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Turbulence and planetary boundary layer 
 
Except very close to the surface (~1mm) where molecular diffusivity makes the flow 
laminar, the atmosphere is almost always turbulent near the surface. First consider the 
case where the atmospheric stratification is neutral. In the atmosphere, there is always 
some motion but at the surface the velocity goes to zero. The horizontal velocity being 
zero at the surface is called the no-slip condition, and arises from the fact that the surface 
is not perfectly smooth. Therefore horizontal winds are different at different heights (i.e. 
there is vertical wind shear). This can give rise to shear instability. One criterion for the 

onset of the instability is the Reynolds number:Re = UL
ν

. The kinematic viscosity for air 

is ~10-5m2/s, so with a 1m/s wind at 1 meter height, we have a Reynolds number of 1.e5, 
exceeding the threshold for onset of shear turbulence, which is typically a few thousands. 
When the fluid is stably stratified, one could still get the Kelvin-Helmholtz instability 
when the shear is sufficiently strong, a measure of which is the Richardson number 
Ri=N2/(dU/dz)2. The flow is stable when Ri > ¼. 
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Therefore, we expect close to the surface, air will be turbulent, and the fluxes will be 
turbulent fluxes. In this case, how do we estimate the surface fluxes of momentum and 
heat? One way is to use eddy covariance measurements, which however are expensive. 
Some knowledge of turbulence can help us derive the bulk aerodynamic formula that we 
talked briefly before. In discussing turbulence, it’s often useful to employ the Reynolds 
decomposition.  
 
Reynolds Decomposition 
 
We are not interested in how exactly the turbulent flow varies from one second to 
another. Instead, we are interested in the collective effect of this turbulent flow on the 
relatively slow varying aspects of the flow. It’s often useful to decompose a field into a 
slowly varying mean component and a fast varying component: 
u = u + u '  
so that one can write equations for the slowly varying component. As an example, let us 
consider incompressible flow, and look at the horizontal momentum equation in 2D 
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For incompressible flow, we can write this as 
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This is the flux form. Perform the decomposition, and take the average to get the equation 
for the slowly varying mean component: 
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The last two terms on the right hand side are due to turbulent eddies and are much larger 
than the effect of molecular viscosity F at the scales that we are interested in. We have 
not added any physics here. All that we have done are things like this: 
uw = u + u '( ) w +w '( ) = uw + uw '+wu '+ u 'w '( )
= uw + u 'w '

 

where we have defined decomposition so that, u’_bar and w’_bar=0. 
 
If the surface momentum flux is −u 'w '( )

0
= u*

2

 
and surface buoyancy flux is B0 = w 'b '( )

0

, where subscript 0 denotes the surface, and u* is called the frictional velocity. One can 
define the Obukov length: L = −u*

3 / kB0 , where k is the von Karman constant and has a 
value of ~0.4. L varies from say a few hundred meters during the nighttime to negative 
values (a few meters) during the day. The Obukov length can be viewed as the height 
above the surface where the buoyancy effect becomes comparable to the effect of the 
shear. Very close to the surface (z<< |L|), the buoyancy effect becomes small.  
 
The near surface downward momentum flux is −u 'w '  (multiply this by the density, one 
gets the surface drag). If the slowly varying component can be viewed as steady and 
horizontally homogeneous, then this momentum flux should be a constant with height 
(vertical advection by the slowly varying mean flow is in general small). Therefore, the 
velocity scale defined earlier u*

2 = −u 'w ' is constant with height, and the vertical shear at 
height z, based on dimensional reasoning should be 

 
du
dz

= u*
kz

 

where k is again the von Karman constant. The reasoning here is that the flow is turbulent 
so that the molecular viscosity doesn’t matter. The stratification is neutral, so gravity 
doesn’t matter. The only things that matter appear to be the velocity scale of the eddy and 
the distance from the surface, and the only way to combine them to get du/dz is by u*/z. 
One way to look at this is in terms of the mixing length theory, where the eddy diffusion 
is proportional to the eddy velocity scale times the eddy length scale:Km ∝ u*z  so that 

u 'w '( )0 = −Km
du
dz

u*
2 = ku*z

du
dz

 

Integrating, we get the logarithmic velocity profile law: 
 u (z) = u*k

−1 ln(z / z0 )  (1) 
The integration constant z0 is called the roughness length and defines the surface where 
u_bar=0 for a non-smooth surface, and is loosely related to the typical height of closely 
spaced surface obstacles, often called roughness elements (e.g. water waves, trees, 
buildings, blades of grass). Below are some typical values for z0. 
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Now if we have measurements of u at some reference height zR, we can calculate what u* 
is from (1), and get the surface drag 

 
−ρ0u 'w ' = ρ0u*

2 = ρ0CDNu
2 (zR )

CDN = k2 / ln(zR / z0 )[ ]2
 

CDN is the drag coefficient under neutral stratification. With this formula, we can 
compute the drag if we know u at some height above the surface. Note that CDN depends 
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on zR. So for measurement of u at different heights, different drag coefficients should be 
used. We can do the same for temperature and moisture, which gives  

ρ0w 'a ' = ρ0CaNu (zR ) a(0)− a(zR )[ ]
CaN = k2 / [ln(zR / z0 )ln(zR / za0 )]

, 

where a is a scalar and may be specific humidity or potential temperature. These are 
called the bulk aerodynamic drag formulas. The same dependence on zR also applies to 
CaN. Traditionally zR is 2m for temperature and moisture and 10m for wind. They are on 
the order of 10-3 and may be several times larger over land than over the ocean. The drag 
coefficients can be different for momentum and for scalars because of the role of pressure 
gradient force on momentum transport. This difference can be important in understanding 
the strength of hurricanes. 
 
An example to put things together: Life cycle of the nocturnal inversion 

 
An example from observations: 
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The vertical wind profile over a diurnal cycle: 

 
Over the tropical ocean, there are observations when there are variations in the ocean 
surface temperature over relatively short distances (say a few hundred kilometers), 
surface winds are stronger when the ocean temperature is higher. This can be explained 
by the arguments above. 
 
We have now learned how the climate works in a 1D sense. The earth of course is not 
just 1D. What happens when we introduce horizontal gradients? 
 


