
Gravity waves 
 
The solar radiation on average is stronger in the tropics than at high latitudes. With a 
radiative-convective equilibrium calculation, we find that the atmosphere is warmer in 
the tropics and colder at higher latitudes. Can the atmosphere remain at rest? Within a 
column of air, being at rest requires hydrostatic equilibrium. With this, we deduce that 
there must be horizontal pressure gradient somewhere, which will drive motion. What 
happens next? 
 
We shall start by considering the adjustment under gravity in a nonrotating system. The 
concept is illustrated more easily with water. The focus is on getting a conceptual picture 
of how gravity waves propagate, not the mathematical details. We shall consider the 
adjustment of a homogeneous fluid of constant depth H that initially has a small 
displacement of its free surface η. This problem was solved by Laplace (1893). We shall 
only consider a simplified version of that by assuming the wavelength of the wave is 
much longer than the depth of the fluid. This is called the long wave approximation or the 
shallow water approximation. With this, the fluid can be considered approximately in 
hydrostatic equilibrium. For a homogeneous fluid (constant density), this implies at all 
heights  
 p ' = ρgη  
For infinitesimal perturbations, the horizontal momentum equation is now (neglecting 
viscosity, nonlinearity, and only consider one horizontal dimension): 
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Also recognize that we have two boundary conditions. At the bottom, the normal velocity 
is zero (w=0). At the top (the free surface) the vertical velocity is Dη/Dt. For 
infinitesimal perturbations, it is the same as ∂η/∂t. Now integrate the continuity equation 
with respect to depth and use the two boundary conditions, we have 
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Eliminate u from the above two equations, we have  
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This is a standard wave equation. Assume solutions of the form exp(-iωt+ikx), we have 
 ω 2 = k2c2  
This is the dispersion relation. Going back to Eqs. (1.1) and (1.2), they can be written as 
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The matrix has two eigenvalues +/-c and the eigenvectors are (1 g/c) and (1 -g/c). Given 
an initial condition, project them onto the eigenvectors and each component will 
propagate along its line of characteristics. For example, for the first eigenvector: 
 ϕ t + cϕ x = 0  



 
As an excise, let’s look at an initial state of rest with surface displacement η=G(x). The 
solution then is 
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Now consider an example. The initial displacement is confined to a finite region and is 
symmetric about x=0. In this case, we will find that behind the wave fronts, there is zero 
displacement and no motion. The energy initially in the region is “radiated” away. This is 
illustrated with the matlab script water_wave.m. Note that for deep water waves, different 
waves numbers have different phase speeds. Such waves are called dispersive. A simpler 
illustration of group velocity and phase speed is in grp_vel_4.m (taken from Holton, 
2004, An Introduction to Dynamic Meteorology). 
 
The simple system of shallow water wave can in fact be used to study tides in narrow 
channels/gulfs such as the Gulf of California. As pointed out by Lagrange (1781), small 
amplitude shallow water waves are completely analogous to small amplitude sound 
waves. So the problem of tides in a narrow channel of uniform width and depth is the 
same as that of a flute. This can give rise to spectacular tides when the forcing frequency 
is close to the intrinsic frequencies of the channel. It is fortunate that sound waves (like 
shallow water waves) are nondispersive (or only weakly dispersive). Otherwise, we 
would have a hard time understanding each other. 
 
Now if we have two immiscible layers of fluid, the bottom one being denser. One 
example is oil over water. Here we have two interfaces, one is the air-oil interface and the 
other is the oil-water interface. Mathematically, perturbations on the two interfaces may 
be viewed as those on the two normal modes of the system, the first represents a mode 
where two layers move in the same sense, while the second represents a mode where the 
two layers move in the opposite sense. For the first interface (surface gravity wave), we 
may neglect the density difference between oil and water and the problem is the same as 
before. For the second interface (internal gravity wave), the restoring force is 
proportional to the density difference between oil and water. With some algebra, one can 
show that it follows the same equation as before except with gravity changed to 
 g ' = g ρ2 − ρ1( ) / ρ2  
This is called reduced gravity. Because g’<<g, the internal waves have far slower wave 
speeds, as can be demonstrated by simple experiments. The existence of such internal 
gravity waves provides explanation to why in certain coastal localities, ships are not able 
to maintain their normal speed: additional energy is needed to generate these waves. 
 
Note in the above case, even though the forcing is at the surface, disturbances are 
generated at the lower interface. If we imagine many layers of fluids on top of each other, 
the forcing at the surface will generate disturbances at the lower interfaces, manifested as 
vertical propagation of gravity waves. The limit of this is the continuously stratified case, 
and the atmosphere and ocean are in reality continuously stratified.  



 
Consider the case of incompressible fluid with a mean state of rest and constant 
stratification (due to salt content, for example). We have in two dimensions: 
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Again assume the solution of the form exp(-iωt+ikx+imz), we have the dispersion 
relation 
 ω 2 = k2N 2 / k2 + m2( )  (1.3) 
where N is the buoyancy frequency defined before. Thus (vertically propagating) internal 
gravity waves can have any frequency between zero and N, the latter being the 
maximum. With this dispersion relation, the phase speed and the group velocity are: 
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They are different so the waves are dispersive. Note that we use the term phase speed 
rather than phase velocity because it is not a vector. The phase speed in a new direction is 
not the vector sum of the phase speeds in x and z directions. 
 
For internal gravity waves, in fact the vertical group velocity and the vertical phase speed 
are of opposite sign.  
 
As group velocity indicates the direction of energy propagation, the direction of energy 
propagation is parallel to lines of constant phase. For waves that are forced at the surface, 
we need to choose the sign in eq. (1.4) to ensure that the group velocity points upwards, 
or equivalently the phase propagation points downward.  
 
Two examples: For large k and small m, the phase lines are almost vertical, and group 
velocity is also vertical. From the continuity equation, u/w=m/k, so the parcel movements 
are almost vertical, ω is close to N. For small k and large m, the phase lines are almost 
horizontal, so is the group velocity. Since the parcel movements are almost horizontal, 
the restoring forcing is weak and ω is close to zero. 



 
The atmosphere is compressible. Inclusion of compressibility in our equations will give 
rise to sound waves, which will couple with the gravity waves. This leads to additional 
modes. However, if phase speeds of the gravity waves are low compared to the speed of 
sound and the vertical scale of the wave is smaller than the scale height, then the above 
expression can still be used. 
 
Many processes can excite gravity waves: thunderstorms, winds blowing over the ocean. 
We will briefly look at topographic waves. 
 
If we have uniform flow u over infinitesimal sinusoidal topography with wavenumber k, 
it is equivalent to forcing the atmosphere with a frequency of uk. Can be deduce what 
would happen? 
 
If uk is less than N, then m2 is positive and the wave can propagate vertically.  
If uk is larger than N, then m2 is negative, and the wave is evanescent in the vertical.  
 
In reality, u_bar and N vary with height and mountains are isolated instead of periodic. 
So a wide variety of responses can occur. If u_bar and N vary slowly compared to the 
wavelengths of the waves, the problem is that of wave propagation in inhomogeneous 
medium and is analogous to that of geometric optics. For example, when waves 
propagate into a region of higher N, m becomes larger, i.e. the wave will be compressed 
in terms of its vertical scale. Variations in the mean winds also affect the propagation of 
the waves. 
 
There are two central points that we want to get across. The first is that without rotation, 
gravity waves are very efficient in eliminating horizontal density gradient or temperature 
gradient in a stably stratified fluid. A simple example of this is that water surfaces 
(without winds) are flat, so that pressure is constant on a constant height surface. 
 
We will now play a movie of where the atmosphere is initially warmer at the center. We 
see that gravity wave fronts spread out over a large distance, which is roughly the 
distance over which gravity waves are dissipated. Temperature anomalies that span the 
depth of the troposphere can travel at 50m/s and go around the globe in 10 days 
(4.e7m/50m/s). This is much more efficient than diffusion, even eddy diffusion. We will 
also see waves with greater vertical scales propagate faster. This may be understood this 
way: the effective density difference over a greater vertical scale is greater so the reduced 
gravity is greater than that over a shallower vertical scale. 
 
Now let’s look at some observations. What is plotted is the geopotential height. Given the 
hydrostatic equation and use the ideal gas law, we have 

 dΦ = gdz = −
dp
ρ

= −RTd ln p  

Integrate, we have 



 
g0 (Z2 − Z1) = Φ(z2 ) − Φ(z1) = R Td ln p

p2

p1∫
Z = Φ(z) / g0

 

This is called the hypsometric equation. For our purpose, we can neglect variations in g 
so that the geopotential height is the same as height z. Since in hydrostatic equilibrium, 
there is a one-to-one correspondence between p and Z, one may use either as the vertical 
coordinate. In meteorology, p is often used. Among the many reasons, pressure is easier 
to measure, and also has some advantage when used as a coordinate in the place of z. 
Pressure gradient force can be written in terms of geopotential height gradient: 
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We have used the hydrostatic relation in the last step. So, a high Z on a constant pressure 
surface implies a high p on a constant Z surface.  
 

 
We see that the geopotential height as constant pressure is pretty much flat in the tropics 
where the effect of rotation is small. 
  
Question: Given the 500mb Z and that the tropics is warmer, do we expect the Z 
difference between the pole and the equator to be greater or smaller near the surface? 



 
The second main point is that momentum and energy fluxes are associated with the 
propagation of gravity waves (and waves in general). If they can propagate over a long 
distance before they are dissipated, they can transfer momentum and energy fluxes over a 
long distance. It is key to understanding mesosphere circulation. The momentum drag 
imparted on the flow when gravity waves break explains the peculiar fact that it is 
warmer in the winter hemisphere in the mesosphere. There are many other such 
examples. 
 

 
 


