
 1 

Hydrostatic Stability 
 

We saw earlier that in the radiative equilibrium profile, temperature in the lower 
troposphere decreases with height much faster than what is observed. It turns out that the 
radiative equilibrium profile is hydrostatically unstable in the lower troposphere. This 
gives rise to convection, which imposes its own temperature structure. In the following, 
we will look at the stability of a fluid in hydrostatic balance. 
 
1. The incompressible fluid case 
First consider the hydrostatic stability in an incompressible fluid (∂ρ/∂p=0). Water is a 
reasonable example. Suppose the fluid is horizontally homogeneous but the density 
changes with height. As a thought experiment, it doesn’t matter but in reality you could 
generate density gradient by having water with different temperatures or by adding 
different amounts of salt to the water; salty water is denser. These will turn out to be very 
important for ocean circulation. 
 
Our strategy is to introduce a small vertical displacement to a parcel and see whether the 
parcel will bounce back (in which case it will be stable) or drift away (in which case it 
will be unstable). Let us start with the case dρ/dz<0, i.e. density decreases with height, 
and the fluid is at rest and in hydrostatic equilibrium. If a fluid parcel is displaced upward 
by the distance Δz, its density will be greater than its soundings by Δz dρ/dz, and it will 
experience downward buoyancy1 acceleration gΔz dρ/dz/ρ, so that 

 d 2Δz
dt 2

= gdρ
ρdz

Δz  

Such a situation is stable, and the parcel will oscillate around its original point with a 

frequency of  −gdρ
ρdz

⎛
⎝⎜

⎞
⎠⎟

1/2

, which is called the buoyancy frequency. Conversely, the fluid 

is unstable to infinitesimal perturbations if dρ/dz>0. The situation with dρ/dz=0 is called 
neutral. 
 
If the density gradient is due to temperature gradient, so that ρ=ρref(1-α(T-Tref)), where α 
is the volume thermal expansion coefficient, the stability criterion becomes dT/dz=0. 
 
To be more precise, dT/dz needs to be slightly negative for convection to occur. For a 
fluid bounded by two plates, this was worked out by Rayleigh (1916): convection occurs 
when the Rayleigh number exceeds a threshold (~1000). The Rayleigh number, defined 
as  

 Ra =
ΔTgαH 3

νκ
 

where H is the distance between the two plates, and the denominator is the product of the 
molecular diffusion coefficients of momentum and heat. The Rayleigh number is a 
measure of the relative importance of the convective and molecular heat transport. For 

                                                
1 Buoyancy is known to Archimedes, 260BC. 
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the atmosphere and the ocean, H is large, and the molecular diffusion coefficients of 
momentum and heat are small and the requirement on the Rayleigh number can be easily 
satisfied with a tiny |dT/dz|. So using dT/dz=0 as the stability criterion is a good 
approximation. 
 
At this link (http://paoc.mit.edu/labweb/experiments.htm, go to GFDII), you can find a 
movie of convection in a water tank. An often overlooked region is the entrainment zone.  

 
In the atmosphere, density decreases with height. Should I infer that it is always 
hydrostatically stable? 
 
The answer is of course no. The atmosphere is not incompressible at all. When an air 
parcel is displaced vertically, it quickly adjusts to the pressure of its new environment to 
maintain mechanical equilibrium. This causes its temperature and density to change 
according to the ideal gas law. How do we then analyze the hydrostatic stability of the 
atmosphere?  
 
2. Extension to compressible fluid 
 
We shall consider movement of the air parcel to be fast, so that effects from thermal 
conduction and radiation can be neglected. In this case, there is no heat exchange 
between this parcel and its environment. This is called adiabatic. Variations of density as 
a parcel adjusts to a new pressure adiabatically can be derived from the ideal gas law and 
the first law of thermodynamics, the latter may be written as 
 dh − vdp = δq  
where h is the enthalpy, and for ideal gas, dh=cpdT, where cp is the specific heat at 
constant pressure. We use this form of the first law because we want to relate temperature 
to pressure. For adiabatic processes, δq=0 so we have 
 cpdT − vdp = 0  (*)  

Divide both sides by T and use the ideal gas law pv=RT, we have 
 cpd lnT − Rd ln p = 0   
Integration leads to  
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 T cp p−R = const  
This leads to a conserved quantity for dry air in adiabatic processes called the potential 
temperature: 

θ = T p
pref

⎛

⎝⎜
⎞

⎠⎟

−R/cp

 

By convention, a value of 105 Pa is used for pref. For ideal gases with diatomic molecules, 
according to statistical mechanics, the internal energy is 5/2RT so the specific heat at 
constant volume is cv=5/2R, and the specific heat at constant pressure is cp=7/2R 
(because cpT=h=u+pv=cvT+RT). 
 
If a parcel quickly adjusts so that it has the same pressure as its surroundings, to compare 
its density to that of its surroundings, we only need to know their T or θ. Therefore if 
dθ/dz>0, a displaced parcel will experience a restoring force and if dθ/dz<0, it will be 
hydrostatically unstable (note θ is inversely proportional to ρ given pressure). dθ/dz=0 is 
neutral. 
 
From Eq. (*), if one assumes that parcel displacement is always in hydrostatic balance, 
then dp=-ρgdz and we have 

cpdT + gdz = 0  
From this, one can define a quantity called dry static energy=cpT+gz, which is conserved 
following hydrostatically balanced adiabatic motions. In practice, it’s conserved 
approximately and can be more convenient to use. 
 
We can of course derive the stability criterion in terms of dT/dz. With the definition of 
the dry static energy, we have -dT/dz=g/cp as the stability criterion. -dT/dz is called the 
lapse rate. If temperature decreases with height faster than this (~10K/km), it is unstable. 
Expressing the criterion in terms of temperature is only for convenience in comparing 
with a temperature profile. The potential temperature (or the dry static energy), instead of 
temperature, is the most relevant quantity here. 
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Inspection of the observed temperature profile indicates that the lapse rate is ~5K/km in 
the lower troposphere.  

 dT
dz

= T (500hPa)−T (1000hPa)
z(500hPa)− z(1000hPa)

= (270 − 295)K
(5.5 − 0.1)km

~ −5K / km  

 
Should we conclude that the troposphere is mostly hydrostatically stable thus free of 
convection? (We could also look more directly at how potential temperature changes with 
height) 
 
The atmosphere is indeed mostly stable to dry convection. But the release of latent heat 
from the condensation of water vapor as the air expands and cools can make it unstable to 
moist convection. 
 
Before we move to moist convection, let’s look at the dry case a bit more. First look at 
what happens in the stable condition. Like in the incompressible case, a vertically 
displaced parcel will bounce back and oscillate with the buoyancy frequency. This gives 
rise to gravity waves, which we will discuss in more detail in later lectures. The only 
difference here is that unlike in the incompressible case where density/temperature is 
conserved following adiabatic motion, here it is the potential temperature. Therefore, the 
buoyancy frequency N is defined by 

 N 2 = g d lnθ
dz

 

and is ~1.e-2/s in the troposphere.  
 
Some examples of gravity waves from Marshall and Plumb: 
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3. Hydrostatic stability of a moist atmosphere 
 
Before we discuss the hydrostatic stability of a moist atmosphere, let’s first introduce 
how we might describe moist air 
 
Specific humidity 

 q = ρv

ρ
= mv

m
 

Mixing ratio 

 r = mv

md

= q
1− q

~ q  

Without condensation, r and q are conserved. Despite this convenience, for discussions of 
chemical equilibrium, it is the absolute concentration that matters.  
 
Now in order to calculate the density, one needs to know the specific humidity (or mixing 
ratio) in addition to the pressure and temperature. According to the Gibbs-Dalton law of 
partial pressures, vapor and dry air each behave as if the other were absent. We have 

 
pd = ρdRdT
e = ρvRvT

 (1) 
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where e is vapor pressure, 
Add together the two equations in (1), we have 

 

p = ρdRd + ρvRv( )T
= ρRT
R = (1− q)Rd + qRv

= Rd 1+
1
ε
−1⎛

⎝⎜
⎞
⎠⎟ q

⎡
⎣⎢

⎤
⎦⎥

~ Rd (1+ 0.61q)

 

where ε = Rd
Rv

= Mv

Md

≈ 0.622 . Thus, for unsaturated air at the same pressure and 

temperature, the one with more water vapor is lighter because of the lower molecular 
weight of water vapor. One often defines the virtual temperature Tv = T 1+ 0.61q( ) to 
absorb this dependence into temperature. In the tropics near the surface, q can reach 
20g/kg, so its density is the same as a dry parcel that is 3-4K higher in temperature. 
 
When an air parcel with water vapor is cooled, water vapor may condense if the 
saturation vapor pressure is lower than the vapor pressure. The saturation vapor pressure 
is described by the Clausius-Clapeyron equation, which can be derived assuming the 
condensed phase and the vapor phase are in thermal, mechanical, chemical equilibrium.  
 
In this case, the Gibbs free energy, temperature, and pressure are the same for the two 
phases: 

dG = −svdT + vvdes
dG = −scdT + vcdes

 

where e is the saturation vapor pressure. From this, we have 

 des
dT

= L
TΔv

 

where L=TΔs is the latent heat for the phase transition, and Δv is the change in specific 
volume from the phase transition. For phase transition between vapor and a condensed 
phase, the specific volume of the condensed phase is small, so Δv = RvT / es  and we have 

 d lnes
dT

⎛
⎝⎜

⎞
⎠⎟ =

L
RvT

2  

 
Assuming L to be constant (roughly true), we have 

es = es T0( )exp − L
Rv

1
T
− 1
T0

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥  

Note it is only a function of T, and does not depend on P. The saturation vapor pressure 
over water, and the difference between the saturation vapor pressure over water and ice 
are shown here: 



 8 

 
A useful formula for saturation vapor pressure over liquid water in practice that is 
accurate to within 0.3% between -35C and 35C is  

es = 6.112exp 17.67
T − 273.15
T − 29.65

⎛
⎝⎜

⎞
⎠⎟   

(Bolton, 1980, Monthly Weather Review, 108, 1046-1053) 
 
The saturation vapor pressure roughly decreases by a factor 2 every 10 degree decrease in 
the temperature. It is also useful to define relative humidity RH=e/e*, where e* is the 
saturation vapor pressure2.  
 
Let’s now examine the thermodynamic behavior of an air parcel accompanying vertical 
motion. Starting with unsaturated air. In this case, the relative concentration (e.g. the 
mixing ratio) is conserved, and as pressure decreases with height, the vapor pressure also 
decreases. However, the saturation vapor pressure decreases much faster because of the 
decrease in temperature due to adiabatic expansion. For example, if a parcel is moved up 
1km unsaturated, its temperature drops by ~10K so its saturation vapor pressure drops by 
about a factor of 2. While its pressure also drops, it’s only by ~10% so its saturation 
mixing ratio (or saturation specific humidity) still decreases by about a factor of 2. At 
some point, the saturation vapor pressure becomes lower than the vapor pressure and 
condensation occurs. This is defined as the lift condensation level (LCL), which marks 
the base of clouds.  

                                                
2 That saturation vapor pressure over ice is lower than that over water gives rise to the 
Bergeron process. As will be discussed a bit later, the freezing of liquid water droplets to 
ice requires freezing nuclei, which are scarce, so liquid water droplets can exist well 
below 0C (but above about -40C) and called supercooled water. Once ice starts to form, 
however, because of the lower saturation vapor pressure over ice, ice crystals will grow at 
the expense of the liquid water droplets, known as the Bergeron process.  
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As air continues to rise above the LCL, temperature continues to drop, and more and 
more vapor will condense and release latent heat during the process. If temperature drops 
below 0C, ice will form, adding latent heat of fusion. If all condensates are retained in the 
parcel, when the parcel starts to move downward, the reverse to what we just described 
will happen. This is called a reversible saturated adiabatic process. In reality, condensates 
will fall under gravity. The speed that condensates fall is set by the balance between 
gravity and the aerodynamic drag, and is called the terminal velocity. As the drag is 
proportional to the surface area but gravity force is proportional to the volume, larger 
particles have larger terminal velocities. An mm-sized raindrop has a terminal velocity of 
a few m/s, hailstones can fall at a speed of above 10m/s (ever got caught in a hail storm?). 
Cloud droplets are small (a few microns) so that its terminal velocity is only ~1cm/s and 
is in general considered moving with the air parcel. If we assume as the other extreme 
that the condensates are removed instantaneously (called the pseudo-adiabatic process), 
then when air moves downwards, there is nothing to evaporate/sublimate and the air will 
follow a dry adiabatic (θ=const). This gives rise to the Chinook (or “snow eater” in 
Indian) phenomena when there is downslope wind in North America. 
 
Including water vapor in the system, we have from the first law of thermodynamics, in an 
approximate form: 

 cpdT + d(Lq)− dp
ρ

= 0  (2) 

Divide both sides by T and use the ideal gas law, we have 
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cpd lnT + 1
T
d(Lq)− Rd ln p = 0

d lnθ = − 1
Tcp

d(Lq) ≈ −d Lq
Tcp

⎛

⎝⎜
⎞

⎠⎟

 

In the last step, we made an approximation3 based on the fact that the fractional change in 
T is small compared to the fractional change in q. This allows us to define the equivalent 
potential temperature 

 θe = θ exp
Lq
cpT

⎛

⎝⎜
⎞

⎠⎟
 

which is approximately conserved in adiabatic processes with or without condensation. 
Note that although θe is conserved in adiabatic processes with or without condensation, it 
can only be used to compare the densities (or temperatures) of two parcels at the same 
pressure when both are saturated. Therefore, to use θe in an analogous matter as θ in a dry 
atmosphere (i.e. dθe/dz<0 implies instability), the whole layer in question must be 
saturated. This is called potential instability and can happen when an initially unsaturated 
layer is lifted so that the whole layer saturates. 
 
A somewhat simpler conserved quantity can be derived if the motion is strictly in 
hydrostatic balance, in which case Eq. (2) becomes 
 cpdT + d(Lq)+ gdz = 0  (3) 
And we can define moist static energy cpT+gz+Lq, which is conserved in adiabatic, 
hydrostatic motions. In practice, it is conserved to a good approximation.  
 
Now we shall estimate how temperature will change with height for a saturated parcel. Its 
utility will become apparent. In saturated air, q is equal to saturation specific humidity 
q*, and one can use Eq. (3) to get the lapse rate. The basic behavior is of course simply a 
reduced lapse rate because of the latent heat release. The following shows how one might 
quantify this (Going from the first equation to the second one, we have used the 
hydrostatic relation). 

cpdT + L ∂q
*

∂T
dT + L ∂q

*

∂ p
dp + gdz = 0

cp + L
∂q*

∂T
⎛
⎝⎜

⎞
⎠⎟
dT + g 1− ρL ∂q

*

∂ p
⎛
⎝⎜

⎞
⎠⎟
dz = 0

− dT
dz

= g
cp

1− ρL ∂q
*

∂ p

1+ L
cp

∂q*

∂T  

                                                
3 For a derivation without this approximation, see the book by Emanuel, Atmospheric 
convection (1994), section 4.5. The resulting equivalent potential temperature has a more 
complicated form but will be exactly conserved for reversible adiabatic motions. 
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−ρL ∂q
*

∂ p
 is positive but tends to be small (<0.1), while the value of the denominator can 

be quite large (3-4) near the surface. Given T and p, one can evaluate the partial 
derivatives of q* with respect to T and p with the aid of the Clausius-Clapeyron equation 
and the definition of specific humidity. This is called the moist (or wet) adiabat lapse 
rate. Note it is a function of T and approaches the dry one at low temperatures. A 
schematic is shown here: 

 
 
Below (Salby Fig. 7.6) shows is a simple representation of the tropical troposphere 
(although the LCL level shown is higher than a typical tropical condition), and air is 
unsaturated everywhere. What’s the hydrostatic stability of this atmosphere? 
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For infinitesimal perturbations (at any height), the air parcel will be unsaturated and the 
atmosphere is stable to such perturbations. If we lift a parcel from near the surface, it 
acquire negative buoyancy, but if it has enough kinetic energy to overcome the barrier 
and reach the level of free convection (LFC), then it becomes positively buoyant and can 
rise to a much higher level of neutral buoyancy (LNB) that is close to the tropopause. 
This is an example of finite amplitude instability even though the atmosphere is stable to 
infinitesimal perturbations. This is termed conditional instability. Because of the rapid 
increase in stability across the tropopause, much of the convective air will reach their 
LNB near the tropopause and fan out to produce the anvils. The parcels in fact will rise 
higher than its LNB because of its non-zero kinetic energy, the resulting penetrative 
entrainment may be important to the tropopause region.  
 

 
An illustration of finite amplitude instability is shown in (d). 
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A picture over the Amazon (from the cloud appreciation society) 
 
A quantity often used to describe the conditional instability is the convective available 
potential energy (CAPE). It is related to the maximum vertical velocity that the parcel 
can achieve if its velocity is zero at its LFC by integrating the buoyancy force upward 
between its LFC and its LNB. 

 

1
2
wmax
2 = ρe − ρ

ρ
gdz

LFC

LNB

∫ =
1− ρ

ρe

ρ
ρegdz

LFC

LNB

∫

= −
1− Te

T
ρ

dp
LFC

LNB

∫ = − T −Te
ρT

dp
LFC

LNB

∫

= R − T −Te
p

dp
LFC

LNB

∫ = R (T −Te )dln p
LNB

LFC

∫

 

Typical values for CAPE (depending on the parcel of course) are hundreds of J/kg. A 
similarly defined value for the area with negative buoyancy is called the convective 
inhibition. 
 
The existence of conditional instability is special to a moist atmosphere. There is no 
analog in a dry atmosphere. A consequence is that when the barrier is sufficiently high, 
one can build up the instability then release it all at once when the barrier is eroded. This 
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is a factor behind severe thunderstorms in central U.S., which can have CAPE values of a 
few thousands of J/kg. Such situations however are rare. More generally, CAPE is 
removed as it is generated (by warming and moistening of the surface and cooling 
(radiative or adiabatic) of the atmosphere), a situation called quasi-equilibrium. 
 
Note that we have made a number of assumptions here. Here are two of the more 
important ones: we assumed the motion is hydrostatic, which is not true for small 
convective elements; we also assumed that there is no mixing with the environment (the 
parcel rises like a ping-pong ball). Both assumptions make the estimated vertical velocity 
too high. In general, the effect of mixing is smaller for bigger clouds/air parcels.  
 

 
The following figure illustrates the effect of strong lateral entrainment. 
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Convective adjustment 
 
When the atmosphere becomes hydrostatically unstable, convection develops. It releases 
the instability and drives the atmosphere towards a neutral state. For a dry atmosphere (or 
water tank), the adjusted state is that of a roughly constant θ (or density), and it does so 
through turbulent mixing; parcels mix so they all have the same property. Moist 
convection will also drive the atmosphere back to a neutral state, i.e. that with a moist 
adiabatic temperature profile so air lifted from near surface will no longer be buoyant. 
However, the time it takes for moist convection to completely mix is long. While the 
ascent of clouds is fast (10m/s) and it only takes ½ hr to go across the troposphere, the 
descent of clear air (if one view this as the returning leg) is very slow (<cm/s) and can 
take a month to go across the troposphere. The much more efficient way to restore a 
neutral state is through the spreading of gravity waves. We will talk more about gravity 
waves later, but the basic idea is that the compensating subsidence in an atmosphere that 
is stable to dry convection warms the atmosphere. 
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Radiative-convective equilibrium  
 
How does the atmosphere stay convective (at least in some parts)? It is through the 
continuous radiative forcing (and surface fluxes) that the atmosphere is driven towards a 
hydrostatically unstable state. The actual atmospheric state is thus a balance between 
these two processes. This is called the radiative-convective equilibrium. Convective 
adjustment is fast (hrs) and radiative adjustment is slow (days) so the radiative-
convective equilibrium profile is close to a convectively neutral (or a moist adiabat) 
profile (convection wins). But this shouldn’t obscure the fact that radiation is 
fundamentally responsible for driving convection. 
 
Using 1D radiative convective equilibrium models, one can already ask a variety of 
questions about the climate. One is the runaway greenhouse effect. 
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Because of the large greenhouse effect of water vapor, the more water vapor that you add 
to the atmosphere, the higher the surface temperature will be. This increases the 
saturation vapor pressure and allows more water vapor in the atmosphere (as the planet 
continues to outgas) and providing an even stronger greenhouse effect. For Earth, the 
increase in water vapor required to increase the surface temperature (through the 
greenhouse effect) by a certain amount is greater than the increase in saturation vapor 
pressure so it’s stable at the point the two curves cross. (In other words, one can get vapor 
pressure greater than the saturation vapor pressure.) However, for a greater solar 
constant, the increase in water vapor required to increase the surface temperature 
(through the greenhouse effect) can be smaller than the increase in saturation vapor 
pressure. One then gets into a runaway greenhouse process. This is believed to have 
happened to Venus, resulting in the lose of its water.  
 



 18 

 
 
A few words on cloud microphysics. 
A cloud microphysicist will be extremely unhappy with the above description. We have 
assumed that condensation occurs whenever the vapor is supersaturated. However, there 
are many complications to the story. The saturation vapor pressure is for equilibrium with 
a plane surface. Growth of a cloud droplet however requires an increase in surface 
energy. This limits the growth of cloud droplets, and it requires a supersaturation of 
300%-400% for cloud droplets to grow by homogeneous nucleation. In the atmosphere, 
this is alleviated by the presence of cloud condensation nuclei (CCN), which are wettable 
particles that allow the droplets to grow from a finite size so that only 0.1% 
supersaturation is needed. Some of the particles are soluble in water and the solution 
further lows the supersaturation needed. Sulfate particles, e.g., make good CCNs. With 
more CCNs, one expect to have smaller and more cloud droplets given the same amount 
of condensed water. Continental air tends to have more CCNs. An important natural 
production of sulfate aerosols is from the dimethylsulphide (DMS) emission from 
phytoplankton. It was hypothesized that such emission, by increasing the number of 
CCN, may modify Earth’s albedo, and thus play an important role in the radiation budget. 
Anthropogenic production of sulfate aerosols is also significant and is believed to have 
increased. The cloud droplets can grow efficiently by diffusion when they are small 
(<20micron), but as condensational growth is slow when the droplets become large, in 
which case, collisional growth becomes dominant.  
 
The issue of condensation nuclei becomes even more severe for ice and homogeneous 
nucleation is not favored at temperatures above -36C, so cloud droplets can often be 
supercooled (stay liquid below 0C). This is why airplanes going through such a region 
encounter icing problems. Once formed, they can grow through condensation of vapor, 
called deposition. Because the saturation vapor pressure with respect to ice is lower than 
that with respect to water, ice particles grow faster than droplets. Particles can also grow 
through collision with supercooled droplets, or riming. Last, ice particles can grow 
through coagulation, which is favored at temperatures above -5C. 
 
A cloud microphysicist will most likely remain very unhappy with the above sketchy 
discussion. The book by R. R. Rogers, A short course in cloud physics, has more 
information. 
 
 


