

cfDNA nucleosome occupancies correlate well with the nuclear architecture, gene structure and 

expression observed in cells, suggesting that they could indicate the cell-type of origin. 

Nucleosome spacing inferred from cfDNA in healthy individuals correlates most strongly with 

epigenetic features of lymphoid and myeloid cells, consistent with hematopoietic cell death as the 

normal source of cfDNA. We build on this observation to show how nucleosome footprints can be 

used to infer cell types contributing to cfDNA in pathological states such as cancer. Since this 

strategy does not rely on differing cfDNA and cellular DNA genotypes, it may enable the 

noninvasive monitoring of a much broader set of clinical conditions than currently possible.

Introduction

Cell-free DNA (cfDNA) is present in the circulating plasma, urine, and other bodily fluids 

of humans (Chan et al., 2003). The cfDNA comprises double-stranded DNA fragments that 

are overwhelmingly short (<200 base-pairs (bp)) and normally at a low concentration 

(Fleischhacker and Schmidt, 2007). In healthy individuals, plasma cfDNA is believed to 

derive primarily from apoptosis of normal cells of the hematopoietic lineage, with minimal 

contributions from other tissues (Lui et al., 2002). The short half-life of cfDNA in the 

circulation (Lo et al., 1999) suggests a model of ongoing release from apoptotic cells and 
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rapid degradation or filtration. The size distribution of cfDNA fragments bears 

correspondence with these origins – specifically, peaks corresponding to nucleosomes (~147 

bp) and chromatosomes (nucleosome + linker histone; ~167 bp) have been noted (Fan et al., 

2008; Lo et al., 2010) – and some proportion of cfDNA may circulate as nucleosomes or 

chromatosomes, rather than as free DNA (Holdenrieder et al., 2005; Wimberger et al., 

2010).

In the context of specific physiological conditions or disease processes, a substantial 

proportion of cfDNA may be derived from a different distribution of tissues than during the 

typical, healthy state. This fact has been exploited in recent years to achieve noninvasive 

diagnostics based on cfDNA composition. In pregnant women, ~10–15% of cfDNA 

originates from placental trophoblasts, and cfDNA-based screening for fetal genetic 

abnormalities is now common in high-risk pregnancies (Chiu et al., 2008; Fan et al., 2008). 

In oncology, the monitoring of advanced cancers by quantifying mutations or aneuploidy in 

tumor-shed cfDNA is gaining traction (Diaz and Bardelli, 2014). In transplant medicine, 

allograft rejection events can be correlated with abnormally high levels of donor-derived 

cfDNA fragments contributed by the transplanted solid organ (Snyder et al., 2011).

Despite these advances, a common limitation is the requirement for genetic differences to 

distinguish between contributing tissues, e.g. fetus vs. mother, tumor vs. normal, or donor 

vs. recipient. Conditions such as myocardial infarction (Chang et al., 2003), stroke (Rainer 

et al., 2003) and autoimmune disorders (Galeazzi et al., 2003) are associated with elevations 

in cfDNA levels, possibly consequent to tissue damage, but cannot be specifically monitored 

via cfDNA because of the lack of such genetic differences. Furthermore, even as mutations 

enable monitoring of tumor-derived cfDNA, they only weakly inform a tumor’s tissue-of-

origin.

We hypothesized that if cfDNA is the detritus of cell death, and if the boundaries of cfDNA 

fragments are biased by their association with nucleosomes, then the fragmentation patterns 

observed in an individual’s cfDNA might contain evidence of the epigenetic landscape(s) of 

the cells giving rise to these fragments – and thus, of their tissue(s)-of-origin – i.e., a 

strategy that does not rely on genotypic differences between contributing cell types.

To evaluate this hypothesis, we first set out to deeply sequence cfDNA to better understand 

the processes that give rise to it. We use the resulting data to build a map of nucleosome 

occupancy that approaches saturation of the mappable human genome. By optimizing 

protocols to recover short fragments, we discover that the in vivo occupancies of 

transcription factors (TFs) such as CTCF are also directly footprinted by cfDNA. Finally, we 

show that nucleosome spacing in regulatory elements and gene bodies, as revealed by 

cfDNA sequencing in healthy individuals, correlates most strongly with DNase I 

hypersensitivity (DHS) and gene expression in lymphoid and myeloid cell lines. To test 

whether we can infer additional contributing tissues in non-healthy states, we sequenced 

cfDNA samples from five late-stage cancer patients. The patterns of nucleosome spacing in 

these samples reveal additional contributions to cfDNA that correlate most strongly with 

non-hematopoietic tissues or cell lines, often matching the anatomical origin of the patient’s 

cancer.
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Results

cfDNA fragments correspond to chromatosomes and contain substantial DNA damage

We prepared conventional sequencing libraries by end-repair and adaptor ligation to cfDNA 

fragments purified from plasma pooled from an unknown number of healthy individuals 

(‘BH01’) or a single individual (‘IH01’) (Figure 1A; Table S1). We sequenced these 

libraries to 96- and 105-fold coverage (1.5 billion (G) and 1.6G fragments). The fragment 

length distributions have a dominant peak at ~167 bp (coincident with the length of DNA 

associated with a chromatosome), and ~10.4 bp periodicity in the 100–160 bp range (Figure 

1B). These distributions support a model in which cfDNA fragments are preferentially 

protected from nuclease cleavage by association with proteins – in this case, by the 

nucleosome core particle (NCP) and linker histone – but where some degree of additional 

nicking or cleavage occurs in relation to the helical pitch of nucleosome-bound DNA (Fan et 

al., 2008; Lo et al., 2010). Further supporting this model is the dinucleotide composition of 

these fragments, which recapitulates key features of earlier studies of MNase-derived, 

nucleosome-associated fragments (e.g. bias against A/T dinucleotides at the dyad) (Gaffney 

et al., 2012) and supports the notion that the NCP is symmetrically positioned with respect 

to the chromatosome (Harshman et al., 2013) (Figure 1C).

A prediction of this model is widespread DNA damage, e.g. single-strand nicks as well as 5’ 

and 3’ overhangs. During conventional library preparation, damaged as well as short dsDNA 

molecules (Mouliere et al., 2014) may be poorly recovered. To address this, we prepared a 

single-stranded cfDNA library from an additional healthy individual (‘IH02’) using a 

protocol adapted from studies of ancient DNA (Figure S1A; Table S2) (Gansauge and 

Meyer, 2013), and sequenced it to 30-fold coverage (779M fragments). The fragment length 

distribution again exhibited a dominant peak at ~167 bp, but was considerably enriched for 

shorter fragments relative to conventional library preparation (Figures 1D, 1E, and S1B–D). 

Although all libraries exhibit ~10.4 bp periodicity, the fragment sizes are offset by 3 bp for 

the two methods, consistent with damaged or non-flush input molecules whose true 

endpoints are more faithfully represented in single-stranded libraries.

A genome-wide map of in vivo nucleosome protection based on deep cfDNA sequencing

We next asked whether the predominant local positions of nucleosomes in tissue(s) 

contributing to cfDNA could be inferred from the distribution of aligned fragment 

endpoints. Specifically, we expect that cfDNA fragment endpoints should cluster adjacent to 

NCP boundaries, while also being depleted on the NCP itself. To quantify this, we 

developed a Windowed Protection Score (WPS), which is the number of DNA fragments 

completely spanning a 120 bp window centered at a given genomic coordinate, minus the 

number of fragments with an endpoint within that same window (Figure 2A). As expected, 

the WPS correlates with the locations of nucleosomes within strongly positioned arrays, as 

mapped by other groups with in vitro methods (Gaffney et al., 2012; Valouev et al., 2012) or 

ancient DNA (Pedersen et al., 2014) (Figure 2B). At other sites, the WPS correlates with 

genomic features such as DHS sites, e.g. consistent with the repositioning of nucleosomes 

flanking a distal regulatory element (Figure 2C).
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We applied a heuristic peak-calling algorithm to the genome-wide WPS of the BH01, IH01 

and IH02 datasets to identify and score 12.6M, 11.9M, and 9.7M local maxima of 

nucleosome protection (Figures 2 and S2A). In each sample, the mode distance between 

adjacent peaks is 185 bp with low variance (Figure 2D), consistent with previous analyses of 

the nucleosome repeat length in mammalian cells (Teif et al., 2012; Valouev et al., 2012). 

The positions of peak calls are concordant between samples (Figures 2E and S2B), e.g. the 

median (absolute) distance from a BH01 peak call to a nearest-neighbor IH01 peak call is 23 

bp overall, but <10 bp for the most highly scored peaks (Figure S2C). Furthermore, the 

density of peak calls is constant across the spectrum of GC content (Figure S2D).

As biases introduced by nuclease specificity or library preparation might artifactually 

contribute to the signal of nucleosome protection, we also simulated fragment endpoints, 

matching for the depth, size distribution and terminal dinucleotide frequencies (Figures 

S1C–D). We then calculated genome-wide WPS and called 10.3M, 10.2M, and 8.0M local 

maxima by the same heuristic, for simulated datasets matched to BH01, IH01 and IH02, 

respecitvely. Peaks from simulated datasets are associated with lower scores than peaks 

from real datasets (Figure S2E) and do not align well with the locations of peaks called from 

real datasets (Figures 2E and S2F).

We next pooled and reanalyzed data from BH01, IH01, and IH02 (‘CH01’; 231-fold 

coverage; 3.8G fragments; Table S1). The resulting map of in vivo nucleosome occupancy 

comprises 12.9M peaks, with higher scores and approaching saturation (Figure S2E). 

Considering all peak-to-peak distances below 500 bp (Figure 2F), the CH01 peaks span 2.53 

gigabases.

Nucleosomes are known to be well-positioned in relation to landmarks of gene regulation, 

e.g. transcriptional start sites (Pedersen et al., 2014) and exon-intron boundaries (Andersson 

et al., 2009; Chodavarapu et al., 2010). We observe such positioning in our data as well, in 

relation to landmarks of transcription, translation and splicing (Figures 3A–D and S3). We 

further examined the median peak-to-peak spacing within 100 kilobase (kb) windows that 

had been assigned to compartment A (enriched for open chromatin) or compartment B 

(enriched for closed chromatin) on the basis of chromatin contact maps in a lymphoblastoid 

cell line (Rao et al., 2014). Nucleosomes in compartment A exhibit tighter spacing than 

nucleosomes in compartment B (median 187 bp (A) vs. 190 bp (B)), with further differences 

between subcompartments (Figure 3E). Along the length of chromosomes, no general 

pattern is seen, except that median nucleosome spacing drops sharply in pericentromeric 

regions, presumably driven by strong positioning across arrays of alpha satellites (Figures 

2B and 3F).

Short cfDNA fragments directly footprint CTCF and other TFs

Previous studies of DNase I cleavage patterns identified two dominant classes of fragments: 

longer fragments associated with cleavage between nucleosomes, and shorter fragments 

associated with cleavage adjacent to transcription factor binding sites (TFBS) (Vierstra et 

al., 2013). To ask whether in vivo-derived cfDNA fragments also result from two classes of 

sensitivity to nuclease cleavage, we partitioned sequence reads (CH01) on the basis of 

inferred fragment length and recalculated the WPS using long fragments (120–180 bp; 120 
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bp window; the same as the WPS described for nucleosome calling) or short fragments (35–

80 bp; 16 bp window) separately (Figures 2B and 2C). To obtain a set of well-defined 

TFBSs enriched for actively bound sites in our data, we intersected clustered FIMO 

predictions (Grant et al., 2011; Maurano et al., 2012) with a unified set of ChIP-seq peaks 

from ENCODE for each TF.

Consistent with observations by others (Fu et al., 2008; Pedersen et al., 2014; Teif et al., 

2012), the long fraction WPS (L-WPS) supports strong organization of nucleosomes near 

CTCF binding sites (Figure 4A). However, we also observe a strong signal in the short 

fraction WPS (S-WPS) coincident with the CTCF site itself (Ong and Corces, 2014) 

(Figures 4A and 4B). We stratified CTCF sites based on our confidence that they are bound 

in vivo. Experimentally well-supported CTCF sites exhibit substantially broader spacing 

between the flanking −1 and + 1 nucleosomes based on the L-WPS, consistent with their 

repositioning upon CTCF binding (~190 bp → ~260 bp; Figures 4C and S4A). 

Experimentally well-supported CTCF sites also exhibit a much stronger S-WPS signal over 

the CTCF binding site itself (Figures 4D and S4B).

We performed similar analyses for additional TFs for which both FIMO predictions and 

ENCODE ChIP-seq data were available (Figure S4C). For many of these, e.g. ETS and 

MAFK (Figures 4E and 4F), we observe a short fraction footprint that is accompanied by 

periodic signal in the L-WPS, consistent with strong positioning of nucleosomes 

surrounding bound TFBS. Overall, these data support the view that short cfDNA fragments, 

which are much better recovered by the single-stranded protocol (Figures 1B and 1D), 

directly footprint the in vivo occupancy of DNA-bound TFs including CTCF and others.

Nucleosome spacing patterns inform cfDNA tissues-of-origin

We next asked whether in vivo nucleosome protection, as measured through cfDNA, could 

be used to infer the cell types contributing to cfDNA in healthy individuals. We examined 

the peak-to-peak spacing of nucleosome calls within DHS sites defined in 116 diverse 

biological samples (Maurano et al., 2012). Similar to bound CTCF sites (Figure 4C), we 

observe substantially broader spacing for nucleosome pairs within a subset of DHS sites, 

plausibly corresponding to sites at which the nucleosomes are repositioned by intervening 

TF binding in the cell type(s) giving rise to cfDNA (~190 bp → ~260 bp; Figure 5A). 

Indeed, the proportion of widened nucleosome spacing (~260 bp) varies considerably 

depending on which cell type’s DHS sites are used. However, all of the cell types for which 

this proportion is highest are lymphoid or myeloid in origin (e.g. CD3_CB-DS17706, etc. in 

Figure 5A), consistent with hematopoietic cell death as the dominant source of cfDNA in 

healthy individuals (Lui et al., 2002).

We next re-examined the signal of nucleosome protection in the vicinity of transcriptional 

start sites (TSS) (Figure 3A). If we stratify based on gene expression in a lymphoid cell line, 

NB-4, we observe strong differences in the patterns of nucleosome protection in relation to 

the TSS, in highly vs. lowly expressed genes (Figure 5B). Furthermore, if we examine the S-

WPS, we observe a clear footprint immediately upstream of the TSS whose intensity also 

strongly correlates with expression (Figure 5C). This plausibly reflects footprinting of the 
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transcription pre-initiation complex, or some component thereof, at transcriptionally active 

genes.

These observations support our thesis that cfDNA fragmentation patterns indeed contain 

signal that might be used to infer the tissue(s) or cell-type(s) giving rise to cfDNA. 

However, a challenge is that relatively few reads in a genome-wide cfDNA library directly 

overlap DHS sites and TSSs.

It was previously observed that nucleosome spacing varies between cell types as a function 

of chromatin state and gene expression (Teif et al., 2012; Valouev et al., 2012). In general, 

open chromatin and transcription are associated with a shorter nucleosome repeat length, 

consistent with our analyses of compartment A vs. B (Figure 3E). In our peak calls, we also 

observe a correlation between nucleosome spacing across gene bodies and their expression 

levels, with tighter spacing associated with higher expression (Figure 5D; ρ = −0.17; n = 

19,677 genes). The correlation is highest for the gene body itself, relative to adjacent regions 

(upstream 10 kb ρ = −0.08; downstream 10 kb ρ = −0.01). If we limit this analysis to gene 

bodies that span at least 60 nucleosome calls, the correlation is much stronger (ρ = −0.50; n 

= 12,344 genes).

An advantage of exploiting signals such as nucleosome spacing across gene bodies or other 

domains is that a much larger proportion of cfDNA fragments will be informative, and 

moreover we might be able to detect mixtures of signals resulting from multiple cell types 

contributing to cfDNA. To test this, we performed fast Fourier transformation (FFT) on the 

L-WPS across the first 10 kb of gene bodies and on a gene-by-gene basis. The intensity of 

the FFT signal is correlated with gene expression at specific frequency ranges, with a 

maximum at 177–180 bp for positive correlation and a minimum at ~199 bp for negative 

correlation (Figure 5E). In performing this analysis against a dataset of 76 expression 

datasets for human cell lines and primary tissues (Uhlén et al., 2015), we observe that the 

strongest correlations are with hematopoietic lineages (Figure 5E). For example, the most 

highly ranked negative correlations with average intensity in the 193–199 bp frequency 

range for each of three healthy samples (BH01, IH01, IH02) are all to lymphoid cell lines, 

myeloid cell lines, or bone marrow tissue (Figure 5F; Table S3). These top correlation ranks 

are robust to downsampling (Figure S5A).

Nucleosome spacing in cancer patients’ cfDNA identifies non-hematopoietic contributions

We next sought to ask whether we could detect signatures of non-hematopoietic cell types 

contributing to circulating cfDNA in non-healthy states. We first screened 44 plasma 

samples from individuals with clinical diagnoses of a variety of Stage IV cancers with light 

sequencing of single-stranded libraries prepared from cfDNA (Table S4; median 2.2-fold 

coverage; of note, with same protocol and many in the same batch as IH02). Because 

matched tumor genotypes were not available, we scored each sample on two metrics of 

aneuploidy to identify a subset likely to contain a high proportion of tumor-derived cfDNA: 

first, the deviation from the expected proportion of reads derived from each chromosome 

(Leary et al., 2012); and second, the per-chromosome allele balance profile for a panel of 

common single nucleotide polymorphisms. Based on these metrics, we sequenced single-

stranded libraries derived from five individuals (with a small cell lung cancer, a squamous 
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cell lung cancer, a colorectal adenocarcinoma, a hepatocellular carcinoma, and a ductal 

carcinoma in situ breast cancer) to a depth similar to that of IH02 (Table S5).

We again performed FFT on the L-WPS across gene bodies and correlated the average 

intensity in the 193–199 bp frequency range against the same 76 expression datasets for 

human cell lines and primary tissues (Uhlén et al., 2015). In contrast with the three samples 

from healthy individuals (where all of the top 10, and nearly all of the top 20, correlations 

were to lymphoid or myeloid lineages), we observe that many of the most highly ranked cell 

lines or tissues represent non-hematopoietic lineages, in some cases aligning with the cancer 

type (Figure 5F). For example, for IC17, where the patient had a hepatocellular carcinoma, 

the top-ranked correlation is with HepG2, a hepatocellular carcinoma cell line. For IC35, 

where the patient had a ductal carcinoma in situ breast cancer, the top-ranked correlation is 

with MCF7, a metastatic breast adenocarcinoma cell line. In other cases, the cell lines or 

primary tissues that exhibit the greatest change in correlation rank align with the cancer 

type. For example, for IC15, where the patient had small-cell lung cancer, the largest change 

in correlation rank (−31) is for a small-cell lung cancer cell line (SCLC-21H), and the 

second largest change (−25) is for a neuroblastoma cancer cell line (SH.SY5Y). For IC20 (a 

lung squamous cell carcinoma) and IC35 (a colorectal adenocarcinoma), there are many 

non-hematopoietic cancer cell lines displacing the lymphoid/myeloid cell lines in terms of 

correlation rank, but the alignment of these to the specific cancer type is less clear. It is 

possible that the molecular profile of these patients’ cancers is not well-represented amongst 

our 76 expression datasets (none are lung squamous cell carcinomas; CACO-2 is a cell line 

derived from a colorectal adenocarcinoma, but is highly heterogeneous (Sambuy et al., 

2005)). As with samples from healthy individuals, the top correlation ranks associated with 

the samples from cancer patients are robust to downsampling (Figure S5A). However, in 

silico “dilution” of samples from cancer patients with samples from healthy patients results 

in proportionally lower ranks for non-hematopoietic cell lines, consistent with expectation 

(Figure S5B).

Discussion

We present a dense, genome-wide map of in vivo nucleosome protection inferred from 

plasma-borne cfDNA fragments. Although the number of peaks is essentially saturated in 

CH01, other metrics of quality continued to be a function of sequencing depth (Figure S2C). 

We therefore constructed an additional genome-wide nucleosome map based on all of the 

cfDNA sequencing that we have performed to date (‘CA01’, 14.5G fragments; 700-fold 

coverage; 13.0M peaks). Although this map exhibits even more uniform spacing (Figure 

6A) and more highly supported peak calls (not shown), we caution that it is based on cfDNA 

from both healthy and non-healthy individuals (Tables S1 and S5).

Our work builds directly on previous efforts to map nucleosome occupancy in human cells 

genome-wide (Gaffney et al., 2012; Pedersen et al., 2014; Schones et al., 2008; Teif et al., 

2012; Valouev et al., 2012), but our callset is substantially more complete and uniform 

(Figure 6). The fragments that we observe are generated by endogenous physiological 

processes, avoiding the technical variation associated with in vitro MNase digestion. A 

limitation of our map is that the cell types that give rise to cfDNA are inevitably 
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heterogeneous (e.g. a mixture of lymphoid and myeloid cell types in healthy individuals). 

Nonetheless, the map’s relative completeness may facilitate a deeper understanding of the 

interplay of nucleosome positioning and spacing with primary sequence, epigenetic 

regulation, transcriptional output, and nuclear architecture.

A second goal of this study was to explore whether the nucleosome footprints contained in 

cfDNA fragments can be used to infer contributing cell types. Through comparisons with 

gene expression and regulatory site profiles, we identify the epigenetic signature of 

hematopoietic lineages contributing to cfDNA in healthy individuals, with plausible 

additional contributions from one or more non-hematopoietic tissues in a small panel of 

individuals with advanced cancers. For this proof-of-concept, we stacked the odds in our 

favor by focusing individuals that appeared to have large burdens of tumor-derived DNA. 

However, it should be emphasized that in the context of cancer, our goal is not necessarily to 

outperform the sensitivity of mutation-based monitoring of circulating tumor DNA. Rather, 

we envision that a unique application of this approach may be to non-invasively classify 

cancers at time-of-diagnosis by matching the epigenetic signature of cfDNA fragmentation 

patterns against reference datasets corresponding to diverse cancer types. For example, this 

may have value for non-invasively and molecularly classifying “cancers of unknown 

primary”, which comprise 4–5% of all invasive cancers (Greco and Hainsworth, 2009), as 

well as cancers where invasive biopsies are currently required for definitive diagnosis and/or 

for subtyping (e.g. lung cancer).

In addition, there are a range of non-malignant conditions for which it may be valuable to 

explore the nucleosome and TF footprints contained in cfDNA as markers for acute or 

chronic tissue damage, e.g. myocardial infarction (Chang et al., 2003), stroke (Rainer et al., 

2003) and autoimmune disorders (Galeazzi et al., 2003). Contributions from these tissues to 

cfDNA cannot be readily detected under the current paradigm of analyzing genotypic 

differences, which are effectively non-existent in these conditions. By contrast, the approach 

presented here should generalize to detecting contributions to cfDNA from any non-

hematopoietic cell lineage (and, possibly, grossly aberrant contributions from hematopoietic 

cell lineages).

Alternative “genotype-independent” approaches for using circulating nucleic acids as 

markers for disease include cell-free RNA (Koh et al., 2014) and DNA methylation. 

Although these merit exploration, tumor-derived cell-free RNA appears to be much less 

stable than nucleosome-bound cfDNA (García-Olmo et al., 2013), while bisulfite 

sequencing libraries are challenging to robustly construct from small amounts of starting 

material.

A limitation of this study is the small number of samples studied (n = 8) and the relatively 

small size of the reference dataset of cell lines and tissues against which these samples were 

compared (n = 76). We anticipate that increasing the number of samples studied, as well as 

the range of physiological states and diseases with which these samples are associated, is 

necessary to fully evaluate the potential and limitations of this approach. Furthermore, 

expanding the breadth and quality of the reference datasets against which these samples are 

compared (e.g., directly comparing to cell-type-specific nucleosome maps, rather than to 
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expression profiles), is likely to improve the ability to robustly assign and quantify 

contributing cell types.

Cell-free DNA has tremendous potential as a “liquid biopsy”, and indeed its use in non-

invasive prenatal screening for fetal trisomies has vastly outpaced all other applications of 

DNA sequencing in terms of clinical uptake. In contrast with current paradigms for 

analyzing cfDNA, we show how the information contained in cfDNA fragmentation 

patterns, effectively the footprints of protein-DNA interactions, can be used to infer 

contributing cell types without relying on genotypic differences. To the extent that cfDNA 

composition is impacted by cell death consequent to malignancy, acute or chronic tissue 

damage, or other conditions, this method may substantially expand the range of clinical 

scenarios in which cfDNA sequences comprise a clinically useful biomarker.

Experimental Procedures

Plasma Samples

Bulk human peripheral blood plasma, containing contributions from an unknown number of 

healthy individuals, was obtained from STEMCELL Technologies (Vancouver, British 

Columbia, Canada). Anonymous, individual human peripheral blood plasma from healthy 

donors, donors with clinical diagnosis of Stage IV cancer, and donors with clinical diagnosis 

with autoimmune disease (Tables S1, S4 and S5) was obtained from Conversant Bio 

(Huntsville, Alabama, USA) or PlasmaLab International (Everett, Washington, USA). 

Plasma was stored at −80°C and thawed on the bench-top immediately before use. Cell-free 

DNA was purified from each sample with the QiaAMP Circulating Nucleic Acids kit 

(Qiagen) as per the manufacturer’s protocol. DNA was quantified with a Qubit fluorometer 

(Invitrogen).

Preparation of sequencing libraries

Conventional, double-stranded sequencing libraries were prepared with the ThruPLEX-FD 

or ThruPLEX DNA-seq kits (Rubicon Genomics), comprising a proprietary series of end-

repair, ligation, and amplification reactions. Libraries were prepared with 0.5–30.0 ng of 

cfDNA input and individually barcoded. Library amplification was monitored by real-time 

PCR and was typically terminated after 4–6 cycles. Single-stranded sequencing libraries 

were prepared with a protocol adapted from Gansauge and Meyer (2013). A detailed 

description can be found in Supplemental Experimental Procedures.

Sequencing and primary data processing

All libraries were sequenced on HiSeq 2000 or NextSeq 500 instruments (Illumina). Details 

of sequencing are provided in Tables S1 and S5. Barcoded paired-end (PE) sequencing data 

was split allowing up to one substitution in the barcode sequence. Fragments shorter than or 

equal to the read length were consensus-called and adapter-trimmed. Remaining consensus 

single-end reads (SR) and the individual PE reads were aligned to the human reference 

genome (GRCh37, 1000 Genomes phase 2 technical reference, ftp://ftp.

1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/phase2_reference_assembly_sequence/) 

using the ALN algorithm in BWA v0.7.10 (Li and Durbin, 2010). PE reads were further 
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processed with BWA SAMPE to resolve ambiguous placement of read pairs or to rescue 

missing alignments by a more sensitive alignment step around the location of one placed 

read end. Aligned SR and PE data were stored in BAM format using the samtools API (Li et 

al., 2009). BAM files for each sample were merged across lanes and sequencing runs.

Simulations

Sequencing data was simulated procedurally to mimic observed cleavage and ligation biases 

and length distributions. See Supplemental Experimental Procedures for details.

Coverage, fragment endpoints, and windowed protection scores

Fragment endpoint coordinates were extracted from BAM files with the SAMtools API. 

Both outer alignment coordinates of PE data were extracted for properly paired reads. Both 

end coordinates of SR alignments were extracted when PE data was collapsed to SR data by 

adapter trimming. A fragment’s coverage is defined as all positions between the two 

(inferred) fragment ends, inclusive of endpoints. We define the Windowed Protection Score 

(WPS) of a window of size k as the number of molecules spanning the window minus those 

with an endpoint within the window. We assign the determined WPS to the center of the 

window. For 35–80 bp fragments (short fraction, S-WPS), k=16; for 120–180 bp fragments 

(long fraction, L-WPS), k=120.

Nucleosome peak calling

L-WPS is locally adjusted to a running median of zero in 1 kb windows and smoothed using 

a Savitzky-Golay filter (Savitzky and Golay, 1964) (window size 21, 2nd order polynomial). 

The L-WPS track is then segmented into above-zero regions (allowing up to 5 consecutive 

positions below zero). If the resulting region is 50–150 bp, we identify the median L-WPS 

value of that region and search for the maximum-sum contiguous window above the median. 

We report the start, end and center coordinates of this window as the “peak,” or local 

maximum of nucleosome protection. All calculations involving distances between peaks are 

based on these center coordinates. A score for each peak is determined as the distance 

between maximum value in the window and the average of the two adjacent L-WPS minima 

neighboring the region. If the identified region is 150–450 bp, we apply the same above 

median contiguous window approach, but only report those windows that are 50–150 bp. 

For score calculation of multiple windows derived from 150–450 bp regions, we set the 

neighboring minima to zero. We discard regions <50 bp or >450 bp.

Analysis of TFBS, DHS sites, and genic features

Features were aggregated and aligned at starting coordinates while adjusting for strand and 

direction of transcription. TFBS sets were obtained by filtering motif predictions with ChIP-

seq peaks. For most features, L-WPS values were adjusted to account for signal observed in 

matched simulations. See Supplemental Experimental Procedures for details.

Gene expression analysis

FPKM gene expression (GE) values measured for 20,344 Ensembl gene identifiers in 44 

human cell lines and 32 primary tissues by the Human Protein Atlas (Uhlén et al., 2015) was 
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downloaded from http://www.proteinatlas.org/download/rna.csv.zip. Genes with 3 or more 

non-zero expression values were retained (n=19,378 genes). The GE data set is provided 

with one decimal precision for the FPKM values. Thus, a zero GE value (0.0) indicates 

expression in the interval [0, 0.05) Unless otherwise noted, we set the minimum GE value to 

0.04 FPKM before log2-transformation.

Fourier transformation and correlation with expression

L-WPS was used to calculate periodograms of genomic regions using Fast Fourier 

Transform (FFT, spec.pgram in R) with frequencies between 1/500 and 1/100 bases. See 

Supplemental Experimental Procedures for details. Intensity values for the 120–280 bp 

frequency range were determined from smooth FFT periodograms. S-shaped Pearson 

correlation between GE values and FFT intensities was observed around the major inter-

nucleosome distance peak, along with a pronounced negative correlation in the 193–199 bp 

frequency range. The mean intensity in this frequency range was correlated with the average 

intensity with log2-transformed GE values for downstream analysis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Origins and characteristics of cfDNA fragments in human plasma
(A) Schematic overview of cfDNA fragmentation. Apoptotic or necrotic cell death results in 

near-complete digestion of native chromatin. Protein-bound DNA fragments, typically 

associated with histones or TFs, preferentially survive digestion and are released into the 

circulation, while naked DNA is lost. Fragments can be recovered from peripheral blood 

plasma following proteinase treatment. In healthy individuals, cfDNA is primarily derived 

from myeloid and lymphoid cell lineages, but contributions from one or more additional 

tissues may be present in certain medical conditions. (B) Fragment length of cfDNA 

observed with conventional sequencing library preparation, inferred from alignment of 

paired-end reads. A reproducible peak in fragment length at 167 bp (green dashed line) is 

consistent with association with chromatosomes. Additional peaks evidence ~10.4 bp 

periodicity, corresponding to the helical pitch of DNA on the nucleosome core. Enzymatic 

end-repair during library preparation removes 5’ and 3’ overhangs and may obscure true 
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cleavage sites. (C) Dinucleotide composition of 167 bp fragments and flanking genomic 

sequence in conventional libraries. Observed dinucleotide frequencies in the BH01 library 

were compared to expected frequencies from simulated fragments. (D) Fragment length of 

cfDNA in single-stranded sequencing library preparation. No enzymatic end-repair is 

performed to template molecules during library preparation. Short fragments of 50–120 bp 

are highly enriched compared to conventional libraries. While ~10.4 bp periodicity remains, 

its phase is shifted by ~3 bp. (E) Dinucleotide composition of 167 bp fragments and 

flanking genomic sequence in single-stranded library IH02, calculated as in (C). The 

apparent difference in the background level of bias between BH01 and IH02 relate to 

differences between the simulations, rather than the real libraries (data not shown). See also 

Figure S1 and Table S1.
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Figure 2. Genome-wide determination of nucleosome positions from cfDNA fragmentation 
patterns
(A) Schematic of inference of nucleosome positioning. A per-base windowed protection 

score (WPS) is calculated by subtracting the number of fragment endpoints within a 120 bp 

window from the number of fragments completely spanning the window. High WPS values 

indicate increased protection of DNA from digestion; low values indicate that DNA is 

unprotected. Peak calls identify contiguous regions of elevated WPS. (B) Strongly 

positioned nucleosomes at a well-studied alpha-satellite array. Coverage, fragment 

endpoints, and WPS values from sample CH01 are shown for long fragment (120 bp 

window; 120–180 bp fragments) or short fragment (16 bp window; 35–80 bp fragments) 

bins at a pericentromeric locus on chromosome 12. Nucleosome calls from CH01 (middle, 

blue boxes) are regularly spaced across the locus. Nucleosome calls from two published 

callsets (Gaffney et al., 2012; Pedersen et al., 2014) (middle, purple and black boxes) are 

also displayed. (C) Inferred nucleosome positioning around a DHS site. Coverage, fragment 

endpoints, WPS values, and nucleosome calls are shown as in (B). The hypersensitive 

region (gray shading), is marked by reduced coverage in the long fragment bin. Nucleosome 

calls adjacent to the DHS site are spaced more widely than typical adjacent pairs, consistent 

with accessibility of the intervening sequence to regulatory proteins including TFs. 

Coverage of short fragments, which may be associated with such proteins, is increased at the 

DHS site, which overlaps with several annotated TFBSs (not shown). (D) Distances between 
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adjacent peaks by sample. Distances are measured between adjacent peak centers. (E) 
Comparison of peak calls between samples. For each pair of samples, the distances between 

each peak call in the sample with fewer peaks and the nearest peak call in the other sample 

are shown. Negative and positive numbers indicate the nearest peak is upstream or 

downstream, respectively. (F) Distances between adjacent peaks, sample CH01. The dotted 

black line indicates the mode of the distribution (185 bp). See also Figure S2.
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Figure 3. Nucleosome positioning and spacing correlates with genomic features
(A) Aggregate, adjusted windowed protection scores (WPS; 120 bp window) around 22,626 

transcription start sites (TSS). TSS are aligned at the 0 position after adjusting for strand and 

direction of transcription. Aggregate WPS is tabulated for both real data and simulated data 

by summing per-TSS WPS at each position relative to the centered TSS. The values plotted 

represent the difference between the real and simulated aggregate WPS (see Experimental 
Procedures for details). (B) Aggregate, adjusted WPS around 22,626 start codons. (C and 
D) Aggregate, adjusted WPS around 224,910 splice donor (C) and 224,910 splice acceptor 

(D) sites. (E) Nucleosome spacing in A/B compartments. Median nucleosome spacing in 

non-overlapping 100 kb bins, each containing ~500 nucleosome calls, is calculated genome-

wide. A/B compartment predictions, also with 100 kb resolution, are shown for GM12878. 

Compartments A and B are associated with open and closed chromatin, respectively. (F) 
Nucleosome spacing and A/B compartments on chromosomes 7 and 11. A/B segmentation 

(red and blue bars) largely recapitulates chromosomal G-banding (ideograms, gray bars). 

Median nucleosome spacing (black dots) is calculated in 100 kb bins. See also Figure S3.
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Figure 4. Short cfDNA fragments footprint CTCF and other TF binding sites
Clustered FIMO predictions were intersected with ChIP-seq data to obtain confident sets of 

binding site predictions for various TFs. Aggregate, adjusted WPS were calculated for both 

the long (120–180 bp) and short (35–80 bp) fractions of cfDNA fragments. Higher WPS 

values indicate greater nucleosome or TF protection, respectively. (A) Aggregate, adjusted 

WPS for 93,530 predicted CTCF binding sites for the long (top) and short (bottom) cfDNA 

fractions. Binding of CTCF results in strong positioning of neighboring nucleosomes. (B) 
Aggregate, adjusted WPS, calculated for 93,530 predicted CTCF sites as in (A) and 

magnified for detail, for 35–80 bp cfDNA fragments. The pink shading indicates the larger 

52 bp CTCF binding motif, and the black box shows the location of the 17 bp motif used for 

FIMO predictions. (C) Density of −1 to +1 nucleosome spacing around CTCF sites derived 

from clustered FIMO predictions (purely motif-based: 518,632 sites), a subset of these 

predictions overlapping with ENCODE ChIP-seq peaks (93,530 sites), and a further subset 

active across 19 cell lines (23,723 sites). Flanking nucleosome spacing at the least stringent 

set of sites (motif-based) mirrors the genome-wide average (~185 bp), while spacing at the 

most stringent set of sites is highly enriched for greater distances (~260 bp), consistent with 

active CTCF binding and repositioning of adjacent nucleosomes. (D) Mean WPS calculated 

for the long (top) and short (bottom) cfDNA fractions at the sets of CTCF sites in (C). (E 
and F) Aggregate, adjusted WPS calculated for both long (top) and short (bottom) cfDNA 

fractions at predicted binding sites for ETS (210,798 sites) (E) and MAFK (32,159 sites) 

(F). For both factors, short fraction WPS is consistent with TF-conferred protection of the 
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binding site, whereas long fraction WPS evidences regular, local positioning of surrounding 

nucleosomes. See also Figure S4.
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Figure 5. Inference of mixtures of cell types contributing to cell-free DNA in healthy states and 
cancer
(A) The distribution of nucleosome spacing for peaks flanking DHS sites in 116 callsets is 

bimodal, plausibly corresponding to widened nucleosome spacing at active DHS sites due to 

intervening TF binding (~190 bp → 260 bp). Lymphoid or myeloid callsets have the largest 

proportions of DHS sites with widened nucleosome spacing, consistent with hematopoietic 

cell death as the dominant source of cfDNA in healthy individuals. (B and C) Partitioning 

adjusted WPS scores around TSS into five gene expression bins (quintiles) defined for NB-4 
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(an acute promyelocytic leukemia cell line) reveals differential nucleosome spacing and 

positioning. (B) Highly expressed genes show strong nucleosome phasing within the 

transcript body. Upstream of the TSS, −1 nucleosomes are well-positioned across expression 

bins, but −2 and −3 nucleosomes are well-positioned only for medium to highly expressed 

genes. (C) For medium to highly expressed genes, a short fragment WPS peak is observed 

between the TSS and the −1 nucleosome, plausibly footprinting some or all of the 

transcription preinitiation complex at transcriptionally active genes. (D) Median nucleosome 

spacing in the transcript body is negatively correlated with gene expression in NB-4 (ρ = 

−0.17, n = 19,677 genes). Spacing in genes with low or no expression is 193 bp, while 

spacing in expressed genes ranges from 186 to 193 bp. (E) To deconvolve multiple 

contributions, intensities from fast Fourier transformation (FFT) quantified the specific 

frequency contributions in the long fragment WPS for 10 kb windows downstream of each 

TSS. Shown are correlation trajectories for RNA expression in 76 cell lines and primary 

tissues at different frequencies. Correlations are strongest for intensities in the 193–199 bp 

frequency range. (F) The ranks of correlation for 76 RNA expression datasets with average 

intensity in the 193–199 bp frequency range for various cfDNA libraries are shown, 

categorized by type and listed from highest (top row) to lowest rank (bottom row). 

Correlation values and full cell line or tissue names are provided in Table S3. All of the 

strongest correlations for all three healthy samples (BH01, IH01 and IH02; first three 

columns) are with lymphoid and myeloid cell lines or with bone marrow. In contrast, 

cfDNA samples obtained from stage IV cancer patients (IC15, IC17, IC20, IC35, IC37; last 

five columns) show top correlations with various cancer cell lines, e.g. IC17 (hepatocellular 

carcinoma, HCC) showing highest correlations with HepG2 (HCC cell line), and IC35 

(breast ductal carcinoma, DC) with MCF7 (metastatic breast adenocarcinoma cell line). 

When comparing cell line/tissue ranks observed for the cancer samples to each of the three 

healthy samples and averaging the rank changes, maximum rank changes are over two-fold 

higher than those observed from comparing the three healthy samples with each other and 

averaging rank changes (‘Control’). For example, for IC15 (small cell lung carcinoma, 

SCLC) the rank of SCLC-21H (SCLC cell line) increased by an average of 31 positions, for 

IC20 (squamous cell lung carcinoma, SCC) SK-BR-3 (metastatic breast adenocarcinoma 

cell line) increased by an average rank of 21, and for IC37 (colorectal adenocarcinoma, AC) 

HepG2 increased by 24 ranks. See also Figure S5 and Table S4.
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Figure 6. Comparison of nucleosome callsets
(A) Distance between nucleosome peak calls across three published data sets (Gaffney et al. 

2012, Pedersen et al. 2014, Schep et al. 2015) and calls produced in this study. Previously 

published callsets lack one defined mode at the canonical ~185 bp nucleosome spacing, 

possibly due to sparse sampling or wide call ranges. In contrast, all the nucleosome calls 

from cfDNA show one well-defined mode, the magnitude of which increases with the 

number of fragments examined. The callset produced from simulation has a lower mode 

(166 bp) and a wider distribution. (B) Number of calls in each set. The densest cfDNA-

derived callset contains nearly 13M nucleosome calls. (C–G) Comparison of peak locations 

between samples. For each pair of samples, the distribution of distances between each peak 

call in the sample with fewer peaks and the nearest peak call in the other sample is shown. 
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Negative numbers indicate the nearest peak is upstream; positive numbers indicate the 

nearest peak is downstream. Concordance between callsets increases with the number of 

cfNDA fragments examined. (H), As in (G), comparing other callsets to the matched 

simulation of CA01. See also Table S5.
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