BST281: Genomic Data Manipulation, Spring 2017
Wednesday 09: Regular Expressions

Regular expressions (also REs or regexes or regexps) are a special language describing search patterns within text
	REs search - does a pattern occur in a text?
	REs replace - take out whatever's in a pattern and replace it with something else
	REs capture groups - tell me exactly what string contents matched some wildcard(s) or pattern
Default character classes
	The wildcard . matches any single character
	\d matches a digit (\D a non-digit), \w matches a “word” character (A-Z, a-z, 0-9, _; \W a non-word character)
	\s matches a whitespace character; \t and \n match “tab” and “newline” specifically (as in Python)
Custom character classes
	[ABC] matches A or B or C
	[a-d] matches a or b or c or d; [0-3] matches 0 or 1 or 2 or 3
	[^ABC] matches any character except A, B, C
Boundaries
	^ and $ match the beginning and end of a string, respectively
	\b matches a “word boundary” (non-word character OR start/end of string)
Repetition
	A? matches an optional A
A+ matches 1 or more As while A* matches 0 or more As
	A{n} matches exactly n As
A{n,m} matches between n and m As (inclusive)
A{n,} matches at least n As while A{,m} matches at most m As
Sub-patterns and capture groups
	Use ()s to define a (possibly repeating) sub-pattern
	Such sub-patterns are “captured” for use later; use (?:sub-pattern) to avoid capturing
(AA|BB)+ matches one or more instances of sub-pattern AA or BB (logical OR)
Regular expressions in Python
the re module provides access to Python’s regular expression engine (import re to use)
	re.search(pattern, text)
		Returns the first match of pattern in text if one is found, otherwise returns None
re.finditer(pattern, text)
		Used in a for loop to find multiple matches
	Matches are returned as special Match objects (data + associated functions)
Match.start() and Match.end() return Python-style start/end coordinates of the match in the text
		Match.group(n) returns the nth captured group; Match.groups() returns all captured groups
	re.sub(find, replace, text)
Replaces all instances of string find with string replace in string text; returns a modified string
		Use \\1, \\2, etc. to refer to groups captured in find within replace
Miscellany
	REs are “greedy”
Reading left-to-right, find longest match; proceed to next-longest, non-overlapping match; and so forth
Change this behavior with ?: re.search(r“A.*?B”, “ACBCB”) matches ACB and not ACBCB
REs expand the capabilities of command-line tools such as grep and sed
REs are prone to false positives and false negatives (review patterns and matches carefully!)
Reading
[bookmark: _GoBack]REs in Python:	Haddock and Dunn, Chapter 2 p17-29, Chapter 3 p31-43
				https://docs.python.org/3/howto/regex.html & https://docs.python.org/3/library/re.html

