BST281
Lab Session 7

Announcement;:

* Homework 2 grades will be posted by this Sunday, 3/26.

* File grading: we changed our grading methods now to
doctest. So (1) please keep everythingin your problemset (no
need to remove the comment part as we requested before);
(2) still remember to change the problemset name before you
submit to canvas (e.g. problems03.py)

Thank you for your patience!

* List comprehension

* More python exercises

TA: Xue Zou Email: xuz943 @ mail.harvard.edu



D O CteSt https://docs.python.org/2/library/doctest.html

Say, your py file named: problems02.py

A way to check your answer in terminal:

* python -m doctest problems02.py Example online:
If you run example.py directly from the command line, doctest works its magic:

$ python example.py
$

There’s no output! That’s normal, and it means all the examples worked. Pass -v to the script,
and doctest prints a detailed log of what it’s trying, and prints a summary at the end:

$ python example.py -v
Trying:
factorial(5)
Expecting:
120
ok
Trying:
[factorial(n) for n in range(6)]
Expecting:
(1, 1, 2, 6, 24, 120]
ok
Trying:
[factorial(long(n)) for n in range(6)]
Expecting:
(1, 1, 2, 6, 24, 120]
ok

TA: Xue Zou xuz943@mail.harvard.edu



Example in HW?2

16 (6). Replace the following line with a short function that makes
fastq_quals_decode work as intended. You should call fastq_qual_decode on
each individual quality score character, accumulate the results in a new

list, and return it.

mnmnn

return []

Most students do the following for loop:

quals=[]
for str in strQuals:

quals.append(fastq_qual_decode(str))
return quals

TA: Xue Zou xuz943@mail.harvard.edu



Shortening an i1f/for loop

Simplify your Python loops

If you're like most programmers, you know that, eventually, once you have an
array, you're gonna have to write a loop. Most of the time, this is fine and

dandy, but sometimes you just don’t want to take up the multiple lines required to
write out the full for loop for some simple thing. Thankfully, Python realizes this
and gives us an awesome tool to use in these situations. That tool is known as a list

comprehension.

http://blog.teamtreehouse.com/python-single-line-loops

TA: Xue Zou xuz943@mail.harvard.edu



What the heck 1s that?

List comprehensions are lists that generate themselves with an internal for loop.
They're a very common feature in Python and they look something like:

[thing for thing in list of things]

Now that I've confused you even more, let’s step back. A list has multiple things in
it, but it’s defined by being between square brackets. Let’s say | want to have a
function that doubles the values all of the items in a list of numbers. First, let me
set up a list of numbers.

my list = [21, 2, 93]

Now let’s make the function. We'll call it 1ist doubler since that’s what it does
and it will take an argument that’ll be the list we’re going to double.

def list doubler(lst):
doubled = []
for num in lst:
doubled. append(num*2)
return doubled

TA: Xue Zou xuz943@mail.harvard.edu



Calling this function would get us a new list with doubled items.

my _doubled list = list_doubler(lst)

my doubled list would now have the values 42, 4, and 186. This function is simple
and achieves what we want pretty simply, but it’s also five lines, counting the
definition line, has a variable that we do nothing but append to and finally return.
The only real working part of the function is the for loop. The for loop isn’t doing
much, either, just multiplying a number by 2. This is an excellent candidate for
making into a list comp.

TA: Xue Zou xuz943@mail.harvard.edu



Building the list comprehension

Let’s keep it as a function we’'ll call. We just want to simplify the inside. First, since
list comprehensions create lists, and lists can be assigned to variables, let's keep
doubled but put the list comprehension on the righthand side of it.

doubled = [thing for thing in list of things]

OK, so we need to fill out the right hand side. Just like normal for loops, which the
righthand side of the comprehension looks exactly like, we have to name the
things in our loop. First, let’s name each thing and we’ll also use the list variable
that’s getting passed in.

doubled = [thing for num in lst]

This won't actually work yet since thing isn’t a..thing. In our original function, we
did num * 2, so let’s do that again where we have thing right now.

doubled = [num * 2 for num in lst]

TA: Xue Zou xuz943@mail.harvard.edu



Whatever is before the for is what actually gets added to the list. Finally, we
should return our new list.

def list doubler(lst):
doubled = [num * 2 for num in lst]
return doubled

Let’s test it out.

my doubled list = list doubler([12, 4, 202])

And, yep, my doubled list has the expected values of 24, 8, and 404. Great, looks
like it worked! But, since we're creating and immediately returning a variable, let’s
just return the list comprehension directly.

def list doubler(lst):
return [num * 2 for num in lst]

TA: Xue Zou xuz943@mail.harvard.edu



Ok, great, but why would I want to
use this?

List comprehensions are great to use when you want to save some space. They're
also handy when you just need to process a list quickly to do some

repetitive work on that list. They're also really useful if you learn about functional
programming, but that’s a topic for a later course (hint hint).

But if all you could do is work straight through a list, list comprehensions wouldn’t
be all that useful. Thankfully, they can be used with conditions.

TA: Xue Zou xuz943@mail.harvard.edu



Example in HW?2

16 (6). Replace the following line with a short function that makes
fastq_quals_decode work as intended. You should call fastq_qual_decode on
each individual quality score character, accumulate the results in a new

list, and return it.

mnmnn

return []

Most students do the following for loop:

quals=[]
for str in strQuals:

quals.append(fastq_qual_decode(str))
return quals

How should we modify this ( based on what we just learned)?

TA: Xue Zou xuz943@mail.harvard.edu



Everything's conditional

Let’s make a new function that only gives us the long words in a list. We'll say that
any word over 5 letters long is a long word. Let’s write it out longhand first.

def long words(lst):
words = []
for word in lst:
if len(word) > 5:
words .append(word)
return words

We make a variable to hold our words, loop through all of the words in our list, and
then check the length of each word. If it’s bigger than 5, we add the word to the
list and then, finally, we send the list back out. Let’s give it a try.

long words(['blog', 'Treehouse', 'Python’', 'hi']) gives back
[ 'Treehouse’', 'Python']. That's exactly what we'd expect.

Alright, let’s rewrite it to a list comprehension. First, let’s build what we already
know.

TA: Xue Zou xuz943@mail.harvard.edu



def long words(lst):
return [word for word in lst]

That gives us back all of our words, though, not just the ones that are more than 5
letters long. We add the conditional statement to the end of the for loop.

def long words(lst):
return [word for word in 1lst if len(word) > 5]

So we used the same exact if condition but we tucked it into the end of the list
comprehension. It uses the same variable name that we use for the things in the
list, too.

OK, let’s try out this version.
long words(['list', 'comprehension', 'Treehouse', 'Ken']) gives back

[ 'comprehension', 'Treehouse'].

TA: Xue Zou xuz943@mail.harvard.edu



Practices time

* Let's start with an example, say we have 10
numbers, and we want a subset of those that are
oreater than, say, D.

>>> numbers = [12, 34, 1, 4, 4, 67, 37, 9, 0, 81]

Hint:You cab start with your old way first, and then change it to the new way
we just learned!

TA: Xue Zou xuz943@mail.harvard.edu



Answer to the practices

Approach 1

result = []
for index in range(len(numbers)):
if numbers([index] > 5:
result.append(numbers [index])
print result #Prints [12, 34, 67, 37, 9, 81]

Approach 2 (Slightly cleaner, for-in loops)

result = []
for number in numbers:
if number > 5:
result.append(number)
print result #Prints [12, 34, 67, 37, 9, 81]

Approach 3 (Enter List Comprehension)

result = [number for number in numbers if number > 5]

TA: Xue Zou xuz943@mail.harvard.edu



Where to from there?

Explore:
* Dictionary comprehensions

http:/ /legacy.python.org/dev/peps/pep-0274/

* Set comprehensions

http:/ /legacy.python.org/dev/peps/pep-02138/

TA: Xue Zou xuz943@mail.harvard.edu



More python exercise

* Please download and look at the
python_problemset.pdf



