

Announcements

- CS289 Course Staff
- Radhika Nagpal (MD 235, rad@eecs)

 Website: main repository of all information on the class

 https://canvas.harvard.edu/courses/29752
- * Limited Enrollment Process
- Please fill out the Google Enrollment Form online on the website homepage by tonight, and add the class to your crimson cart.

 I will get back to you by tomorrow midnight (Friday) about the final enrollment decisions. And I will approve online by Monday morning.
- * Next week Tuesday's Assignment: Reading and Review
 - * There is a paper reading due next week tuesday. You will emme a short review before class, as explained on the website.

Bio-inspired Collective Systems

- * Collective Intelligence in Nature
- * Complex goals can be achieved by collectives of relatively simple and limited individuals
- * Parallelism, robustness, adaptability
- * Emerging Novel Distributed Systems
 - * Massive numbers, small scales, embedded
 - * Challenge: how do we construct robust and predictable systems?

Bio-inspired Collective Systems

- * Collective Intelligence in Nature
 - Complex goals can be achieved by collectives of relatively simple and limited individuals
 - Parallelism, robustness, adaptability
- * Emerging novel distributed systems

 - Massive numbers, small scales, embedded Challenge: how do we construct robust and predictable systems?
- * Collective "Artificial" Intelligence
 - Extract robust and scalable engineering techniques from our understanding of biological collectives.

What This Course is About

Grad-level Research Area Course

- Survey Bio-inspired Approaches and Applications
- * Three main topic areas:

 - * Swarm Intelligence ("social animals" as a metaphor)
 * Cellular Automata & Self-Assembly ("cell" as a metaphor)
 * Evolutionary Computing ("evolution" as a metaphor) Also, Human Collectives (as student presentations)

Read papers (primary sources)

- Read papers on models of natural distributed systems
- Read papers on applications to systems design Discuss and Present

* Conduct Research (final project)

Extend an existing paper's results, apply biological principle to a distributed systems problem, solve computational/theory problem related to collective intelligence, or model a biological system

How This Class Works

- Reading and Class Participation
- Paper Reviews
- Lecture Presentation

How This Class Works

- Paper Reviews
- Lecture Presentation

* Reading and Class Participation

- * Each class has 2 papers assigned for reading, one primary paper and one for context (Interdisciplinary)
- * In class we will discuss the papers, lessons and implications, what "principle" can be generalized, etc.
- * Caveat: useless if you don't do the readings!

How This Class Works

- Reading and Class Participation

* Paper Reviews

- Due by 7am before class day
- Post to cs289 discussion board (email for now)
- * Format: See guidelines on the website
- Paper review due next tuesday: send via email to rad@eecs.harvard.edu

How This Class Works

- Reading and Class Participation

- Class Project

* Presenter Days

- * Some classes are "presenter days"
- Everyone does one presenter paper (in pairs).
- * The goal is for the presenter (you) to look into the subject in more depth and educate the class on an additional interesting topic.
- * This year presenter days focus on human collectives

* Models of social insects and animal coordination * Primitives: Search, Transport, Sync, Flocking, Construction * Principles: e.g. Stigmergy & Distributed consensus * Reading: biology and applied math papers * Algorithms and Applications * Many "generic" algorithms that have wide application * Reading: Applications to Optimization, Networks, Robotics * Open Question: Analysis and Synthesis

Cellular Computing

- * Models from Multi-cellular Biology * Local: Gradients, Directed growth, Stochastic rules * Global: Cellular Automata; Self-assembly; Regeneration
- * Algorithms and Applications
- Global-to-local Compilers and Theory
 Algorithmic approaches to self assembly and self-repair
- * Robotics and Programmable Materials
- * Open Question: Scalability and Hardware

Three Topics Areas

- * Swarm Intelligence
- * Cellular Computing
- * Evolutionary Computing

Evolution as a metaphor The World == Complex goals & Dynamic environments An Amazing Variety of "Solutions" * Evolution as Population + Variation + Selection Evolution as optimization/learning * Evolution as a design process...

Evolution-inspired Computing Evolutionary Computing * Evolution as optimization using a population of agents * Different algorithmic flavors (e.g. genetic programming) * Applications * General Algorithms: Optimization and Search problems * Evolutionary Design and Programming "Invention" * Evolutionary Robotics and Robot Collectives * Open Question: Applying evolution to collectives

* Swarm Intelligence * Cellular Computing * Evolutionary Computing * Presenter Days: Human Collectives

