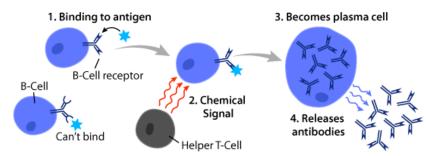
BST281 Lab Session 10

Announcement:

- The last homework will be posted within this week, and you will have two weeks work on it.
- This is the last lab section that has material, the next three labs will be reserved for groups discussing final projects.
- Todays lab will be a background talk on ImmunoGenomics.

Our immune system

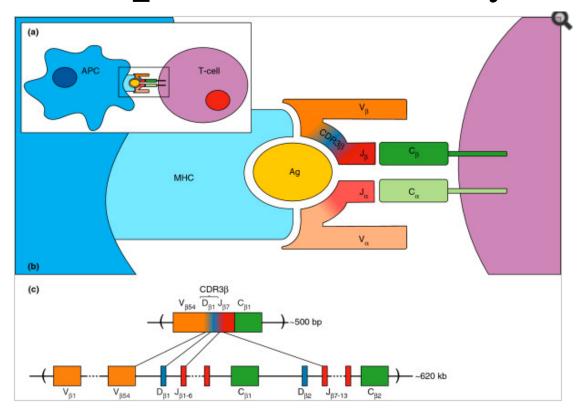
• The **immune system** is a host defense system comprising many biological structures and <u>processes</u> within an <u>organism</u> that protects against <u>disease</u>.¹


(1) Innate immune system

- Surface barriers, inflammation, natural killer cells

(2) Adaptive immune system

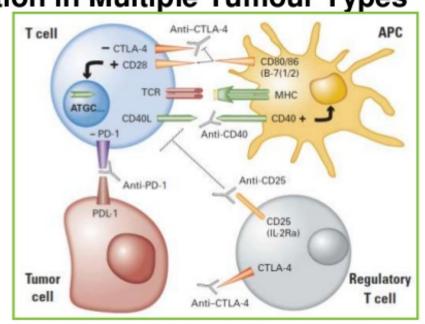
- Lymphocytes (T cells, B cells)
- Immunological memory



https://www.youtube.com/watch?v=nWdyK3SRzO8

- 1. https://en.wikipedia.org/wiki/Immune_system
- 2. Image come from https://askabiologist.asu.edu/b-cell

T cell repertoire analysis


Woodsworth, Daniel J, Mauro Castellarin, and Robert A Holt. "Sequence Analysis of T-Cell Repertoires in Health and Disease." *Genome Medicine* 5.10 (2013): 98. *PMC*. Web. 1 Oct. 2016.

Immunotherapy

e.g. PD-1 blockade

https://www.youtube.com/watch?v=AbmEt_E8kfo

CTLA-4 and PD-1 Blockade May Prolong T-cell **Activation in Multiple Tumour Types**

Ipilimumab, an anti-CTLA-4 monoclonal antibody, was recently approved by the US Food and Drug Administration for use in patients with metastatic melanoma²

1. Kandalaft LE, et al. J Clin Oncol 29:925-933.

[&]quot;Ipilimumab", http://www.fda.gov/AboutFDA/ CentersOffices/CDER/ucm248478.htm.

Terminology

Diversity (entropy)

$$H(X) = \sum_{i=1}^{n} P(x_i)I(x_i) = -\sum_{i=1}^{n} P(x_i)log_2P(x_i)$$
, here $X \in (CDR3, clonatype)$

• Richness: total unique # CDR3s

Some Public TCR-Seq datasets

•			
**	Rc	bl	ns

❖ Hsu

Robert

Disease/state	Treatment	Blood sample	Tumor sample
Healthy donor	/	587	/
Giloblastoma	DC vaccination	5	5
Melanoma	anti-PD-1	21	/

*TCRB sequencing using AdaptiveBiotech ImmunoSeq deep resolution

TCR diversity correlates with age better than richness and is a potential indicator for immune function.

- Robins' dataset (587 HD)

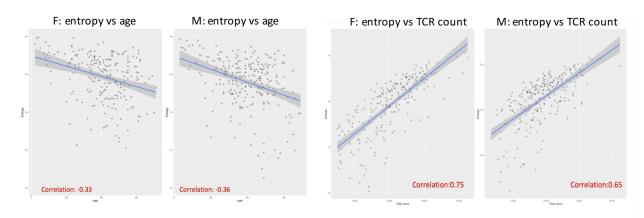
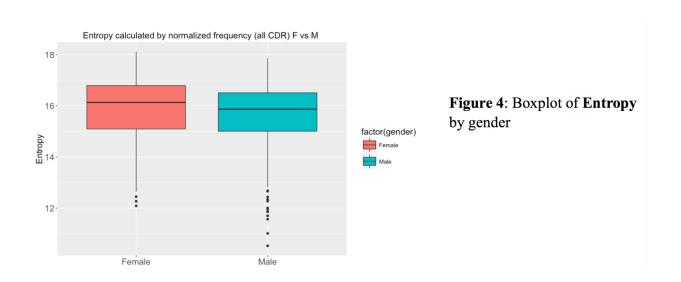
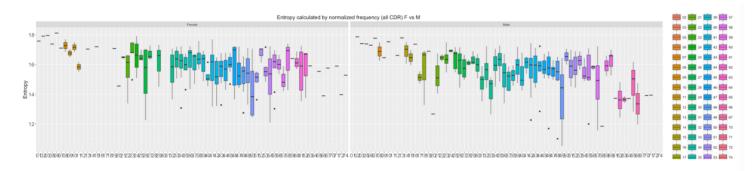



Figure 2a: Scatterplot of Entropy and Age Figure 2b: Scatterplot of Entropy and Total count (by gender) (by gender)

Significant entropy difference between genders

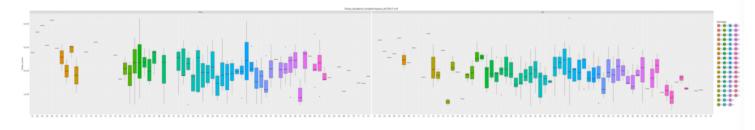

-Robins' dataset (587 HD)

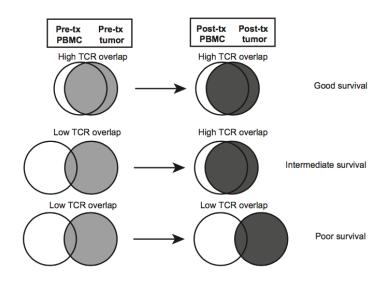
• female tend to have higher immune function than male in the same age group

TCR diversity correlates with age better than richness and is a potential indicator for immune function.

- Robins' dataset (587 HD)

Figure 3: Boxplot of **Entropy** calculated by normalised frequency using all CDR3s by **Age** in 2 genders

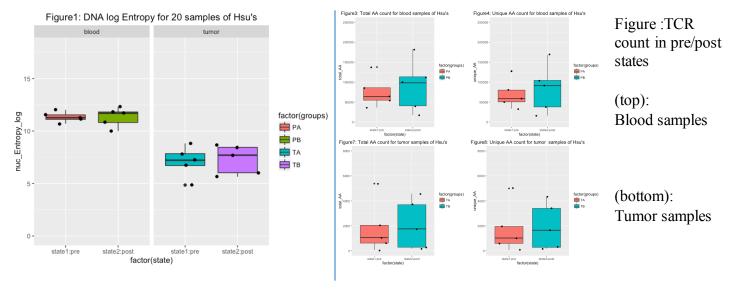



Figure 4: Boxplot of Total unique CDR3 count by Age in 2 genders

Research Article

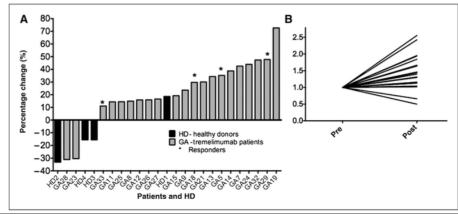
Cancer Immunology Research

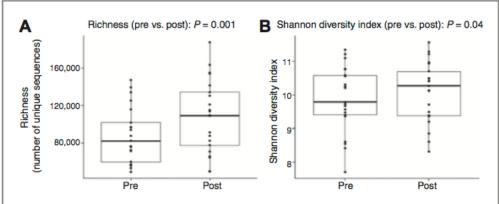
TCR Sequencing Can Identify and Track Glioma-Infiltrating T Cells after DC Vaccination


Melody S. Hsu^{1,2,*}, Shaina Sedighim^{1,*}, Tina Wang^{1,3}, Joseph P. Antonios^{1,4}, Richard G. Everson¹, Alexander M. Tucker¹, Lin Du⁵, Ryan Emerson⁶, Erik Yusko⁶, Catherine Sanders⁶, Harlan S. Robins^{6,7}, William H. Yong^{8,9}, Tom B. Davidson^{1,2,8}, Gang Li^{5,8}, Linda M. Liau^{1,8}, and Robert M. Prins^{1,8,10}

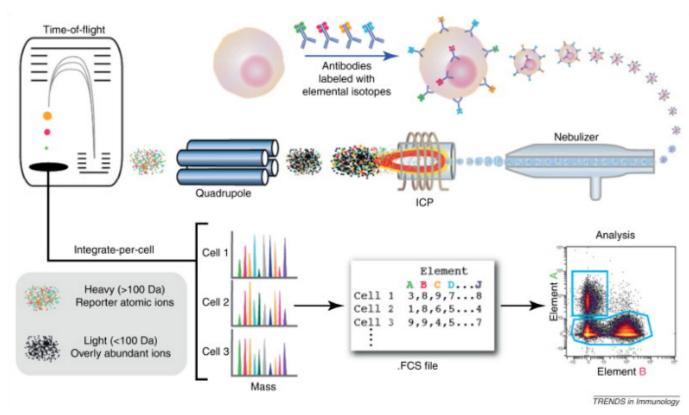
Increase of diversity and TCR count after treatment

- Hsu' dataset (5 tumor, 5 blood samples)

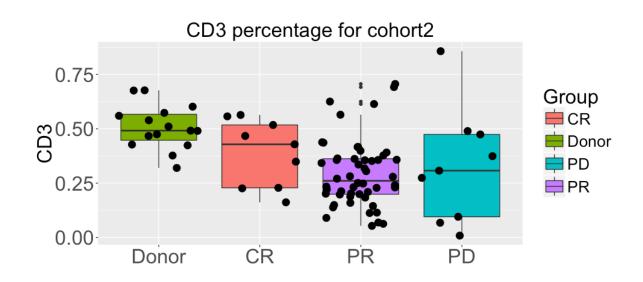

- Shannon entropy (diversity) distribution does not distinguish between tumor and blood samples.
- Increasing pattern of TCR count (richness) from pre-treatment to post-treatment can be seen in both blood and tumor samples, while blood samples have 50-fold richness than tumor samples in general


Hsu, M. S., Sedighim, S., Wang, T., Antonios, J. P., Everson, R. G., Tucker, A. M., . . . Prins, R. M. (2016). TCR Sequencing Can Identify and Track Glioma-Infiltrating T Cells after DC Vaccination. *Cancer Immunology Research*, 4(5), 412-418. doi:10.1158/2326-6066.cir-15-0240

Cancer Therapy: Clinical


CTLA4 Blockade Broadens the Peripheral T-Cell Receptor Repertoire

Lidia Robert¹, Jennifer Tsoi², Xiaoyan Wang^{1,3}, Ryan Emerson^{7,8}, Blanca Homet^{1,9}, Thinle Chodon¹, Stephen Mok^{1,2}, Rong Rong Huang⁴, Alistair J. Cochran⁴, Begoña Comin-Anduix^{5,6}, Richard C. Koya^{5,6}, Thomas G. Graeber^{2,6}, Harlan Robins^{7,8}, and Antoni Ribas^{1,2,5,6}



CyTOF

http://cytof.scilifelab.se/

CyTOF data

• Healthy donor has highest CD3 percentage (higher amount of T cells)