Announcements - CS289 Course Staff - Radhika Nagpal (MD 235, rad@eecs) Website: main repository of all information on the class https://canvas.harvard.edu/courses/29752 - * Limited Enrollment Process - Please fill out the Google Enrollment Form online on the website homepage by tonight, and add the class to your crimson cart. I will get back to you by tomorrow midnight (Friday) about the final enrollment decisions. And I will approve online by Monday morning. - * Next week Tuesday's Assignment: Reading and Review - * There is a paper reading due next week tuesday. You will emme a short review before class, as explained on the website. ### **Bio-inspired Collective Systems** - * Collective Intelligence in Nature - * Complex goals can be achieved by collectives of relatively simple and limited individuals - * Parallelism, robustness, adaptability - * Emerging Novel Distributed Systems - * Massive numbers, small scales, embedded - * Challenge: how do we construct robust and predictable systems? ### **Bio-inspired Collective Systems** - * Collective Intelligence in Nature - Complex goals can be achieved by collectives of relatively simple and limited individuals - Parallelism, robustness, adaptability - * Emerging novel distributed systems - Massive numbers, small scales, embedded Challenge: how do we construct robust and predictable systems? - * Collective "Artificial" Intelligence - Extract robust and scalable engineering techniques from our understanding of biological collectives. ### What This Course is About ### **Grad-level Research Area Course** - Survey Bio-inspired Approaches and Applications - * Three main topic areas: - * Swarm Intelligence ("social animals" as a metaphor) * Cellular Automata & Self-Assembly ("cell" as a metaphor) * Evolutionary Computing ("evolution" as a metaphor) Also, Human Collectives (as student presentations) ### Read papers (primary sources) - Read papers on models of natural distributed systems - Read papers on applications to systems design Discuss and Present ### * Conduct Research (final project) Extend an existing paper's results, apply biological principle to a distributed systems problem, solve computational/theory problem related to collective intelligence, or model a biological system ### **How This Class Works** - Reading and Class Participation - Paper Reviews - Lecture Presentation ### **How This Class Works** - Paper Reviews - Lecture Presentation ### * Reading and Class Participation - * Each class has 2 papers assigned for reading, one primary paper and one for context (Interdisciplinary) - * In class we will discuss the papers, lessons and implications, what "principle" can be generalized, etc. - * Caveat: useless if you don't do the readings! ### **How This Class Works** - Reading and Class Participation ### * Paper Reviews - Due by 7am before class day - Post to cs289 discussion board (email for now) - * Format: See guidelines on the website - Paper review due next tuesday: send via email to rad@eecs.harvard.edu ### **How This Class Works** - Reading and Class Participation - Class Project ### * Presenter Days - * Some classes are "presenter days" - Everyone does one presenter paper (in pairs). - * The goal is for the presenter (you) to look into the subject in more depth and educate the class on an additional interesting topic. - * This year presenter days focus on human collectives # * Models of social insects and animal coordination * Primitives: Search, Transport, Sync, Flocking, Construction * Principles: e.g. Stigmergy & Distributed consensus * Reading: biology and applied math papers * Algorithms and Applications * Many "generic" algorithms that have wide application * Reading: Applications to Optimization, Networks, Robotics * Open Question: Analysis and Synthesis ### **Cellular Computing** - * Models from Multi-cellular Biology * Local: Gradients, Directed growth, Stochastic rules * Global: Cellular Automata; Self-assembly; Regeneration - * Algorithms and Applications - Global-to-local Compilers and Theory Algorithmic approaches to self assembly and self-repair - * Robotics and Programmable Materials - * Open Question: Scalability and Hardware ### **Three Topics Areas** - * Swarm Intelligence - * Cellular Computing - * Evolutionary Computing ## Evolution as a metaphor The World == Complex goals & Dynamic environments An Amazing Variety of "Solutions" * Evolution as Population + Variation + Selection Evolution as optimization/learning * Evolution as a design process... ### **Evolution-inspired Computing Evolutionary Computing** * Evolution as optimization using a population of agents * Different algorithmic flavors (e.g. genetic programming) * Applications * General Algorithms: Optimization and Search problems * Evolutionary Design and Programming "Invention" * Evolutionary Robotics and Robot Collectives * Open Question: Applying evolution to collectives ## * Swarm Intelligence * Cellular Computing * Evolutionary Computing * Presenter Days: Human Collectives