Forced Rossby waves

Start with the barotropic vorticity equation:

$$\left(\frac{\partial}{\partial t} + U \frac{\partial}{\partial x}\right) \nabla^2 \psi + \beta \frac{\partial \psi}{\partial x} = -\frac{f_0}{H} U \frac{\partial h_T}{\partial x}$$
(1.1)

where U is the mean zonal wind, and the mean meridional wind is assumed to be zero. H is the depth of the fluid, f0 is the Coriolis parameter at the latitude of interest and β =df/dy. ψ is the streamfunction so that v= $\partial \psi/\partial x$ and vorticity ζ = $\nabla^2 \psi$. h_T is the height of topography. We should assume h_T is uniform in y (the meridional direction).

Since this is a linear equation with constant coefficients, the response ψ has the same frequency and wavenumbers as the forcing h_T . Decompose h_T into the different Fourier components and we can treat them separate. Denote the component of h_T with zonal wavenumber k and frequency ω as

$$\hat{h}_0 \exp[i(kx - \omega t)]$$

and response as

$$\hat{\psi}\exp[i(kx-\omega t)]$$

then equation (1.1) for this Fourier component becomes:

$$\left[i(\omega - Uk)k^2 + ik\beta\right]\hat{\psi} = -\frac{f_0U\hat{h}_0}{H}ik$$

or:

$$\hat{\psi} = -\frac{f_0 U \hat{h}_0}{H k^2 \left[\frac{\omega}{k} - \left(U - \frac{\beta}{k^2} \right) \right]}$$

which is the solution. For this, we can see whenever the phase speed of the forcing, which is given by ω/k , matches that of a free Rossby wave mode with a zonal wavenumber k, we have resonance. For orographic forcing, the frequency is zero, and resonance happens when $U=\beta/k^2$.