BST281
Lab Session 9

Announcement:
* Problems3 was posted. Deadline is April 7t
('This Friday)
* Today’s lab focus on
1. Regular expression

Regular Expression

* 'T'his section will include some guided exercises for
learning about working with the re module in
Python. We will begin with Python exercises in the
Interpreter.

Exercise: re.search

* 'Iype the following into the command line

re
re.search(r'xy')

print (re.search(r'xy','xyz'))
print (re.search(r'a', 'xyz'))

* You should see the following output:

== lmport re
re.search(r 'xy ')
Traceback (most recent call last):
File "==tdin=", line 1, in =module=

TypeError: search() missing 1 required positional argument: 'string'
=== print (re.search{r 'xy', 'xyz'))

<_sre.SRE_Match object; span={8, 2), match="xy'=

=»> print (re.search{r'a’, 'xyz'))

None

re.search

1. How many and what kind of arguments does re.search take?

2. What does re.search return?

re.search

1. How many and what kind of arguments does re.search take?
It takes two arguments: the first is a pattern to find, and the second is a string in which
to search for the pattern.

2. What does re.search return?
It returns a Match-Object if the pattern is found in the string, and None if it is not.

Practicing regular expression

We will write a simple function to tell us whether a pattern matches all, some or none of the ellements of
a list. It is easiest to do this in a Python script and then import it into the interpreter. In a script named
lab04_re.py, enter the following:

lab9.py

r

#!/usr/bin/env python
import re

def matchList(pattern_str,list_astr):
inList_ab = [bool(re.search(pattern_str, elt_str))
for elt_str in list_astr]

if numTrue_i == len(list_astr): return("all")
elif numTrue_i == 0: return("none")

|
|
|
}
numTrue_i = sum([int(elt_b) for elt_b in inList_ab])
|
|
|
|

return("some")

Save the file, then using the command line navigate to the same folder where the scriptis. Now open the
interpreter from that folder and type the following:

1ab%
lab9.matchList(r’ab’, ["abc","ba","12"])

lab9.matchList(r"~..s", ["ab","12","20"])

Questions:

* You should see the following output:

import lab9%
lab9.matchList(r 'ab’', ["abc","ba","12"])
some '

=>> lab9.matchList{r"+..$",["ab","12","28"])
‘all’

e
-
i
-

-
-~
o
-

1

1. In English, what is the function matchList doing?

2. Why don’t we need to use import re in the interpreter?

Answer:

1. In English, what is the function matchList doing?
It first creates a list of boolean values which indicate whether the pattern was found in
that element of the 1ist_astr. Then it calculates the sum of the boolean values for the list
(since True evaluates to 1 and False evaluates to 0). If the sum is the length of 1list_astr,
then all the elements had the pattern; if the sum is zero, then none of the elements had
the pattern; otherwise, some combination of elements had the pattern.

2. Why don’t we need to use import re in the interpreter?
Because our module 1ab9 has the line import re, so we import the re module auto-
matically when we import lat9 e

More practices

* Using the lab9.matchList function, find regular expressions that

distinguish between the following pairs of lists (note that these are rather
contrived to force you to use the tools we talked about 1n class).

Match... But not... Answer
["foo","snafoo"] ["friction","cocoon"] r"foo"
["foil","fight"] ["nighttime","coiling"] r" " f"
["clever", "pauper"] ["rich","leverage"] r'"r$"
["allosteric interaction","great acumen"] | ["Arctic fox", "magic potion"] | r"\ba"
["art","ant","apt"] ["aunt","imp","canted"] r'a.t"
["abba","cafe","faded"] ["alms","cairn","fail"] r" [a-f]*"
["wafting","quickly","vexed"] ["fjord","zebra"]" r"["jz]"
["gcgee","cgettecgege"] ["gctata","tagcactc"] r"(gc)+"
["aunt","ant"] ["vaunt","ranted"] r"“au?nt"

Table 2: Some exercises for writing regular expressions

Capture groups

Now we will try and see what capture groups are all about. Open the interpreter (if it’s not open already),
and import the re module if you haven’t already. Then type the following:

match = re.search(r’a(\d)b’,"aib")
match.groups()

match.group(0)

match.group(1)

match2 = re.search(r’(a\db)’,"aib")
match2.groups()

match2.group(0)

match2.group(1)

match_rep = re.search(r’a(\d)b’,"aiba2b")
match_rep.groups()

match_rep2 = re.search(r’(a\db)’,"aiba2b")
match_rep2.groups ()

match_rep3 = re.search(r’(a\db)+’,"aiba2b")
match_rep3.groups ()

match_rep4 = re.search(r’(a\db)*’,"aiba2b")
match_rep4.groups ()

match_rep5 = re.search(r’(a\db) (a\db)’,"ailba2b")
match_rep5.groups ()

You should see the following output:

>>> match = re.search(r’a(\d)b’,"aib")

>>> match.groups ()

1))

>>> match.group(0)

’alb’

>>> match.group(1)

3 1,

>>> match2 = re.search(r’(a\db)’,"aib")

>>> match2.groups()

(’aib’,)

>>> match2.group(0)

’alb’

>>> match2.group(1)

’alb’

>>> match_rep = re.search(r’a(\d)b’,"alba2b")
>>> match_rep.groups()

12,)

>>> match_rep2 = re.search(r’(a\db)’,"aiba2b")
>>> match_rep2.groups ()

(’aib’,)

>>> match_rep3 = re.search(r’(a\db)+’,"aiba2b")
>>> match_rep3.groups ()

(’a2p’,)

>>> match_rep4 = re.search(r’(a\db)*’,"aiba2b")
>>> match_rep4.groups()

(?a2p’,)

>>> match_rep5 = re.search(r’(a\db) (a\db)’,"aiba2b")
>>> match_rep5.groups ()

(’aib’, ’a2b’)

>>>

QuestlonS'

. What do the .groups() and .group functions do?

2. What is the Oth group?

3. Why do you think match_rep2 returns only the first capture group?
4. Why do the + and * operators (match_rep3 and match_rep4) still only return 1 group?

5. Why do the + and * operators (match_rep3 and match_rep4) return "a2b" and not "aib"? (HINT:
look at the re module documentation for match objects.)

Answer:

1. What do the .groups() and .group functions do?
.groups () returns a list of the captured groups; .group returns the group of the specified
index.

2. What is the Oth group?
The Oth group is always the entire string.

3. Why do you think match_rep2 returns only the first capture group?
search stops searching once it finds the desired pattern, so it only “sees” the first group.

4. Why do the + and * operators (match_rep3 and match_rep4) still only return 1 group?
Because a group is only defined by the parentheses; you will only get back as many groups
as you have parenthetic groups.

5. Why do the + and * operators (match_rep3 and match_rep4) return "a2b" and not "aib"? (HINT:
look at the re module documentation for match objects.)
This is the default behavior: according to http://docs.python.org/2/library/re.html, “if
a group matches multiple times, only the last match is accessible.”

