Self-Reconfigurable "Cellular" Robots

CS289, 2017

Science Fiction

Science Fiction

Reality

Stranger than Fiction?

Cellular Slime Mold

Reality

to Robots....

Challenges

What is a necessary & sufficient individual "module" to create interesting "collective" robots.

- Mechanical Design Challenge
 - · Movement, attachment, power
- Programming Challenge
 - Global-to-local, scalable, robust

Both are closely linked.....

Challenges

What is a necessary & sufficient individual "module" to create interesting "collective" robots.

- Mechanical Design Challenge
 - Movement, attachment, power
- Programming Challenge
 - Global-to-local, scalable, robust

Both are closely linked.....

Challenges

What is a necessary & sufficient individual "module" to create interesting "collective" robots.

- Mechanical Design Challenge
 - Mo Programming Challenge => Many Approaches
- Centralized Planning:
 Glo
 Centralized Planning:
 1. Centralized Planning:
 2. Find minimum number of steps to transform shape A to B.
 2. But, mostly NP hard and fragile
 2. Decentralized:
 3. Callular Automata (Rus et al)

- 1. Cellular Automata (Rus et al)
 1. Bio-inspired (e.g. morphogen gradients, Shen et al)
 2. Chemistry Inspired ("tiles" that stick to each other, Klavins et al)

Discussions

The goal of the DASH algorithm is "programmable self-assembly with self-repair" - What are the key elements of the DASH algorithm?

Discussions

- What are the differences between:
 - DASH vs Yamin's (Theory->Simulation)
 - DASH vs Kilobots (Abstract->Physical)
 - DASH vs Biology ("French Flag" approach)