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C H A P T E R 7

Atmospheric Oscillations:
Linear Perturbation Theory

Chapter 13 discusses numerical techniques for solving the equations governing
large-scale atmospheric motions. If the objective is to produce an accurate fore-
cast of the circulation at some future time, a detailed numerical model based on
the primitive equations and including processes such as latent heating, radiative
transfer, and boundary layer drag should produce the best results. However, the
inherent complexity of such a model generally precludes any simple interpretation
of the physical processes that produce the predicted circulation. If we wish to gain
physical insight into the fundamental nature of atmospheric motions, it is helpful to
employ simplified models in which certain processes are omitted and compare the
results with those of more complete models. This is, of course, just what was done
in deriving the quasi-geostrophic model. However, the quasi-geostrophic potential
vorticity equation is still a complicated nonlinear equation that must be solved
numerically. It is difficult to gain an appreciation for the processes that produce
the wave-like character observed in many meteorological disturbances through the
study of numerical integrations alone.

This chapter discusses the perturbation method, a simple technique that is useful
for qualitative analysis of atmospheric waves. We then use this method to examine
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several types of waves in the atmosphere. In Chapter 8 the perturbation theory is
used to study the development of synoptic-wave disturbances.

7.1 THE PERTURBATION METHOD

In the perturbation method, all field variables are divided into two parts, a basic
state portion, which is usually assumed to be independent of time and longitude,
and a perturbation portion, which is the local deviation of the field from the basic
state. Thus, for example, if u designates a time and longitude-averaged zonal
velocity and u′ is the deviation from that average, then the complete zonal velocity
field is u(x, t) = u + u′(x, t). In that case, for example, the inertial acceleration
u∂u/∂x can be written

u
∂u

∂x
= (

u+ u′) ∂
∂x

(
u+ u′) = u

∂u′

∂x
+ u′ ∂u′

∂x

The basic assumptions of perturbation theory are that the basic state variables
must themselves satisfy the governing equations when the perturbations are set
to zero, and the perturbation fields must be small enough so that all terms in the
governing equations that involve products of the perturbations can be neglected.
The latter requirement would be met in the above example if |u′/u| � 1 so that

∣∣u∂u′/∂x∣∣ � ∣∣u′∂u′/∂x∣∣
If terms that are products of the perturbation variables are neglected, the nonlin-

ear governing equations are reduced to linear differential equations in the pertur-
bation variables in which the basic state variables are specified coefficients. These
equations can then be solved by standard methods to determine the character and
structure of the perturbations in terms of the known basic state. For equations
with constant coefficients the solutions are sinusoidal or exponential in charac-
ter. Solution of perturbation equations then determines such characteristics as the
propagation speed, vertical structure, and conditions for growth or decay of the
waves. The perturbation technique is especially useful in studying the stability
of a given basic state flow with respect to small superposed perturbations. This
application is the subject of Chapter 8.

7.2 PROPERTIES OF WAVES

Wave motions are oscillations in field variables (such as velocity and pressure)
that propagate in space and time. In this chapter we are concerned with linear
sinusoidal wave motions. Many of the mechanical properties of such waves are
also features of a familiar system, the linear harmonic oscillator. An important
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property of the harmonic oscillator is that the period, or time required to execute
a single oscillation, is independent of the amplitude of the oscillation. For most
natural vibratory systems, this condition holds only for oscillations of sufficiently
small amplitude. The classical example of such a system is the simple pendulum
(Fig. 7.1) consisting of a massM suspended by a massless string of length l, free to
perform small oscillations about the equilibrium position θ = 0. The component
of the gravity force parallel to the direction of motion is −Mg sin θ . Thus, the
equation of motion for the mass M is

Ml
d2θ

dt2
= −Mg sin θ

Now for small displacements, sin θ ≈ θ so that the governing equation becomes

d2θ

dt2
+ ν2θ = 0 (7.1)

where ν2 ≡ g/l. The harmonic oscillator equation (7.1) has the general solution

θ = θ1 cos νt + θ2 sin νt = θ0 cos (νt − α)

where θ1, θ2, θ0, and α are constants determined by the initial conditions (see
Problem 7.1) and ν is the frequency of oscillation. The complete solution can thus
be expressed in terms of an amplitude θ0 and a phase φ(t) = νt − α. The phase
varies linearly in time by a factor of 2π radians per wave period.

Propagating waves can also be characterized by their amplitudes and phases.
In a propagating wave, however, phase depends not only on time, but on one or
more space variables as well. Thus, for a one-dimensional wave propagating in
the x direction, φ(x, t) = kx − νt − α. Here the wave number, k, is defined as
2π divided by the wavelength. For propagating waves the phase is constant for an

Fig. 7.1 A simple pendulum.
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observer moving at the phase speed c ≡ ν/k. This may be verified by observing
that if phase is to remain constant following the motion,

Dφ

Dt
= D

Dt
(kx − νt − α) = k

Dx

Dt
− ν = 0

Thus, Dx/Dt = c = ν/k for phase to be constant. For ν > 0 and k > 0
we have c > 0. In that case if α = 0, φ = k (x − ct), so that x must increase
with increasing t for φ to remain constant. Phase then propagates in the positive
direction as illustrated for a sinusoidal wave in Fig. 7.2.

7.2.1 Fourier Series

The representation of a perturbation as a simple sinusoidal wave might seem an
oversimplification since disturbances in the atmosphere are never purely sinu-
soidal. It can be shown, however, that any reasonably well-behaved function of
longitude can be represented in terms of a zonal mean plus a Fourier series of
sinusoidal components:

f (x) =
∞∑
s=1

(As sin ksx + Bs cos ksx) (7.2)

where ks = 2πs/L is the zonal wave number (units m−1), L is the distance
around a latitude circle, and s, the planetary wave number, is an integer designating
the number of waves around a latitude circle. The coefficients As are calculated
by multiplying both sides of (7.2) by sin(2πnx/L), where n is an integer, and
integrating around a latitude circle. Applying the orthogonality relationships

∫ L

0
sin

2πsx

L
sin

2πnx

L
dx =

{
0, s �= n

L/2, s = n

}

Fig. 7.2 A sinusoidal wave traveling in the positive x direction at speed c. (Wave number is assumed
to be unity.)
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we obtain

As = 2

L

∫ L

0
f (x) sin

2πsx

L
dx

In a similar fashion, multiplying both sides in (7.2) by cos(2πnx/L) and inte-
grating gives

Bs = 2

L

∫ L

0
f (x) cos

2πsx

L
dx

As and Bs are called the Fourier coefficients, and

fs (x) = As sin ksx + Bs cos ksx (7.3)

is called the sth Fourier component or sth harmonic of the function f (x). If the
Fourier coefficients are computed for, say, the longitudinal dependence of the
(observed) geopotential perturbation, the largest amplitude Fourier components
will be those for which s is close to the observed number of troughs or ridges
around a latitude circle. When only qualitative information is desired, it is usually
sufficient to limit the analysis to a single typical Fourier component and assume
that the behavior of the actual field will be similar to that of the component. The
expression for a Fourier component may be written more compactly by using
complex exponential notation. According to the Euler formula

exp (iφ) = cosφ + i sin φ

where i ≡ (−1)1/2 is the imaginary unit. Thus, we can write

fs (x) = Re[Cs exp (iksx)]
= Re[Cs cos ksx + iCs sin ksx] (7.4)

where Re[ ] denotes “real part of” andCs is a complex coefficient. Comparing (7.3)
and (7.4) we see that the two representations of fs(x) are identical, provided that

Bs = Re[Cs] and As = −Im[Cs]

where Im[ ] stands for “imaginary part of.” This exponential notation will generally
be used for applications of the perturbation theory below and also in Chapter 8.

7.2.2 Dispersion and Group Velocity

A fundamental property of linear oscillators is that the frequency of oscillation ν
depends only on the physical characteristics of the oscillator, not on the motion
itself. For propagating waves, however, ν generally depends on the wave number
of the perturbation as well as the physical properties of the medium. Thus, because
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c = ν/k, the phase speed also depends on the wave number except in the special
case where ν ∝ k. For waves in which the phase speed varies with k, the various
sinusoidal components of a disturbance originating at a given location are at a
later time found in different places, that is, they are dispersed. Such waves are
referred to as dispersive, and the formula that relates ν and k is called a dispersion
relationship. Some types of waves, such as acoustic waves, have phase speeds
that are independent of the wave number. In such nondispersive waves a spatially
localized disturbance consisting of a number of Fourier wave components (a wave
group) will preserve its shape as it propagates in space at the phase speed of the
wave.

For dispersive waves, however, the shape of a wave group will not remain con-
stant as the group propagates. Because the individual Fourier components of a
wave group may either reinforce or cancel each other, depending on the relative
phases of the components, the energy of the group will be concentrated in limited
regions as illustrated in Fig. 7.3. Furthermore, the group generally broadens in the
course of time, that is, the energy is dispersed.

When waves are dispersive, the speed of the wave group is generally different
from the average phase speed of the individual Fourier components. Hence, as
shown in Fig. 7.4, individual wave components may move either more rapidly or
more slowly than the wave group as the group propagates along. Surface waves
in deep water (such as a ship wake) are characterized by dispersion in which
individual wave crests move twice as fast as the wave group. In synoptic-scale
atmospheric disturbances, however, the group velocity exceeds the phase velocity.
The resulting downstream development of new disturbances will be discussed later.

An expression for the group velocity, which is the velocity at which the observ-
able disturbance (and hence the energy) propagates, can be derived as follows:
We consider the superposition of two horizontally propagating waves of equal
amplitude but slightly different wavelengths with wave numbers and frequencies
differing by 2δk and 2δν, respectively. The total disturbance is thus

� (x, t) = exp {i [(k + δk) x − (ν + δν) t]} + exp {i [(k − δk) x − (ν − δν) t]}

Fig. 7.3 Wave groups formed from two sinusoidal components of slightly different wavelengths. For
nondispersive waves, the pattern in the lower part of the diagram propagates without change
of shape. For dispersive waves, the shape of the pattern changes in time.



January 27, 2004 9:5 Elsevier/AID aid

188 7 atmospheric oscillations:

(a)

ct = 0

ct = 2π

ct = 4π

ct = 6π

(b)

ct = 0

ct = π

ct = 2π

ct = 3π

Fig. 7.4 Schematic showing propagation of wave groups: (a) group velocity less than phase speed
and (b) group velocity greater than phase speed. Heavy lines show group velocity, and light
lines show phase speed.

where for brevity the Re[ ] notation in (7.4) is omitted, and it is understood that
only the real part of the right-hand side has physical meaning. Rearranging terms
and applying the Euler formula gives

� =
[
ei(δkx−δνt) + e−i(δkx−δνt)

]
ei(kx−νt)

= 2 cos (δkx − δνt) ei(kx−νt)
(7.5)

The disturbance (7.5) is the product of a high-frequency carrier wave of wave-
length 2π/k whose phase speed, ν/k, is the average for the two Fourier compo-
nents, and a low-frequency envelope of wavelength 2π/δk that travels at the speed
δν/δk. Thus, in the limit as δk → 0, the horizontal velocity of the envelope, or
group velocity, is just

cgx = ∂ν/∂k

Thus, the wave energy propagates at the group velocity. This result applies gener-
ally to arbitrary wave envelopes provided that the wavelength of the wave group,
2π/δk, is large compared to the wavelength of the dominant component, 2π/k.

7.3 SIMPLE WAVE TYPES

Waves in fluids result from the action of restoring forces on fluid parcels that
have been displaced from their equilibrium positions. The restoring forces may be
due to compressibility, gravity, rotation, or electromagnetic effects. This section
considers the two simplest examples of linear waves in fluids: acoustic waves and
shallow water gravity waves.
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7.3.1 Acoustic or Sound Waves

Sound waves, or acoustic waves, are longitudinal waves. That is, they are waves in
which the particle oscillations are parallel to the direction of propagation. Sound is
propagated by the alternating adiabatic compression and expansion of the medium.
As an example, Fig. 7.5 shows a schematic section along a tube that has a diaphragm
at its left end. If the diaphragm is set into vibration, the air adjacent to it will be
alternately compressed and expanded as the diaphragm moves inward and outward.
The resulting oscillating pressure gradient force will be balanced by an oscillating
acceleration of the air in the adjoining region, which will cause an oscillating
pressure oscillation further into the tube, and so on. The result of this continual
adiabatic increase and decrease of pressure through alternating compression and
rarefaction is, as shown in Fig. 7.5, a sinusoidal pattern of pressure and velocity
perturbations that propagates to the right down the tube. Individual air parcels do
not, however, have a net rightward motion; they only oscillate back and forth while
the pressure pattern moves rightward at the speed of sound.

To introduce the perturbation method we consider the problem illustrated by
Fig. 7.5, that is, one-dimensional sound waves propagating in a straight pipe par-
allel to the x axis. To exclude the possibility of transverse oscillations (i.e., oscil-
lations in which the particle motion is at right angles to the direction of phase
propagation), we assume at the outset that v = w = 0. In addition, we eliminate
all dependence on y and z by assuming that u = u(x,t). With these restrictions the
momentum equation, continuity equation, and thermodynamic energy equation
for adiabatic motion are, respectively,

Du

Dt
+ 1

ρ

∂p

∂x
= 0 (7.6)

Fig. 7.5 Schematic diagram illustrating the propagation of a sound wave in a tube with a flexible
diaphragm at the left end. Labels H and L designate centers of high and low perturbation
pressure. Arrows show velocity perturbations. (b) The situation 1/4 period later than in (a)
for propagation in the positive x direction.
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Dρ

Dt
+ ρ

∂u

∂x
= 0 (7.7)

D ln θ

Dt
= 0 (7.8)

where for this case D/Dt = ∂/∂t + u∂/∂x. Recalling from (2.44) and the ideal
gas law that potential temperature may be expressed as

θ = (
p
/
ρR
) (
ps
/
p
)R/cp

where ps = 1000 hPa, we may eliminate θ in (7.8) to give

1

γ

D lnp

Dt
− D ln ρ

Dt
= 0 (7.9)

where γ = cp/cv . Eliminating ρ between (7.7) and (7.9) gives

1

γ

D lnp

Dt
+ ∂u

∂x
= 0 (7.10)

The dependent variables are now divided into constant basic state portions
(denoted by overbars) and perturbation portions (denoted by primes):

u(x, t) = u+ u′(x, t)
p(x, t) = p + p′(x, t)
ρ(x, t) = ρ + ρ′(x, t)

(7.11)

Substituting (7.11) into (7.6) and (7.10) we obtain

∂

∂t

(
u+ u′)+ (

u+ u′) ∂
∂x

(
u+ u′)+ 1

(ρ + ρ′)
∂

∂x

(
p + p′) = 0

∂

∂t

(
p + p′)+ (

u+ u′) ∂
∂x

(
p + p′)+ γ

(
p + p′) ∂

∂x

(
u+ u′) = 0

We next observe that provided
∣∣ρ′/ρ

∣∣ � 1 we can use the binomial expansion to
approximate the density term as

1

(ρ + ρ′)
= 1

ρ

(
1 + ρ′

ρ

)−1

≈ 1

ρ

(
1 − ρ′

ρ

)
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Neglecting products of the perturbation quantities and noting that the basic state
fields are constants, we obtain the linear perturbation equations1

(
∂

∂t
+ u

∂

∂x

)
u′ + 1

ρ

∂p′

∂x
= 0 (7.12)

(
∂

∂t
+ u

∂

∂x

)
p′ + γp

∂u′

∂x
= 0 (7.13)

Eliminating u′ by operating on (7.13) with
(
∂
/
∂t + u∂

/
∂x
)

and substituting from
(7.12), we get2 (

∂

∂t
+ u

∂

∂x

)2

p′ − γp

ρ

∂2p′

∂x2 = 0 (7.14)

which is a form of the standard wave equation familiar from electromagnetic
theory. A simple solution representing a plane sinusoidal wave propagating in x is

p′ = A exp [ik (x − ct)] (7.15)

where for brevity we omit the Re{ } notation, but it is to be understood that only
the real part of (7.15) has physical significance. Substituting the assumed solution
(7.15) into (7.14), we find that the phase speed c must satisfy

(−ikc + iku)2 − (
γp
/
ρ
)
(ik)2 = 0

where we have canceled out the factor A exp [ik (x − ct)], which is common to
both terms. Solving for c gives

c = u± (γ p/ρ)1/2 = u± (
γRT

)1/2
(7.16)

Therefore (7.15) is a solution of (7.14), provided that the phase speed satisfies
(7.16). According to (7.16) the speed of wave propagation relative to the zonal

current is c − u = ±cs , where cs ≡ (
γRT

)1/2
is called the adiabatic speed of

sound.

1 It is not necessary that the perturbation velocity be small compared to the mean velocity for
linearization to be valid. It is only required that quadratic terms in the perturbation variables be small
compared to the dominant linear terms in (7.12) and (7.13).

2 Note that the squared differential operator in the first term expands in the usual way as

(
∂

∂t
+ u

∂

∂x

)2
= ∂2

∂t2
+ 2u

∂2

∂t∂x
+ u2 ∂

2

∂x2
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The mean zonal velocity here plays only a role of Doppler shifting the sound
wave so that the frequency relative to the ground corresponding to a given wave
number k is

ν = kc = k (u± cs)

Thus, in the presence of a wind, the frequency as heard by a fixed observer depends
on the location of the observer relative to the source. If u > 0 the frequency of a
stationary source will appear to be higher for an observer to the east (downstream)
of the source (c = u+cs) than for an observer to the west (upstream) of the source
c = u− cs .

7.3.2 Shallow Water Gravity Waves

As a second example of pure wave motion we consider the horizontally propagating
oscillations known as shallow water waves. Shallow water gravity waves can exist
only if the fluid has a free surface or an internal density discontinuity. As shown
in the previous subsection, in acoustic waves the restoring force is parallel to the
direction of propagation of the wave. In shallow water gravity waves, however,
the restoring force is in the vertical so that it is transverse to the direction of
propagation.

The mechanism for propagation of gravity waves can be understood by consider-
ing water in a channel extending in the x direction with an oscillating paddle at the
origin. The back-and-forth oscillations of the paddle generate alternating upward
and downward perturbations in the free surface height, which produce alternating
positive and negative accelerations. These, in turn, lead to alternating patterns of
fluid convergence and divergence. The net result is a sinusoidal disturbance of the
free surface height, which moves toward the right, and has perturbation velocity
and free surface height exactly in phase as shown in Fig. 7.6. A similar sort of
disturbance could be set up moving toward the left, but in that case the velocity
and free surface height perturbations would be exactly 180˚ out of phase.

As a specific example we consider a fluid system consisting of two homoge-
neous incompressible layers of differing density as shown in Fig. 7.7. Waves may
propagate along the interface between the two layers. The assumption of incom-
pressibility is sufficient to exclude sound waves, and we can thus isolate the gravity
waves. If the density of the lower layer ρ1 is greater than the density of the upper
layer ρ2, the system is stably stratified. Because both ρ1 and ρ2 are constants, the
horizontal pressure gradient in each layer is independent of height if the pressure is
hydrostatic. This may be verified by differentiating the hydrostatic approximation
with respect to x:

∂

∂z

(
∂p

∂x

)
= − ∂ρ

∂x
g = 0

For simplicity, we assume that there is no horizontal pressure gradient in the
upper layer. The pressure gradient in the lower layer can be obtained by vertical
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Fig. 7.6 Propagation of a surface gravity wave in a water channel generated by a paddle at the left
end. Symbols as in Fig. 7.5.

integration of the hydrostatic equation. For the points A and B shown in Fig. 7.7
we find, respectively,

p + δp1 = p + ρ1gδz = p + ρ1g
(
∂h
/
∂x
)
δx

p + δp2 = p + ρ2gδz = p + ρ2g
(
∂h
/
∂x
)
δx

where ∂h/∂x is the slope of the interface. Taking the limit δx → 0, we obtain the
pressure gradient in the lower layer

lim
δx→0

[
(p + δp1)− (p + δp2)

δx

]
= gδρ

∂h

∂x

where δρ = ρ1 − ρ2.

Fig. 7.7 A two-layer fluid system.
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We assume that the motion is two dimensional in thex, z plane. Thexmomentum
equation for the lower layer is then

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= −gδρ

ρ1

∂h

∂x
(7.17)

whereas the continuity equation is

∂u

∂x
+ ∂w

∂z
= 0 (7.18)

Now since the pressure gradient in (7.17) is independent of z, u will also be
independent of z provided that u �= u(z) initially. Thus, (7.18) can be integrated
vertically from the lower boundary z = 0 to the interface z = h to yield

w (h)− w (0) = −h(∂u/∂x)

However, w(h) is just the rate at which the interface height is changing,

w (h) = Dh

Dt
= ∂h

∂t
+ u

∂h

∂x

andw(0) = 0 for a flat lower boundary. Hence, the vertically integrated continuity
equation can be written

∂h

∂t
+ u

∂h

∂x
+ h

∂u

∂x
= ∂h

∂t
+ ∂

∂x
(hu) = 0 (7.19)

Equations (7.17) and (7.19) are a closed set in the variables u and h. We now apply
the perturbation technique by letting

u = u+ u′, h = H + h′

where u as before is a constant basic state zonal velocity andH is the mean depth
of the lower layer. The perturbation forms of (7.17) and (7.19) are then

∂u′

∂t
+ u

∂u′

∂x
+ gδρ

ρ1

∂h′

∂x
= 0 (7.20)

∂h′

∂t
+ u

∂h′

∂x
+H

∂u′

∂x
= 0 (7.21)

where we assume thatH � |h′| so that products of the perturbation variables can
be neglected.



January 27, 2004 9:5 Elsevier/AID aid

7.3 simple wave types 195

Eliminating u′ between (7.20) and (7.21) yields

(
∂

∂t
+ u

∂

∂x

)2

h′ − gHδρ

ρ1

∂2h′

∂x2 = 0 (7.22)

which is a wave equation similar in form to (7.14). It is easily verified by direct
substitution that (7.22) has a solution of the form

h′ = A exp[ik(x − ct)]

where the phase speed c satisfies the relationship

c = u± (
gHδρ

/
ρ1
)1/2 (7.23)

If the upper and lower layers are air and water, respectively, then δρ ≈ ρ1 and
the phase speed formula simplifies to

c = u±√
gH

The quantity
√
gH is called the shallow water wave speed. It is a valid approx-

imation only for waves whose wavelengths are much greater than the depth of
the fluid. This restriction is necessary in order that the vertical velocities be small
enough so that the hydrostatic approximation is valid. For an ocean depth of 4 km,
the shallow water gravity wave speed is ≈ 200 m s−1. Thus, long waves on the
ocean surface travel very rapidly. It should be emphasized again that this theory
applies only to waves of wavelength much greater thanH . Such long waves are not
ordinarily excited by the wind stresses, but may be produced by very large-scale
disturbances such as earthquakes.3

Shallow water gravity waves may also occur at interfaces within the ocean where
there is a very sharp density gradient (diffusion will always prevent formation of
a true density discontinuity). In particular, the surface water is separated from the
deep water by a narrow region of sharp density contrast called the thermocline. If
the horizontal pressure gradient vanishes in the layer above the thermocline, then
(7.22) governs the displacement, h′, of the thermocline from its mean height H .
If the density changes by an amount δρ/ρ1 ≈ 0.01, across the thermocline, then
from (7.23) the wave speed for waves traveling along the thermocline will be only
one-tenth of the surface wave speed for a fluid of the same depth.4

3 Long waves excited by underwater earthquakes or volcanic eruptions are called tsunamis.
4 Gravity waves propagating along an internal density discontinuity are sometimes referred to as

internal waves. We will, however, reserve that terminology for the vertically propagating waves con-
sidered in Section 7.4.
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7.4 INTERNAL GRAVITY (BUOYANCY) WAVES

We now consider the nature of gravity wave propagation in the atmosphere. Atmo-
spheric gravity waves can only exist when the atmosphere is stably stratified so that
a fluid parcel displaced vertically will undergo buoyancy oscillations (see Section
2.7.3). Because the buoyancy force is the restoring force responsible for gravity
waves, the term buoyancy wave is actually more appropriate as a name for these
waves. However, in this text we will generally use the traditional name gravity
wave.

In a fluid, such as the ocean, which is bounded both above and below, gravity
waves propagate primarily in the horizontal plane since vertically traveling waves
are reflected from the boundaries to form standing waves. However, in a fluid
that has no upper boundary, such as the atmosphere, gravity waves may propagate
vertically as well as horizontally. In vertically propagating waves the phase is a
function of height. Such waves are referred to as internal waves. Although internal
gravity waves are not generally of great importance for synoptic-scale weather
forecasting (and indeed are nonexistent in the filtered quasi-geostrophic models),
they can be important in mesoscale motions. For example, they are responsible for
the occurrence of mountain lee waves. They also are believed to be an important
mechanism for transporting energy and momentum into the middle atmosphere,
and are often associated with the formation of clear air turbulence (CAT).

7.4.1 Pure Internal Gravity Waves

For simplicity we neglect the Coriolis force and limit our discussion to two-
dimensional internal gravity waves propagating in the x, z plane. An expression
for the frequency of such waves can be obtained by modifying the parcel theory
developed in Section 2.7.3.

Internal gravity waves are transverse waves in which the parcel oscillations are
parallel to the phase lines as indicated in Fig. 7.8. A parcel displaced a distance δs
along a line tilted at an angle α to the vertical as shown in Fig. 7.8 will undergo
a vertical displacement δz = δs cosα . For such a parcel the vertical buoyancy
force per unit mass is just −N2δz, as was shown in (2.52). Thus, the component
of the buoyancy force parallel to the tilted path along which the parcel oscillates
is just

−N2δz cosα = −N2 (δs cosα) cosα = − (N cosα)2 δs

The momentum equation for the parcel oscillation is then

d2 (δs)

dt2
= − (N cosα)2 δs (7.24)

which has the general solution δs = exp [±i (N cosα) t] . Thus, the parcels exe-
cute a simple harmonic oscillation at the frequency ν = N cosα. This frequency
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Fig. 7.8 Parcel oscillation path (heavy arrow) for pure gravity waves with phase lines tilted at an
angle α to the vertical.

depends only on the static stability (measured by the buoyancy frequency N ) and
the angle of the phase lines to the vertical.

The above heuristic derivation can be verified by considering the linearized equa-
tions for two-dimensional internal gravity waves. For simplicity, we employ the
Boussinesq approximation, in which density is treated as a constant except where
it is coupled with gravity in the buoyancy term of the vertical momentum equation.
Thus, in this approximation the atmosphere is considered to be incompressible,
and local density variations are assumed to be small perturbations of the constant
basic state density field. Because the vertical variation of the basic state density
is neglected except where coupled with gravity, the Boussinesq approximation is
only valid for motions in which the vertical scale is less than the atmospheric scale
height H(≈ 8km).

Neglecting effects of rotation, the basic equations for two-dimensional motion
of an incompressible atmosphere may be written as

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
+ 1

ρ

∂p

∂x
= 0 (7.25)

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
+ 1

ρ

∂p

∂z
+ g = 0 (7.26)

∂u

∂x
+ ∂w

∂z
= 0 (7.27)

∂θ

∂t
+ u

∂θ

∂x
+ w

∂θ

∂z
= 0 (7.28)

where the potential temperature θ is related to pressure and density by

θ = p

ρR

(
ps

p

)κ

which after taking logarithms on both sides yields

ln θ = γ−1 lnp − ln ρ + constant (7.29)
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We now linearize (7.25)–(7.29) by letting

ρ = ρ0 + ρ′ u = u+ u′

p = p (z) + p′ w = w′ (7.30)

θ = θ (z) + θ ′

where the basic state zonal flow u and the density ρ0 are both assumed to be
constant. The basic state pressure field must satisfy the hydrostatic equation

dp
/
dz = −ρ0g (7.31)

while the basic state potential temperature must satisfy (7.29) so that

ln θ = γ−1 lnp − ln ρ0 + constant (7.32)

The linearized equations are obtained by substituting from (7.30) into (7.25)–
(7.29) and neglecting all terms that are products of the perturbation variables. Thus,
for example, the last two terms in (7.26) are approximated as

1

ρ

∂p

∂z
+ g = 1

ρ0 + ρ′

(
dp

dz
+ ∂p′

∂z

)
+ g

≈ 1

ρ0

dp

dz

(
1 − ρ′

ρ0

)
+ 1

ρ0

∂p′

∂z
+ g = 1

ρ0

∂p′

∂z
+ ρ′

ρ0
g

(7.33)

where (7.31) has been used to eliminate p. The perturbation form of (7.29) is
obtained by noting that

ln

[
θ

(
1 + θ ′

θ

)]
= γ−1 ln

[
p

(
1 + p′

p

)]
− ln

[
ρ0

(
1 + ρ′

ρ0

)]
+const. (7.34)

Now, recalling that ln(ab) = ln(a)+ ln(b) and that ln(1 + ε) ≈ ε for any ε � 1,
we find with the aid of (7.32) that (7.34) may be approximated by

θ ′

θ
≈ 1

γ

p′

p
− ρ′

ρ0

Solving for ρ′ yields

ρ′ ≈ −ρ0
θ ′

θ
+ p′

c2
s

(7.35)

where c2
s ≡ pγ/ρ0 is the square of the speed of sound. For buoyancy wave

motions
∣∣ρ0θ

′/θ ∣∣ � ∣∣p′/c2
s

∣∣; that is, density fluctuations due to pressure changes
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are small compared with those due to temperature changes. Therefore, to a first
approximation,

θ ′/θ = −ρ′/ρ0 (7.36)

Using (7.33) and (7.36), the linearized version of the set (7.25)–(7.28), we can
write as (

∂

∂t
+ u

∂

∂x

)
u′ + 1

ρ0

∂p′

∂x
= 0 (7.37)

(
∂

∂t
+ u

∂

∂x

)
w′ + 1

ρ0

∂p′

∂z
− θ ′

θ
g = 0 (7.38)

∂u′

∂x
+ ∂w′

∂z
= 0 (7.39)

(
∂

∂t
+ u

∂

∂x

)
θ ′ + w′ dθ

dz
= 0 (7.40)

Subtracting ∂(7.37)/∂z from ∂(7.38)/∂x, we can eliminate p′ to obtain

(
∂

∂t
+ u

∂

∂x

)(
∂w′

∂x
− ∂u′

∂z

)
− g

θ

∂θ ′

∂x
= 0 (7.41)

which is just the y component of the vorticity equation.
With the aid of (7.39) and (7.40), u′ and θ ′ can be eliminated from (7.41) to

yield a single equation for w′:

(
∂

∂t
+ u

∂

∂x

)2 (
∂2w′

∂x2 + ∂2w′

∂z2

)
+N2 ∂

2w′

∂x2 = 0 (7.42)

whereN2 ≡ g d ln θ/dz is the square of the buoyancy frequency, which is assumed
to be constant.5

Equation (7.42) has harmonic wave solutions of the form

w′ = Re
[
ŵ exp(iφ)

] = wr cosφ − wi sin φ (7.43)

where ŵ = wr + iwi is a complex amplitude with real partwr and imaginary part
wi , and φ = kx + mz − νt is the phase, which is assumed to depend linearly on
z as well as on x and t . Here the horizontal wave number k is real because the
solution is always sinusoidal in x. The vertical wave numberm = mr + imi may,

5 Strictly speaking,N2 cannot be exactly constant ifρ0 is constant. However, for shallow disturbances
the variation of N2 with height is unimportant.



January 27, 2004 9:5 Elsevier/AID aid

200 7 atmospheric oscillations:

however, be complex, in which casemr describes sinusoidal variation in z andmi
describes exponential decay or growth in z depending on whether mi is positive
or negative. When m is real, the total wave number may be regarded as a vector
κ ≡ (k,m), directed perpendicular to lines of constant phase, and in the direction
of phase increase, whose components, k = 2π/Lx and m = 2π/Lz , are inversely
proportional to the horizontal and vertical wavelengths, respectively. Substitution
of the assumed solution into (7.42) yields the dispersion relationship

(ν − uk)2
(
k2 +m2

)
−N2k2 = 0

so that

ν̂ ≡ ν − uk = ±Nk/
(
k2 +m2

)1/2 = ±Nk/ |κ | (7.44)

where ν̂, the intrinsic frequency, is the frequency relative to the mean wind. Here,
the plus sign is to be taken for eastward phase propagation and the minus sign for
westward phase propagation, relative to the mean wind.

If we let k > 0 and m < 0, then lines of constant phase tilt eastward with
increasing height as shown in Fig. 7.9 (i.e., forφ = kx+mz to remain constant as x
increases, zmust also increase when k > 0 andm < 0). The choice of the positive
root in (7.44) then corresponds to eastward and downward phase propagation
relative to the mean flow with horizontal and vertical phase speeds (relative to the
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Fig. 7.9 Idealized cross section showing phases of pressure, temperature, and velocity perturbations
for an internal gravity wave. Thin arrows indicate the perturbation velocity field, blunt solid
arrows the phase velocity. Shading shows regions of upward motion.
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mean flow) given by cx = ν̂/k and , cz = ν̂/m respectively.6 The components of
the group velocity, cgxand cgz , however, are given by

cgx = ∂ν

∂k
= u± Nm2

(
k2 +m2

)3/2
(7.45a)

cgz = ∂ν

∂m
= ± (−Nkm)(

k2 +m2
)3/2

(7.45b)

where the upper or lower signs are chosen in the same way as in (7.44). Thus,
the vertical component of group velocity has a sign opposite to that of the verti-
cal phase speed relative to the mean flow (downward phase propagation implies
upward energy propagation). Furthermore, it is easily shown from (7.45) that the
group velocity vector is parallel to lines of constant phase. Internal gravity waves
thus have the remarkable property that group velocity is perpendicular to the direc-
tion of phase propagation. Because energy propagates at the group velocity this
implies that energy propagates parallel to the wave crests and troughs, rather than
perpendicular to them as in acoustic waves or shallow water gravity waves. In the
atmosphere, internal gravity waves generated in the troposphere by cumulus con-
vection, by flow over topography, and by other processes may propagate upward
many scale heights into the middle atmosphere, even though individual fluid parcel
oscillations may be confined to vertical distances much less than a kilometer.

Referring again to Fig. 7.9 it is evident that the angle of the phase lines to the
local vertical is given by

cosα = Lz/(L
2
x + L2

z )
1/2 = ±k/(k2 +m2)1/2 = ±k/ |κ |

Thus, ν̂ = ±N cosα (i.e., gravity wave frequencies must be less than the buoy-
ancy frequency) in agreement with the heuristic parcel oscillation model (7.24).
The tilt of phase lines for internal gravity waves depends only on the ratio of
the intrinsic wave frequency to the buoyancy frequency, and is independent of
wavelength.

7.4.2 Topographic Waves

When air with mean wind speed u is forced to flow over a sinusoidal pattern of
ridges under statically stable conditions, individual air parcels are alternately dis-
placed upward and downward from their equilibrium levels and will thus undergo
buoyancy oscillations as they move across the ridges as shown in Fig. 7.10. In

6 Note that phase speed is not a vector. The phase speed in the direction perpendicular to constant
phase lines (i.e., the blunt arrows in Fig. 7.9) is given by ν/(k2 + m2)1/2, which is not equal to
(c2
x + c2

z )
1/2.
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Fig. 7.10 Streamlines in steady flow over an infinite series of sinusoidal ridges for the narrow ridge
case (a) and broad ridge case (b). The dashed line in (b) shows the phase of maximum
upward displacement. (After Durran, 1990.)

this case there are solutions in the form of waves that are stationary relative to the
ground [i.e, ν = 0 in (7.43)]. For such stationary waves,w′ depends only on (x, z)
and (7.42) simplifies to

(
∂2w′

∂x2 + ∂2w′

∂z2

)
+ N2

u2 w
′ = 0 (7.46)

Substituting from (7.43) into (7.46) then yields the dispersion relationship

m2 = N2
/
u2 − k2 (7.47)

For given values of N , k, and u, (7.47) determines the vertical structure. Then
if |u| < N/k, (7.47) shows that m2 > 0 (i.e., m must be real) and solutions of
(7.46) have the form of vertically propagating waves:

w′ = ŵ exp [i (kx +mz)]
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Here we see from (7.44) that if we set k > 0 then for u > 0 we have ν̂ < 0 so
that m > 0, whereas for u < 0 we have m < 0. In the former situation the lower
signs apply on the right in (7.45a,b), whereas in the latter the upper signs apply. In
both cases the vertical phase propagation is downward relative to the mean flow,
and vertical energy propagation is upward.

When m2 < 0,m = imi is imaginary and the solution to (7.46) will have the
form of vertically trapped waves:

w′ = ŵ exp (ikx) exp (−miz)

Thus, vertical propagation is possible only when |uk|, the magnitude of the
frequency relative to the mean flow, is less than the buoyancy frequency. Stable
stratification, wide ridges, and comparatively weak zonal flow provide favorable
conditions for the formation of vertically propagating topographic waves (m real).
Because the energy source for these waves is at the ground, they must transport
energy upward. Hence, the phase speed relative to the mean zonal flow must have
a downward component. Thus if u > 0, lines of constant phase must tilt westward
with height. When m is imaginary, however, the solution (7.43) has exponential
behavior in the vertical with an exponential decay height of µ−1, where µ = |m|.
Boundedness as z → ∞ requires that we choose the solution with exponential
decay away from the lower boundary.

In order to contrast the character of the solutions for real and imaginary m, we
consider a specific example in which there is westerly mean flow over topography
with a height profile given by

h (x) = hM cos kx

where hM is the amplitude of the topography. Then because the flow at the lower
boundary must be parallel to the boundary, the vertical velocity perturbation at the
boundary is given by the rate at which the boundary height changes following the
motion:

w′ (x, 0) = (
Dh

/
Dt
)
z=0 ≈ u∂h

/
∂x = −ukhM sin kx

and the solution of (7.46) that satisfies this condition can be written

w (x, z) =
{ −uhMke−µz sin kx, uk > N

−uhMk sin (kx +mz) , uk < N

}
(7.48)

For fixed mean wind and buoyancy frequency, the character of the solution
depends only on the horizontal scale of the topography. The two cases of (7.48) may
be regarded as narrow ridge and wide ridge cases, respectively, since for specified
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values of u and N the character of the solution is determined by the zonal wave
number k. The streamline patterns corresponding to these cases for westerly flow
are illustrated in Fig. 7.10. In the narrow ridge case (Fig. 7.10a), the maximum
upward displacement occurs at the ridge tops, and the amplitude of the disturbance
decays with height. In the wide ridge case (Fig. 7.10b), the line of maximum upward
displacement tilts back toward the west (m > 0), and amplitude is independent of
height consistent with an internal gravity wave propagating westward relative to
the mean flow.

Alternatively, for fixed zonal wave number and buoyancy frequency the
solution depends only on the speed of the mean zonal wind. As indicated in (7.48),
only for mean zonal wind magnitudes less than the critical valueN/k will vertical
wave propagation occur.

Equation (7.46) was obtained for conditions of constant basic state flow. In real-
ity, both the zonal wind u and the stability parameterN generally vary with height,
and ridges are usually isolated rather than periodic. A wide variety of responses
are possible depending on the shape of the terrain and wind and stability profiles.
Under certain conditions, large-amplitude waves can be formed, which may gener-
ate severe downslope surface winds and zones of strong clear air turbulence. Such
circulations are discussed further in Section 9.4.

7.5 GRAVITY WAVES MODIFIED BY ROTATION

Gravity waves with horizontal scales greater than a few hundred kilometers and
periods greater than a few hours are hydrostatic, but they are influenced by the
Coriolis effect and are characterized by parcel oscillations that are elliptical rather
than straight lines as in the pure gravity wave case. This elliptical polarization can
be understood qualitatively by observing that the Coriolis effect resists horizontal
parcel displacements in a rotating fluid, but in a manner somewhat different from
that in which the buoyancy force resists vertical parcel displacements in a statically
stable atmosphere. In the latter case the resistive force is opposite to the direction
of parcel displacement, whereas in the former it is at right angles to the horizontal
parcel velocity.

7.5.1 Pure Inertial Oscillations

Section 3.2.3 showed that a parcel put into horizontal motion in a resting atmo-
sphere with constant Coriolis parameter executes a circular trajectory in an anti-
cyclonic sense. A generalization of this type of inertial motion to the case with
a geostrophic mean zonal flow can be derived using a parcel argument similar to
that used for the buoyancy oscillation in Section 2.7.3.
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If the basic state flow is assumed to be a zonally directed geostrophic wind ug ,
and it is assumed that the parcel displacement does not perturb the pressure field,
the approximate equations of motion become

Du

Dt
= f v = f

Dy

Dt
(7.49)

Dv

Dt
= f

(
ug − u

)
(7.50)

We consider a parcel that is moving with the geostrophic basic state motion at a
position y = y0. If the parcel is displaced across stream by a distance δy, we can
obtain its new zonal velocity from the integrated form of (7.49):

u (y0 + δy) = ug (y0)+ f δy (7.51)

The geostrophic wind at y0 + δy can be approximated as

ug (y0 + δy) = ug (y0)+ ∂ug

∂y
δy (7.52)

Using (7.51) and (7.52) to evaluate (7.50) at y0 + δy yields

Dv

Dt
= D2δy

Dt2
= −f

(
f − ∂ug

∂y

)
δy = −f ∂M

∂y
δy (7.53)

where we have defined the absolute momentum, M ≡ fy − ug .
This equation is mathematically of the same form as (2.52), the equation for the

motion of a vertically displaced particle in a stratified atmosphere. Depending on
the sign of the coefficient on the right-hand side in (7.53), the parcel will either be
forced to return to its original position or will accelerate further from that position.
This coefficient thus determines the condition for inertial instability:

f
∂M

∂y
= f

(
f − ∂ug

∂y

)

> 0 stable
= 0 neutral
< 0 unstable

(7.54)

Viewed in an inertial reference frame, instability results from an imbalance
between the pressure gradient and inertial forces for a parcel displaced radially in
an axisymmetric vortex. In the Northern Hemisphere, where f is positive, the flow
is inertially stable provided that the absolute vorticity of the basic flow, ∂M

/
∂y, is

positive. In the Southern Hemisphere, however, inertial stability requires that the
absolute vorticity be negative. Observations show that for extratropical synoptic-
scale systems the flow is always inertially stable, although near neutrality often
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occurs on the anticyclonic shear side of upper level jet streaks. The occurrence of
inertial instability over a large area would immediately trigger inertially unstable
motions, which would mix the fluid laterally just as convection mixes it verti-
cally, and reduce the shear until the absolute vorticity times f was again positive.
(This explains why anticyclonic shears cannot become arbitrarily large.) Inertial
instability is considered further in a more general context in Section 9.3.

7.5.2 Inertia–Gravity Waves

When the flow is both inertially and gravitationally stable, parcel displacements
are resisted by both rotation and buoyancy. The resulting oscillations are called
inertia–gravity waves. The dispersion relation for such waves can be analyzed
using a variant of the parcel method applied in Section 7.4. We consider parcel
oscillations along a slantwise path in the (y, z) plane as shown in Fig. 7.11. For
a vertical displacement δz the buoyancy force component parallel to the slope of
the parcel oscillation is −N2δz cosα, and for a meridional displacement δy the
Coriolis (inertial) force component parallel to the slope of the parcel path is −f 2

δy sin α, where we have assumed that the geostrophic basic flow is constant in
latitude. Thus, the harmonic oscillator equation for the parcel (7.24) is modified
to the form

D2δs

Dt2
= − (f sin α)2 δs − (N cosα)2 δs (7.55)

where δs is again the perturbation parcel displacement.
The frequency now satisfies the dispersion relationship

ν2 = N2 cos2 α + f 2 sin2 α (7.56)

Fig. 7.11 Parcel oscillation path in meridional plane for an inertia–gravity wave. See text for definition
of symbols.
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Since in generalN2 > f 2 (7.56) indicates that inertia–gravity wave frequencies
must lie in the range f ≤ |ν| ≤ N . The frequency approaches N as the trajectory
slope approaches the vertical, and approaches f as the trajectory slope approaches
the horizontal. For typical midlatitude tropospheric conditions, inertia–gravity
wave periods are in the approximate range of 12 min to 15 h. Rotational effects
become important, however, only when the second term on the right in (7.56) is
similar in magnitude to the first term. This requires that tan2 α ∼ N2/f 2 = 104,
in which case it is clear from (7.56) that ν �N . Thus, only low-frequency gravity
waves are modified significantly by the rotation of the earth, and these have very
small parcel trajectory slopes.

The heuristic parcel derivation can again be verified by using the linearized
dynamical equations. In this case, however, it is necessary to include rotation. The
small parcel trajectory slopes of the relatively long period waves that are altered
significantly by rotation imply that the horizontal scales are much greater than
the vertical scales for these waves. Therefore, we may assume that the motions
are in hydrostatic balance. If in addition we assume a motionless basic state, the
linearized equations (7.37)–(7.40) are replaced by the set

∂u′

∂t
− f v′ + 1

ρ0

∂p′

∂x
= 0 (7.57)

∂v′

∂t
+ f u′ + 1

ρ0

∂p′

∂y
= 0 (7.58)

1

ρ0

∂p′

∂z
− θ ′

θ
g = 0 (7.59)

∂u′

∂x
+ ∂v′

∂y
+ ∂w′

∂z
= 0 (7.60)

∂θ ′

∂t
+ w′ dθ

dz
= 0 (7.61)

The hydrostatic relationship in (7.59) may be used to eliminate θ ′ in (7.61) to yield

∂

∂t

(
1

ρ0

∂p′

∂z

)
+N2w′ = 0 (7.62)

Letting

(
u′, v′, w′, p′/ρ0

) = Re
[(
û, v̂, ŵ, p̂

)
exp i (kx + ly +mz− νt )

]

and substituting into (7.57), (7.58), and (7.62), we obtain

û =
(
ν2 − f 2

)−1
(νk + ilf ) p̂ (7.63)
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v̂ =
(
ν2 − f 2

)−1
(νl − ikf ) p̂ (7.64)

ŵ = −
(
νm
/
N2
)
p̂ (7.65)

which with the aid of (7.60) yields the dispersion relation for hydrostatic waves.

ν2 = f 2 +N2
(
k2 + l2

)
m−2 (7.66)

Because hydrostatic waves must have (k2 + l2)/m2 � 1, (7.66) indicates that
for vertical propagation to be possible (m real) the frequency must satisfy the
inequality |f | < |ν| � N . Equation (7.66) is just the limit of (7.56) when we let

sin2 α → 1, cos2α =
(
k2 + l2

)/
m2

which is consistent with the hydrostatic approximation.
If axes are chosen to make l = 0, it may be shown (see Problem 7.14) that the

ratio of the vertical to horizontal components of group velocity is given by

∣∣cgz/cgx∣∣ = |k/m| =
(
ν2 − f 2

)1/2
/N (7.67)

Thus, for fixed v, inertia–gravity waves propagate more closely to the horizontal
than pure internal gravity waves. However, as in the latter case the group velocity
vector is again parallel to lines of constant phase.

Eliminating p̂ between (7.63) and (7.64) for the case l = 0 yields the relation-
ship v̂ = −if û/ν, from which it is easily verified that if û is real, the perturbation
horizontal motions satisfy the relations

u′ = û cos (kx +mz− νt ) , v′ = û
(
f
/
ν
)

sin (kx +mz− νt ) (7.68)

so that the horizontal velocity vector rotates anticyclonically (that is, clockwise in
the Northern Hemisphere) with time. As a result, parcels follow elliptical trajecto-
ries in a plane orthogonal to the wavenumber vector. Equations (7.68) also show
that the horizontal velocity vector turns anticyclonically with height for waves
with upward energy propagation (e. g., waves with m < 0 and ν < 0). These
characteristics are illustrated by the vertical cross section shown in Fig. 7.12. The
anticyclonic turning of the horizontal wind with height and time is a primary
method for identifying inertia–gravity oscillations in meteorological data.

7.6 ADJUSTMENT TO GEOSTROPHIC BALANCE

Chapter 6 showed that synoptic-scale motions in midlatitudes are in approxi-
mate geostrophic balance. Departures from this balance can lead to the exci-
tation of inertia–gravity waves, which act to adjust the mass and momentum
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Fig. 7.12 Vertical section in a plane containing the wave vector k showing the phase relation-
ships among velocity, geopotential, and temperature fluctuations in an upward propagating
inertia–gravity wave with m < 0 , ν > 0, and f > 0 (Northern Hemisphere). Thin sloping
lines denote the surfaces of constant phase (perpendicular to the wave vector), and thick
arrows show the direction of phase propagation. Thin arrows show the perturbation zonal
and vertical velocity fields. Meridional wind perturbations are shown by arrows pointed
into the page (northward) and out of the page (southward). Note that the perturbation wind
vector turns clockwise (anticyclonically) with height. (After Andrews et al., 1987.)

distributions so that the flow tends to return toward geostrophic balance. This
section investigates the process by which geostrophic balance is achieved, that
is, the adjustment process. For simplicity we utilize the prototype shallow water
system; similar considerations apply to a continuously stratified atmosphere. For
linearized disturbances about a basic state of no motion with a constant Coriolis
parameter, f0, the horizontal momentum and continuity equations are

∂u′

∂t
− f0v

′ = −g ∂h
′

∂x
(7.69)

∂v′

∂t
+ f0u

′ = −g ∂h
′

∂y
(7.70)

∂h′

∂t
+H

(
∂u′

∂x
+ ∂v′

∂y

)
= 0 (7.71)

where h′ is again the deviation from the mean depth H . Taking ∂(7.69)/∂x +
∂(7.70)/∂y yields

∂2h′

∂t2
− c2

(
∂2h′

∂x2 + ∂2h′

∂y2

)
+ f0Hζ

′ = 0 (7.72)

here c2 ≡ gH and ζ ′ = ∂v′/∂x − ∂u′/∂y.
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For f0 = 0 (nonrotating system) the vorticity and height perturbations are
uncoupled, and (7.72) yields a two-dimensional shallow water wave equation for
h[compare with (7.22)]:

∂2h′

∂t2
− c2

(
∂2h′

∂x2 + ∂2h′

∂y2

)
= 0 (7.73)

which has solutions of the form

h′ = A exp[i(kx + ly − νt)] (7.74)

with ν2 = c2
(
k2 + l2

) = gH
(
k2 + l2

)
. However, for f0 �= 0 the h′ and ζ ′ fields

are coupled through (7.72). For motions with time scales longer than 1/f0 (which
is certainly true for synoptic-scale motions), the ratio of the first two terms in (7.72)
is given by ∣∣∂2h′/∂t2∣∣∣∣c2

(
∂2h′/∂x2 + ∂2h′/∂y2

)∣∣
∼
<
f 2

0 L
2

gH

which is small for L ∼ 1000 km, provided that H � 1 km. Under such circum-
stances the time derivative term in (7.72) is small compared to the other two terms,
and (7.72) states simply that the vorticity is in geostrophic balance.

If the flow is initially unbalanced, the complete equation (7.72) can be used to
describe the approach toward geostrophic balance provided that we can obtain a
second relationship between h′ and ζ ′ taking

∂ (7.70)
/
∂x − ∂ (7.69)

/
∂y

yields
∂ζ ′

∂t
+ f0

(
∂u′

∂x
+ ∂v′

∂y

)
= 0 (7.75)

which can be combined with (7.71) to give the linearized potential vorticity con-
servation law:

∂ζ ′

∂t
− f0

H

∂h′

∂t
= 0 (7.76)

Thus, letting Q′ designate the perturbation potential vorticity, we obtain from
(7.76) the conservation relationship

Q′ (x, y, t) = ζ ′/f0 − h′/H = Const. (7.77)

Hence, if we know the distribution of Q′ at the initial time, we know Q′ for all
time:

Q′ (x, y, t) = Q′ (x, y, 0)
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and the final adjusted state can be determined without solving the time-dependent
problem.

This problem was first solved by Rossby in the 1930s and is often referred to
as the Rossby adjustment problem. As a simplified, albeit somewhat unrealistic,
example of the adjustment process, we consider an idealized shallow water system
on a rotating plane with initial conditions

u′, v′ = 0; h′ = −h0sgn (x) (7.78)

where sgn(x) = 1 for x > 0 and sgn(x) = −1 for x < 0. This corresponds to an
initial step function in h′ at x = 0 , with the fluid motionless. Thus, from (7.77)

(
ζ ′/f0

)− (h′/H ) = (
h0
/
H
)

sgn (x) (7.79)

Using (7.79) to eliminate ζ ′ in (7.72) yields

∂2h′

∂t2
− c2

(
∂2h′

∂x2 + ∂2h′

∂y2

)
+ f 2

0 h
′ = −f 2

0 h0sgn (x) (7.80)

which in the homogeneous case (h0 = 0) yields the dispersion relation

ν2 = f 2
0 + c2

(
k2 + l2

)
= f 2

0 + gH
(
k2 + l2

)
(7.81)

This should be compared to (7.66).
Because initially h′ is independent of y, it will remain so for all time. Thus, in

the final steady state (7.80) becomes

−c2 d
2h′

dx2 + f 2
0 h

′ = −f 2
0 h0 sgn (x) (7.82)

which has the solution

h′

h0
=
{ −1 + exp (−x/λR) for x > 0

+1 − exp (+x/λR) for x < 0

}
(7.83)

where λR ≡ f−1
0

√
gH is the Rossby radius of deformation. Hence, the radius of

deformation may be interpreted as the horizontal length scale over which the height
field adjusts during the approach to geostrophic equilibrium. For |x| � λR the
original h′ remains unchanged. Substituting from (7.83) into (7.69)–(7.71) shows
that the steady velocity field is geostrophic and nondivergent:

u′ = 0, and v′ = g

f0

∂h′

∂x
= − gh0

f0λR
exp (− |x| /λR) (7.84)

The steady-state solution (7.84) is shown in Fig. 7.13.
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Fig. 7.13 The geostrophic equilibrium solution corresponding to adjustment from the initial state
defined in (7.78). (a) Final surface elevation profiles; (b) the geostrophic velocity profile in
the final state. (After Gill, 1982.)

Note that the result (7.84) could not be derived merely by setting ∂/∂t = 0 in
(7.69)–(7.71). That would yield geostrophic balance, and any distribution of h′
would satisfy the equations:

f0u
′ = −g

∂h′

∂y
, f0v

′ = g
∂h′

∂x
,

∂u′

∂x
+ ∂v′

∂y
= 0

Only by combining (7.69)–(7.71) to obtain the potential vorticity equation, and
requiring the flow to satisfy potential vorticity conservation at all intermediate
times, can the degeneracy of the geostrophic final state be eliminated. In other
words, although any height field can satisfy the steady-state versions of (7.69)–
(7.71), there is only one field that is consistent with a given initial state; this field
can be found readily because it can be computed from the distribution of potential
vorticity, which is conserved.

Although the final state can be computed without solving the time-dependent
equation, if the evolution of the adjustment process is required, it is necessary to
solve (7.80) subject to the initial conditions (7.78), which is beyond the scope of
this discussion. We can, however, compute the amount of energy that is dispersed
by gravity waves during the adjustment process. This only requires computing the
energy change between initial and final states.

The potential energy per unit horizontal area is given by

∫ h′

0
ρgzdz = ρgh

′2/2
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Thus, the potential energy released per unit length in y during adjustment is

∫ +∞

−∞
ρgh2

0

2
dx −

∫ +∞

−∞
ρgh

′2

2
dx =

2
∫ +∞

0

ρgh2
0

2

[
1 −

(
1 − e−x/λR

)2
]
dx = 3

2
ρgh2

0λR (7.85)

In the nonrotating case (λR → ∞) all potential energy available initially is
released (converted to kinetic energy) so that there is an infinite energy release.
(Energy is radiated away in the form of gravity waves, leaving a flat free surface
extending to |x| → ∞ as t → ∞.)

In the rotating case only the finite amount given in (7.85) is converted to kinetic
energy, and only a portion of this kinetic energy is radiated away. The rest remains
in the steady geostrophic circulation. The kinetic energy in the steady-state per
unit length is

2
∫ +∞

0
ρH

v′2

2
dx = ρH

(
gh0

f λR

)2 ∫ +∞

0
e−2x/λRdx = 1

2
ρgh2

0λR (7.86)

Thus, in the rotating case a finite amount of potential energy is released, but only
one-third of the potential energy released goes into the steady geostrophic mode.
The remaining two-thirds is radiated away in the form of inertia–gravity waves.

This simple analysis illustrates the following points: (a) It is difficult to extract
the potential energy of a rotating fluid. Although there is an infinite reservoir of
potential energy in this example (because h′ is finite as |x| → ∞), only a finite
amount is converted before geostrophic balance is achieved. (b) Conservation of
potential vorticity allows one to determine the steady-state geostrophically adjusted
velocity and height fields without carrying out a time integration. (c) The length
scale for the steady solution is the Rossby radius λR .

The dynamics of the adjustment process plays an essential role in initialization
and data assimilation in numerical prediction (see Section 13.7). For example,
under some conditions the adjustment process may effectively damp out new height
data inserted at a gridpoint, as the new data will generally be unbalanced and hence
will tend to adjust toward geostrophic balance with the existing wind field.

7.7 ROSSBY WAVES

The wave type that is of most importance for large-scale meteorological processes
is the Rossby wave, or planetary wave. In an inviscid barotropic fluid of con-
stant depth (where the divergence of the horizontal velocity must vanish), the
Rossby wave is an absolute vorticity-conserving motion that owes its existence to



January 27, 2004 9:5 Elsevier/AID aid

214 7 atmospheric oscillations:

the variation of the Coriolis parameter with latitude, the so-called β-effect. More
generally, in a baroclinic atmosphere, the Rossby wave is a potential vorticity-
conserving motion that owes its existence to the isentropic gradient of potential
vorticity.

Rossby wave propagation can be understood in a qualitative fashion by con-
sidering a closed chain of fluid parcels initially aligned along a circle of latitude.
Recall that the absolute vorticity η is given by η = ζ + f , where ζ is the relative
vorticity and f is the Coriolis parameter. Assume that ζ = 0 at time t0. Now sup-
pose that at t1, δy is the meridional displacement of a fluid parcel from the original
latitude. Then at t1 we have

(ζ + f )t1 = ft0

or
ζt1 = ft0 − ft1 = −βδy (7.87)

where β ≡ df/dy is the planetary vorticity gradient at the original latitude.
From (7.87) it is evident that if the chain of parcels is subject to a sinusoidal

meridional displacement under absolute vorticity conservation, the resulting per-
turbation vorticity will be positive for a southward displacement and negative for
a northward displacement.

This perturbation vorticity field will induce a meridional velocity field, which
advects the chain of fluid parcels southward west of the vorticity maximum and
northward west of the vorticity minimum, as indicated in Fig. 7.14. Thus, the
fluid parcels oscillate back and forth about their equilibrium latitude, and the
pattern of vorticity maxima and minima propagates to the west. This westward
propagating vorticity field constitutes a Rossby wave. Just as a positive vertical
gradient of potential temperature resists vertical fluid displacements and provides
the restoring force for gravity waves, the meridional gradient of absolute vorticity

Fig. 7.14 Perturbation vorticity field and induced velocity field (dashed arrows) for a meridionally
displaced chain of fluid parcels. Heavy wavy line shows original perturbation position; light
line shows westward displacement of the pattern due to advection by the induced velocity.
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resists meridional displacements and provides the restoring mechanism for Rossby
waves.

The speed of westward propagation, c, can be computed for this simple example
by letting δy = a sin [k (x − ct)], where a is the maximum northward displace-
ment. Then v = D (δy)

/
Dt = −kca cos [k (x − ct)], and

ζ = ∂v
/
∂x = k2ca sin [k (x − ct)]

Substitution for δy and ζ in (7.87) then yields

k2ca sin [k (x − ct)] = −βa sin [k (x − ct)]

or
c = −β

/
k2 (7.88)

Thus, the phase speed is westward relative to the mean flow and is inversely
proportional to the square of the zonal wave number.

7.7.1 Free Barotropic Rossby Waves

The dispersion relationship for barotropic Rossby waves may be derived formally
by finding wave-type solutions of the linearized barotropic vorticity equation. The
barotropic vorticity equation (4.27) states that the vertical component of absolute
vorticity is conserved following the horizontal motion. For a midlatitude β plane
this equation has the form

(
∂

∂t
+ u

∂

∂x
+ v

∂

∂y

)
ζ + βv = 0 (7.89)

We now assume that the motion consists of a constant basic state zonal velocity
plus a small horizontal perturbation:

u = u+ u′, v = v′, ζ = ∂v′/∂x − ∂u′/∂y = ζ ′

We define a perturbation streamfunction ψ ′ according to

u′ = −∂ψ ′/∂y, v′ = ∂ψ ′/∂x

from which ζ ′ = ∇2ψ ′. The perturbation form of (7.89) is then

(
∂

∂t
+ u

∂

∂x

)
∇2ψ ′ + β

∂ψ ′

∂x
= 0 (7.90)
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where as usual we have neglected terms involving the products of perturbation
quantities. We seek a solution of the form

ψ ′ = Re
[
� exp(iφ)

]

whereφ = kx+ly−νt . Here k and l are wave numbers in the zonal and meridional
directions, respectively. Substituting for ψ ′ in (7.90) gives

(−ν + ku)
(
−k2 − l2

)
+ kβ = 0

which may immediately be solved for ν:

ν = uk − βk/K2 (7.91)

where K2 ≡ k2 + l2 is the total horizontal wave number squared.
Recalling that c = ν/k, we find that the zonal phase speed relative to the mean

wind is
c − u = −β/K2 (7.92)

which reduces to (7.88) when the mean wind vanishes and l → 0. Thus, the
Rossby wave zonal phase propagation is always westward relative to the mean
zonal flow. Furthermore, the Rossby wave phase speed depends inversely on the
square of the horizontal wavenumber. Therefore, Rossby waves are dispersive
waves whose phase speeds increase rapidly with increasing wavelength.

This result is consistent with the discussion in Section 6.2.2 in which we showed
that the advection of planetary vorticity, which tends to make disturbances ret-
rogress, increasingly dominates over relative vorticity advection as the wavelength
of a disturbance increases. Equation (7.92) provides a quantitative measure of this
effect in cases where the disturbance is small enough in amplitude so that perturba-
tion theory is applicable. For a typical midlatitude synoptic-scale disturbance, with
similar meridional and zonal scales (l ≈ k) and zonal wavelength of order 6000 km,
the Rossby wave speed relative to the zonal flow calculated from (7.92) is approx-
imately −8 m s−1. Because the mean zonal wind is generally westerly and greater
than 8 m s−1, synoptic-scale Rossby waves usually move eastward, but at a phase
speed relative to the ground that is somewhat less than the mean zonal wind speed.

For longer wavelengths the westward Rossby wave phase speed may be large
enough to balance the eastward advection by the mean zonal wind so that the
resulting disturbance is stationary relative to the surface of the earth. From (7.92)
it is clear that the free Rossby wave solution becomes stationary when

K2 = β/u ≡ K2
s (7.93)

The significance of this condition is discussed in the next subsection.
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Unlike the phase speed, which is always westward relative to the mean flow, the
zonal group velocity for a Rossby wave may be either eastward or westward relative
to the mean flow, depending on the ratio of the zonal and meridional wave numbers
(see Problem 7.20). Stationary Rossby modes (i.e., modes with c = 0 ) have zonal
group velocities that are eastward relative to the ground. Synoptic-scale Rossby
waves also tend to have zonal group velocities that are eastward relative to the
ground. For synoptic waves, advection by the mean zonal wind is generally larger
than the Rossby phase speed so that the phase speed is also eastward relative to the
ground, but is slower than the zonal group velocity. As indicated in Fig. 7.4b, this
implies that new disturbances tend to develop downstream of existing disturbances,
which is an important consideration for forecasting.

It is possible to carry out a less restrictive analysis of free planetary waves using
the perturbation form of the full primitive equations. In that case the structure of
the free modes depends critically on the boundary conditions at the surface and
the upper boundary. The results of such an analysis are mathematically compli-
cated, but qualitatively yield waves with horizontal dispersion properties similar to
those in the shallow water model. It turns out that the free oscillations allowed in a
hydrostatic gravitationally stable atmosphere consist of eastward- and westward-
moving gravity waves that are slightly modified by the rotation of the earth, and
westward-moving Rossby waves that are slightly modified by gravitational stabil-
ity. These free oscillations are the normal modes of oscillation of the atmosphere.
As such, they are continually excited by the various forces acting on the atmo-
sphere. Planetary scale-free oscillations, although they can be detected by careful
observational studies, generally have rather weak amplitudes. Presumably this is
because the forcing is quite weak at the large phase speeds characteristic of most
such waves. An exception is the 16-day period zonal wave number 1 normal mode,
which can be quite strong in the winter stratosphere.

7.7.2 Forced Topographic Rossby Waves

Although free propagating Rossby modes are only rather weakly excited in the
atmosphere, forced stationary Rossby modes are of primary importance for under-
standing the planetary scale circulation pattern. Such modes may be forced by
longitudinally dependent diabatic heating patterns or by flow over topography. Of
particular importance for the Northern Hemisphere extratropical circulation are
stationary Rossby modes forced by flow over the Rockies and the Himalayas. It is
just the topographic Rossby wave that was described qualitatively in the discussion
of streamline deflections in potential vorticity-conserving flows crossing mountain
ranges in Section 4.3.

As the simplest possible dynamical model of topographic Rossby waves, we
use the barotropic potential vorticity equation for a homogeneous fluid of variable
depth (4.26). We assume that the upper boundary is at a fixed height H , and the
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lower boundary is at the variable height hT (x, y) where |hT | � H. We also use
quasi-geostrophic scaling so that |ζg| � f0. We can then approximate (4.26) by

H

(
∂

∂t
+ V · ∇

) (
ζg + f

) = −f0
DhT

Dt
(7.94)

Linearizing and applying the midlatitude β-plane approximation yields(
∂

∂t
+ u

∂

∂x

)
ζ ′

g + βv′
g = −f0

H
u
∂hT

∂x
(7.95)

We now examine solutions of (7.95) for the special case of a sinusoidal lower
boundary. We specify the topography to have the form

hT (x, y) = Re
[
h0 exp (ikx)

]
cos ly (7.96)

and represent the geostrophic wind and vorticity by the perturbation streamfunction

ψ(x, y) = Re
[
ψ0 exp (ikx)

]
cos ly (7.97)

Then (7.95) has a steady-state solution with complex amplitude given by

ψ0 = f0h0/
[
H
(
K2 −K2

s

)]
(7.98)

The streamfunction is either exactly in phase (ridges over the mountains) or
exactly out of phase (troughs over the mountains), with the topography depending
on the sign ofK2 −K2

s . For long waves (K < Ks) the topographic vorticity source
in (7.95) is balanced primarily by the meridional advection of planetary vorticity
(the β effect). For short waves (K > Ks) the source is balanced primarily by the
zonal advection of relative vorticity.

The topographic wave solution (7.98) has the unrealistic characteristic that when
the wave number exactly equals the critical wave numberKs the amplitude goes to
infinity. From (7.93) it is clear that this singularity occurs at the zonal wind speed
for which the free Rossby mode becomes stationary. Thus, it may be thought of as
a resonant response of the barotropic system.

Charney and Eliassen (1949) used the topographic Rossby wave model to
explain the winter mean longitudinal distribution of 500-hPa heights in North-
ern Hemisphere midlatitudes. They removed the resonant singularity by including
boundary layer drag in the form of Ekman pumping, which for the barotropic vor-
ticity equation is simply a linear damping of the relative vorticity [see (5.41)]. The
vorticity equation thus takes the form(

∂

∂t
+ u

∂

∂x

)
ζ ′
g + βv′

g + rζ ′
g = −f0

H
u
∂hT

∂x
(7.99)

where r ≡ τ−1
e is the inverse of the spin-down time defined in Section 5.4.
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For steady flow, (7.99) has a solution with complex amplitude

ψ0 = f0h0/
[
H
(
K2 −K2

s − iε
)]

(7.100)

where ε ≡ rK2 (ku)−1. Thus, boundary layer drag shifts the phase of the response
and removes the singularity at resonance. However, the amplitude is still a max-
imum for K = Ks. and the trough in the streamfunction occurs 1/4 cycle east of
the mountain crest, in approximate agreement with observations.

By use of a Fourier expansion (7.99) can be solved for realistic distributions of
topography. The results for an x-dependence of hT given by a smoothed version
of the earth’s topography at 45˚N, a meridional wave number corresponding to a
latitudinal half-wavelength of 35˚, τe = 5 days, ū = 17 m s−1, f0 = 10−4 s−1, and
H = 8 km are shown in Fig. 7.15. Despite its simplicity, the Charney–Eliassen
model does a remarkable job of reproducing the observed 500-hPa stationary wave
pattern in Northern Hemisphere midlatitudes.

Fig. 7.15 (Top) Longitudinal variation of the disturbance geopotential height (≡ f0�/g) in the
Charney–Eliassen model for the parameters given in the text (solid line) compared with the
observed 500-hPa height perturbations at 45˚N in January (dashed line). (Bottom) Smoothed
profile of topography at 45˚N used in the computation. (After Held, 1983.)
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PROBLEMS

7.1. Show that the Fourier component F (x) = Re
[
C exp (imx)

]
can be written

as
F (x) = |C| cosm(x + x0)

where x0 = m−1 sin−1
(
Ci
/|C|) and Ci stands for the imaginary part of C.

7.2. In the study of atmospheric wave motions, it is often necessary to consider
the possibility of amplifying or decaying waves. In such a case we might
assume that a solution has the form

ψ = A cos (kx − νt − kx0) exp (αt)

whereA is the initial amplitude, α the amplification factor, and x0 the initial
phase. Show that this expression can be written more concisely as

ψ = Re
[
Beik(x−ct)

]

where bothB and c are complex constants. Determine the real and imaginary
parts of B and c in terms of A, α, k, ν, and x0.

7.3. Several of the wave types discussed in this chapter are governed by equations
that are generalizations of the wave equation

∂2ψ

∂t2
= c2 ∂

2ψ

∂x2

This equation can be shown to have solutions corresponding to waves of
arbitrary profile moving at the speed c in both positive and negative x direc-
tions. We consider an arbitrary initial profile of the field ψ ; ψ = f (x)

at t = 0. If the profile is translated in the positive x direction at speed c
without change of shape, then ψ = f (x′), where x′ is a coordinate mov-
ing at speed c so that x = x′ + ct . Thus, in terms of the fixed coordinate
x we can write ψ = f (x − ct), corresponding to a profile that moves
in the positive x direction at speed c without change of shape. Verify that
ψ = f (x − ct) is a solution for any arbitrary continuous profile f (x − ct).
Hint: Let x − ct = x′and differentiate f using the chain rule.

7.4. Assuming that the pressure perturbation for a one-dimensional acoustic wave
is given by (7.15), find the corresponding solutions of the zonal wind and
density perturbations. Express the amplitude and phase for u′ and ρ′ in terms
of the amplitude and phase of p′.

7.5. Show that for isothermal motion (DT/Dt = 0) the acoustic wave speed is
given by (gH)1/2 where H = RT/g is the scale height.
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7.6. In Section 7.3.1 the linearized equations for acoustic waves were devel-
oped for the special situation of one-dimensional propagation in a horizontal
tube. Although this situation does not appear to be directly applicable to the
atmosphere, there is a special atmospheric mode, the Lamb wave, which is
a horizontally propagating acoustic mode with no vertical velocity pertur-
bation (w′ = 0). Such oscillations have been observed following violent
explosions such as volcanic eruptions and atmospheric nuclear tests. Using
(7.12), (7.13) plus the linearized forms of the hydrostatic equation, and the
continuity equation (7.7) derive the height dependence of the perturbation
fields for the Lamb mode in an isothermal basic state atmosphere, assuming
that the pressure perturbation at the lower boundary (z = 0) has the form
(7.15). Determine the vertically integrated kinetic energy density per unit
horizontal area for this mode.

7.7. If the surface height perturbation in a shallow water gravity wave is given by

h′ = Re
[
Aeik(x−ct)

]

find the corresponding velocity perturbation u′(x, t). Sketch the phase rela-
tionship between h′ and u′ for an eastward propagating wave.

7.8. Assuming that the vertical velocity perturbation for a two-dimensional inter-
nal gravity wave is given by (7.43), obtain the corresponding solution for
the u′, p′, and θ ′ fields. Use these results to verify the approximation

∣∣ρ0θ
′/θ
∣∣ �

∣∣∣p′/c2
s

∣∣∣
which was used in (7.36).

7.9. For the situation in Problem 7.8, express the vertical flux of horizontal
momentum, ρ0u′w′ , in terms of the amplitude A of the vertical velocity
perturbation. Hence, show that the momentum flux is positive for waves in
which phase speed propagates eastward and downward.

7.10. Show that if (7.38) is replaced by the hydrostatic equation (i.e., the terms in
w′ are neglected) the resulting frequency equation for internal gravity waves
is just the asymptotic limit of (7.44) for waves in which |k| � |m|.

7.11. (a) Show that the intrinsic group velocity vector in two-dimensional internal
gravity waves is parallel to lines of constant phase. (b) Show that in the
long-wave limit (|k| � |m|) the magnitude of the zonal component of the
group velocity equals the magnitude of the zonal phase speed so that energy
propagates one wavelength per wave period.
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7.12. Determine the perturbation horizontal and vertical velocity fields for sta-
tionary gravity waves forced by flow over sinusoidally varying topography
given the following conditions: the height of the ground is h = h0 cos kx
where h0 = 50 m is a constant; N = 2×10−2s−1; u = 5 m s−1 ; and
k = 3 × 10−3m−1. Hint: For small amplitude topography (h0k � 1) we
can approximate the lower boundary condition by

w′ = Dh/Dt = u∂h
/
∂x at z = 0.

7.13. For the topographic gravity wave problem discussed in Section 7.4.2, with
vertical velocity given by (7.48) and uk < N , find the zonal wind perturba-
tion. Compute the vertical momentum flux u′w′ and show that this flux is
a maximum when k2u2 = N2

/
2. Determine the slope of the phase lines in

the x, z plane for this case.

7.14. Verify the group velocity relationship for inertia–gravity waves given in
(7.67).

7.15. Show that when u = 0 the wave number vector κ for an internal gravity
wave is perpendicular to the group velocity vector.

7.16. Using the linearized form of the vorticity equation (6.18) and the β-plane
approximation, derive the Rossby wave speed for a homogeneous incom-
pressible ocean of depth h. Assume a motionless basic state and small per-
turbations that depend only on x and t ,

u = u′ (x, t) , v = v′ (x, t) , h = H + h′ (x, t)

whereH is the mean depth of the ocean. With the aid of the continuity equa-
tion for a homogeneous layer (7.21) and the geostrophic wind relationship
v′ = gf−1

0 ∂h′/∂x, show that the perturbation potential vorticity equation
can be written in the form

∂

∂t

(
∂2

∂x2 − f 2
0

gH

)
h′ + β

∂h′

∂x
= 0

and that h′ = h0e
ik(x−ct) is a solution provided that

c = −β
(
k2 + f 2

0 /gH
)−1

If the ocean is 4 km deep, what is the Rossby wave speed at latitude 45˚ for
a wave of 10,000 km zonal wavelength?
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7.17. Section 4.3 showed that for a homogeneous incompressible fluid a decrease
in depth with latitude has the same dynamic effect as a latitudinal depen-
dence of the Coriolis parameter. Thus, Rossby-type waves can be produced
in a rotating cylindrical vessel if the depth of the fluid is dependent on the
radial coordinate. To determine the Rossby wave speed formula for this
equivalent β-effect, we assume that the flow is confined between rigid lids
in an annular region whose distance from the axis or rotation is large enough
so that the curvature terms in the equations can be neglected. We then can
refer the motion to Cartesian coordinates with x directed azimuthally and
y directed toward the axis of rotation. If the system is rotating at angular
velocity � and the depth is linearly dependent on y,

H (y) = H0 − γy

show that the perturbation continuity equation can be written as

H0

(
∂u′

∂x
+ ∂v′

∂y

)
− γ v′ = 0

and that the perturbation quasi-geostrophic vorticity equation is thus

∂

∂t
∇2ψ ′ + β

∂ψ ′

∂x
= 0

whereψ ′ is the perturbation geostrophic streamfunction and β = 2�γ/H0.
What is the Rossby wave speed in this situation for waves of wavelength 100
cm in both the x and y directions if� = 1 s−1,H0 = 20 cm, and γ = 0.05?
Hint: Assume that the velocity field is geostrophic except in the divergence
term.

7.18. Show by scaling arguments that if the horizontal wavelength is much greater
than the depth of the fluid, two-dimensional surface gravity waves will be
hydrostatic so that the “shallow water” approximation applies.

7.19. The linearized form of the quasi-geostrophic vorticity equation (6.18) can
be written as (

∂

∂t
+ u

∂

∂x

)
∇2ψ ′ + β

∂ψ ′

∂x
= −f0∇ · V

Suppose that the horizontal divergence field is given by

∇ · V = A cos [k (x − ct)]

whereA is a constant. Find a solution for the corresponding relative vorticity
field. What is the phase relationship between vorticity and divergence? For
what value of c does the vorticity become infinite?
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7.20. Derive an expression for the group velocity of a barotropic Rossby wave with
dispersion relation (7.91). Show that for stationary waves the group velocity
always has an eastward zonal component relative to the earth. Hence, Rossby
wave energy propagation must be downstream of topographic sources.

MATLAB EXERCISES

M7.1. (a) The MATLAB script phase demo.m shows that the Fourier series
F(x) = A sin(kx) + B cos(kx) is equivalent to the form F(x) = Re
[C exp(ikx)] where A and B are real coefficients and C is a complex
coefficient. Modify the MATLAB script to confirm that the expression
F(x) = |C| cos k(x + x0) = |C| cos(kx + α) represents the same Fourier
series where, kx0 ≡ α = sin−1(Ci/|C|) and Ci stands for the imaginary
part of Cand α is the “phase” defined in the MATLAB script. Plot your
results as the third subplot in the script. (b) By running the script for several
input phase angles (such as 0, 30, 60, and 90◦ ), determine the relationship
between α and the location of the maximum of F(x).

M7.2. In this problem you will examine the formation of a “wave envelope”
for a combination of dispersive waves. The example is that of a deep
water wave in which the group velocity is 1/2 of the phase velocity. The
MATLAB script grp vel 3.m has code to show the wave height field at four
different times for a group composed of various numbers of waves with
differing wave numbers and frequencies. Study the code and determine
the period and wavelength of the carrier wave. Then run the script several
times varying the number of wave modes from 4 to 32. Determine the
half-width of the envelope at time t = 0 (top line on graph) as a function
of the number of modes in the group. The half-width is here defined as two
times the distance from the point of maximum amplitude (x = 0) to the
point along the envelope where the amplitude is 1/2 the maximum.You can
estimate this from the graph using the ginput command to determine the
distance. Use MATLAB to plot a curve of the half-width versus number
of wave modes.

M7.3. Consider stationary gravity waves forced by flow over a sinusoidal lower
boundary for a case in which the static stability decreases rapidly with
height at about the 6-km level. Thus, the buoyancy frequency is altitude
dependent and the simple analytic solution (7.48) no longer applies. The
MATLAB script named linear grav wave 1.m gives a highly accurate
numerical solution for this situation. (a) Describe the qualitative change
in the wave behavior as the zonal wavelength is changed over the range of
10 to 100 km. Be sure to comment on momentum flux as well as on the
vertical velocity. (b) Determine as accurately as you can what the minimum
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zonal wavelength is for vertical propagation to occur in the upper part of
the domain (above the 6-km level). (c) Determine how the amplitudes
of the momentum flux and momentum flux convergence at z = 6 km
change as the zonal wavelength is increased from 20 to 100 km. Do enough
different wavelengths so that you can plot graphs of the dependence of the
magnitudes of the momentum flux and zonal force on the wavelength of
the sinusoidal topography. Use MATLAB to plot these two graphs.

M7.4. The script geost adjust 1.m together with the function yprim adj 1.m.
illustrates one-dimensional geostrophic adjustment of the velocity field
in a barotropic model for a sinusoidally varying initial height field. The
equations are a simplification of (7.69), (7.70), and (7.71) in the text for the
case of no y dependence. Initially u′ = v′ = 0, φ′ ≡ gh′ = 9.8 cos(kx).
The final balanced wind in this case will have only a meridional component.
Run the program geost adjust 1.m for the cases of latitude 30 and 60◦
choosing a time value of at least 10 days. For each of these cases choose
values of wavelength of 2000, 4000, 6000, and 8000 km (a total of eight
runs). Construct a table showing the initial and final values of the fields
u′, v′, φ′ and the ratio of the final energy to the initial energy. You can
read the values from the MATLAB graphs by using the ginput command
or, for greater accuracy, add lines in the MATLAB code to print out the
values needed. Modify the MATLAB script to determine the partition of
final state energy per unit mass between the kinetic energy (v

′2/2) and the
potential energy φ

′2/(2gH). Compute the ratio of final kinetic energy to
potential energy for each of your eight cases and show this in a table.

M7.5. The script geost adjust 2.m together with the function yprim adj 2.m.
extends Problem M7.4 by using Fourier expansion to examine the geo-
strophic adjustment for an isolated initial height disturbance of the form

h0 (x) = −hm
/[

1 + (
x
/
L
)2]. The version given here uses 64 Fourier

modes and employs a fast Fourier transform algorithm (FFT). (There are
128 modes in the FFT, but only one-half of them provide real information.)
In this case you may run the model for only 5 days of integration time (it
requires a lot of computation compared to the previous case). Choose an
initial zonal scale of the disturbance of 500 km and run the model for
latitudes of 15, 30, 45, 60, 75, and 90◦ (six runs). Study the animations
for each case. Note that the zonal flow is entirely in a gravity wave mode
that propagates away from the initial disturbance. The meridional flow
has a propagating gravity wave component, but also a geostrophic part
(cyclonic flow). Use the ginput command to estimate the zonal scale of the
final geostrophic flow (v component) by measuring the distance from the
negative velocity maximum just west of the center to the positive maximum
just east of the center. Plot a curve showing the zonal scale as a function of
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latitude. Compare this scale with the Rossby radius of deformation defined
in the text. (Note that gH = 400 m2 s–2 in this example.)

M7.6. This problem examines the variation of phase velocity for Rossby waves
as the zonal wavelength is varied. Run the MATLAB program rossby 1.m
with zonal wavelengths specified as 5000, 10,000 and 20,000 km. For each
of these cases try different values of the mean zonal wind until you find
the mean wind for which the Rossby wave is approximately stationary.

M7.7. The MATLAB script rossby 2.m shows an animation of the Rossby waves
generated by a vorticity disturbance initially localized in the center of the
domain, with mean wind zero. Run the script and note that the waves
excited have westward phase speeds, but that disturbances develop on the
eastward side of the original disturbance. By following the development of
these disturbances, make a crude estimate of the characteristic wavelength
and the group velocity for the disturbances appearing to the east of the
original disturbance at time t = 7.5 days. (Wavelength can be estimated by
using ginput to measure the distance between adjacent troughs.) Compare
your estimate with the group velocity formula derived from (7.91). Can
you think of a reason why your estimate for group velocity may differ from
that given in the formula?

M7.8. The MATLAB script rossby 3.m gives the surface height and meridional
velocity disturbances for topographic Rossby waves generated by flow
over an isolated ridge. The program uses a Fourier series approach to
the solution. Ekman damping with a 2-day damping time is included to
minimize the effect of waves propagating into the mountain from upstream
(but this cannot be entirely avoided). Run this program for input zonal
mean winds from 10 to 100 m/s at 10-m/s intervals. For each run use
ginput to estimate the scale of the leeside trough by measuring the zonal
distance between the minimum and maximum in the meridional velocity.
(This should be equal approximately to one-half the wavelength of the
dominant disturbance.) Compare your results in each case with the zonal
wavelength for resonance given by solving (7.93) to determine the resonant
Lx = 2π

/
k, whereK2 = k2 + l2 and l = π

/
8 × 106 in units of 1/m. (Do

not expect exact agreement because the actual disturbance corresponds to
the sum over many separate zonal wavelengths.)

Suggested References

Hildebrand, Advanced Calculus for Applications, is one of many standard textbooks that discuss the
mathematical techniques used in this chapter, including the representation of functions in Fourier
series and the general properties of the wave equation.
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Gill,Atmosphere-Ocean Dynamics, has a very complete treatment of gravity, inertia-gravity, and Rossby
waves, with particular emphasis on observed oscillations in the oceans.

Smith (1979) discusses many aspects of waves generated by flow over mountains.
Chapman and Lindzen, Atmospheric Tides: Thermal and Gravitational, is the classic reference on both

observational and theoretical aspects of tides, a class of atmospheric motions for which the linear
perturbations method has proved to be particularly successful.

Scorer, Natural Aerodynamics, contains an excellent qualitative discussion on many aspects of waves
generated by barriers such as lee waves.

Nappo, An Introduction to Atmospheric Gravity Waves is an excellent introduction to the theory and
observation of gravity waves in the atmosphere.




