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The global energy balance 
 
If we look at Earth from a distance as a planet orbiting a star, can we deduce its 
temperature? This is relevant to e.g. determining whether there is liquid water on the 
planet, or whether the planet is habitable. To do so, let us examine Earth’s energy 
balance. Consider the first law of thermodynamics: 
 dU = δQ +δW  (1) 
where dU is the change in the internal energy of the system, δQ is the amount of heat 
added, and δW is the work done to the system.  
 
The work done to Earth by its environment (δW) is negligible, thus we need δQ=0 for 
Earth to be in energy balance (dU=0)1.  
 
Heat exchange can occur in the form of conduction, convection, and radiation. The heat 
exchange here is almost entirely in the form of radiation. To be in energy balance, energy 
received from the sun’s radiation needs to be balanced by Earth’s radiative emission. 
 
Electromagnetic spectrum  

 
                                                
1 This doesn’t have to be true. Giant planets such as Jupiter and Saturn lose more heat that they 
absorb with ratios of 1.7 and 1.9 for Jupiter and Saturn, respectively.  The difference is due to 
gradual loss of the accretion energy. The geothermal heat on Earth is ~0.1W/m2, and may be 
neglected for the present purpose.  
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Define wavelength λ, frequency ν, and νλ=c, the speed of light. Often people also use 
wavenumber (1/λ) instead of frequency. 
 
Energy received from the sun: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
What is the energy flux density at the mean distance of Earth from the sun (1.5×1011m)? 
 
The solar luminosity (total energy flux from the sun) L0=3.9×1026W. Very little of this 
energy is lost in space, which is effectively a vacuum. Thus integrating the energy flux 
density over any sphere will give L0. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The flux density at Earth distance is therefore (assuming it is uniform over the sphere) 
 

 Sd =
L0
4πd 2
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This is the solar constant. Despite its name, it’s clear it varies with the distance from the 
Sun. For Earth, it is S0=1367W/m2. Even for Earth, solar “constant” varies by ~0.1% over 
a solar cycle (11 years). It also varies as the star evolves. Early in the lifetime of Earth, 
the solar luminosity was ~30% lower.  
 
The energy flux intercepted by Earth is therefore πR2S0, where R is the radius of Earth. 
Not all energy flux intercepted by Earth is absorbed (converted to energy of Earth); some 
are reflected. Define planetary albedo: α=energy reflected/energy intercepted, and we 
have: 
 
 Absorbed solar radiation = S0(1-α)πR2 (2) 
 
Earth’s albedo is ~30%. Note this albedo is averaged over the globe and over all 
wavelengths. An important contributor to this is cloud. We can view Earth’s albedo with 
and without clouds at the following website:  
http://iridl.ldeo.columbia.edu/SOURCES/.NASA/.ERBE/.Climatology 
  
How much energy does Earth radiate away? It is a good approximation to assume that 
Earth radiates like a blackbody (an object that absorbs all radiation incident on it. BUT 
we just said Earth only absorbs 70% of solar radiation! We will come back to this in just 
a moment).  
 
Basic radiometric quantities: 
 
To describe a radiation field, we need to know the rate of energy flow at any given point, 
in any given direction, and at any given frequency. For that, we define: 
 
Monochromatic intensity (or monochromatic radiance) 
The amount of energy within a unit frequency (wavelength) interval that flows within a 
unit solid angle of a particular direction through a unit plane surface area perpendicular to 
this direction in a unit time interval 

 Iν =
dEν

cosθdAdωdνdt
 (3) 

A solid angle ω is defined as the ratio of the area of a spherical surface to the square of 
the radius, and has the unit of steradian. A solid angle is an extension of angle to 3-
dimensions. In polar coordinates, the differential solid angle is dω=sinθdθdϕ, where ϕ is 
the azimuthal angle and θ is the zenith angle. 
 
The monochromatic intensity (or radiance) of a blackbody is given by the Planck’s 
function: 

 Bν (T ) =
2ν 2

c2
hν

ehν /kT −1
 (4) 

where h is the Planck’s constant, k is the Boltzmann’s constant, c is the speed of light, ν 
is the frequency of radiation, T is the temperature in Kelvins. A table of these constants 
and more are included in this note.  
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The Planck’s function was first derived by empirically connecting two earlier formulas: 
Rayleigh-Jeans’ distribution (λ→∞ or ν → 0) and Wien’s distribution (λ→0 or ν → ∞). 
In order to provide theoretical justification for this formula, Planck hypothesized that the 
emitted energy is quantized, marking the beginning of quantum physics.  
 

 
Fig. 3.1 of Hartmann 
 
Monochromatic flux density (or monochromatic irradiance) 
The amount of energy within a unit frequency (wavelength) interval that flows through a 
unit plane surface area with a specified orientation in a unit time interval. 
 
As energy can flow through a surface through different directions, the flux density is 
related to intensity by  
 Fν = Iν cosθ dωhemisphere∫  (5) 

In polar coordinates, we have 

 Fν = dϕ Iν cosθ sinθ dθ
0

π /2

∫
0

2π

∫  (6) 

If radiation is isotropic (Iν independent of angle), the integration over all angles in a 
hemisphere gives Fν=πIν. This is a directional flux. For example, for a horizontal surface, 
if we integrate the upper hemisphere, we get the upward flux through this surface, and if 
we integrate the lower hemisphere, we get the downward flux through this surface. One 
could also integrate the whole sphere, and the result is the net flux. (If one integrates over 
the whole sphere without considering the zenith angle, one gets the actinic flux: 
Factinic = Iν dν0

∞

∫ dω
0

4π

∫ . This is proportional to the number of photos passing a point and 

is important to photochemistry.) 
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When Iν and Fν are integrated over all frequencies (or over a finite frequency interval), 
they are called the intensity I and flux density F. 
 
The above discussion can be equally made in terms of wavelength and because  

 Iν dν
ν

ν+dν

∫ = Iλ dλ
λ

λ+dλ

∫  

and  

v = c
λ

dν = − c
λ 2 dλ

 

We have Iλ =
c
λ 2 Iν  (the minus sign is canceled from reversing the direction of the 

integration). 
 
Here is a plot of Planck’s functions at a few different temperatures. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The image part with relationship ID rId32 was not found in the file.
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Note that the wavelengths with the peak emission intensity decrease with temperature. 
This can be quantified by requiring ∂B/∂ν=0, which gives the Wien’s displacement law 
(you are encouraged to try the derivation yourself).  

 
λmT = const
T /νm = const

 

 
Solar radiation peaks at ~0.6 microns, corresponding to a temperature of 6000K (This is 
one way to find out the temperature of a star). A planet like Earth is a lot colder, therefore 
emits at much longer wavelengths. 
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Indeed, with a reasonable temperature for Earth, there is little spectral overlap between its 
emission and that of the sun. So Earth can be bright (reflective) for the solar radiation but 
black at wavelengths where it emits most of its energy. Snow is one such example. It is 
very bright in the visible, but very dark (absorptive) at wavelengths of terrestrial 
radiation. So it is okay to assume Earth as a blackbody even though it reflects 30% of 
sunlight: reflection and absorption of a material depends on the wavelength under 
consideration. 
 
In atmospheric science and climate research, the term shortwave refers to wavelengths 
less than 4 µm, which contain most of solar radiation, and the term longwave refers to 
wavelengths longer than 4 µm, which contain most of the terrestrial radiation. 
 
Integration of the Planck’s function over all frequencies and all angles gives the Stefan-
Boltzmann law: 

F =
hemisphere∫ cosθdω Bν dν0

∞

∫
= π Bν dν =σT 4

0

∞

∫
  (7) 

where σ is the Stefan-Boltzmann constant and 

 σ = 2π
5k 4

15c2h3
. 

 
As blackbody radiation is isotropic (independent of angle), the integration over all angles 
in a hemisphere gives the factor π. The integration over frequency is not entirely trivial 
but can be done with some mathematical tricks. A derivation using contour integral can 
be found here: http://en.wikipedia.org/wiki/Stefan-Boltzmann_law#Appendix 
 
Now, we have:  

Emitted radiation by Earth =4πR2σT4     (8) 
 
Now we are ready to use energy balance to estimate Earth’s temperature. Equating Eq. 
(2) and Eq. (8), we have:  

 Te =
S0 (1−α )
4σ

⎡
⎣⎢

⎤
⎦⎥

1/4

 (9) 
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This is called the emission temperature. Note that the emission area is the surface of the 
sphere while the area that Earth intercepts sunlight is that of a disk. This gives the factor 
4. There is no dependence on R. What we have just accomplished is quite significant: we 
estimated the temperature of a planet based on the luminosity of the star, planet-star 
distance, and the albedo of the planet. 
 
Plug in the numbers, we have T=255K or -18C. 
 
The observed global mean surface temperature is ~288K or 15C (You can read more 
about how this is observed at http://www.cgd.ucar.edu/cas/tn404/text/tn404_1.html). 
What went wrong? 
 
The Greenhouse effect: 
 
We neglected that Earth has an atmosphere, which interferes with the radiation so we 
need to modify our calculation. We will have a more formal discussion of radiative 
transfer later. For the moment, let us consider the following simple case, where we 
assume the atmosphere is a homogeneous layer transparent to solar radiation but opaque 
to terrestrial radiation. This is possible, again because the two occupy very different 
wavelengths. 
 

 
Consider the energy balance at the top of the atmosphere, we get the same result as Eq. 

(9): Ta = Te =
S0 (1−α )
4σ

⎡
⎣⎢

⎤
⎦⎥

1/4
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Now consider the energy balance at the surface. The surface now receives both the solar 

radiation and the radiation from the atmosphere:A =σTa
4 = S0 (1−α )

4
. The latter is 

absorbed by the surface, as it is approximately a blackbody for terrestrial radiation. Now 
we have 
Absorbed solar radiation + radiation from the atmosphere=radiation from the surface  
i.e. S0 (1−α ) / 4 + A =σTs

4  
so: 
 Ts = 2

1/4Ta = 303K  
 
This is the greenhouse effect, which in this case warms the surface by 48K! 
 
If we have N opaque atmosphere layers, we have Ts = 1+ N( )1/4 Te  
 
A solar cooker effect? 
 
Glass made of silicate absorbs infrared radiation. Horace de Saussure made an apparatus 
that makes use of the effect that we just talked about in 1767 (To read more, see this link 
http://solarcooking.org/saussure.htm). Today’s solar cookers are based on this idea. 
  

 
 
The controversy around the name “greenhouse effect”: in many contemporary 
greenhouses, the cover is made of plastic, which is transparent to infrared radiation, and it 
works by insulating the greenhouse from wind, so as to reduce the lost of heat. So some 
consider “greenhouse effect” a misnomer, but it really depends on whether the 
greenhouse is built with glass or plastic. 
 
A leaky greenhouse 
 
The atmosphere is not a homogeneous layer, is not opaque to infrared radiation and is not 
a blackbody. Define monochromatic emissivity εν as the ratio of the monochromatic 
intensity of the radiation emitted by the body to the corresponding blackbody radiation 
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 εν =
Iν (emitted)
Bν (T )

 

and the monochromatic absorptivity aν 

 aν =
Iν (absorbed)
Iν (incident)

 

 
Kirchhoff’s law: 
 εν = aν  (10) 
To understand the basis for Kirchhoff’s law, let us consider a cavity with a very small 
aperture. While there is no blackbody in nature, radiation field in such a cavity 
approaches that of a blackbody. Place an object made of any material in the cavity. In 
equilibrium, the temperature of this object is the same as that of the wall. Otherwise, we 
would have built a perpetual machine and violated the second law of thermodynamics. 
The amount of radiation it absorbs should equal to the amount that it emits to maintain 
equilibrium of the radiation field so that absorptivity is equal to emissivity. For the 
special case of a blackbody that absorbs all radiation, it must emit the same radiation as 
that is in the cavity. This is why blackbody radiation is also called cavity radiation. Now, 
if we consider absorptivity and emissivity as intrinsic properties of matter, then the 
equality should hold even when the object is removed from the cavity. For gases, the last 
condition is satisfied when the frequency of molecular collisions (which maintains the 
Boltzmann distribution) is much larger than the frequency with which molecules absorb 
and emit radiation at the relevant wavelength. This condition is called local 
thermodynamic equilibrium (LTE). In Earth’s atmosphere, LTE is satisfied below 
~60km.  
 

 
Now let us consider the energy balance with a leaky greenhouse, illustrated in the figure 
below. 
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Balance at the top of the atmosphere: 

 1
4
1−α( )S0 = A ↑ + 1− ε( )S ↑  

Balance at the surface: 

 1
4
1−α( )S0 + A ↓= S ↑  

Combining the two, one can also get the balance for the atmosphere. For a homogeneous 
layer in LTE, there is no difference between up and down, so A ↑= A ↓ , and we have 

 S ↑=σTs
4 = 1−α

2 2 − ε( ) S0 =
2
2 − ε

σTe
4  

Balance for the atmosphere (and make use of Kirchhoff’s law): 

 
A ↑ +A ↓= 2εσTa

4 = εTs
4

Ta =
1
2

⎛
⎝⎜

⎞
⎠⎟
1/4

Ts
 

 
These toy models illustrate the basic concept of the greenhouse effect, but there are a 
number of issues: the atmosphere is of course not a homogeneous layer; we have all 
heard about global warming by CO2, but its concentration is only a few hundred parts per 
million, why do we care about gases of such a small (and even smaller) concentrations? 
To address how radiation interacts with the atmosphere more generally and more 
rigorously, we need to know more about radiative transfer. 
 


