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Radiative transfer and radiative equilibrium  
 
Before we start, let’s summarize the take home messages from the last topic: 
 
We looked at how the atmosphere interacts with radiation through absorption, scattering 
and emission. Gas absorptions occur in discrete frequencies, corresponding to allowed 
transitions in energy states. The position and strength of these lines are measured and/or 
calculated based on quantum mechanics and archived. The absorption by gas molecules 
depends on their structures. Certain species (such as H2O, CO2, O3) are active in infrared 
radiation while others such as N2 and O2 (fortunately for us…) are not, because of the 
lack of electric dipole moments1. The absorption lines are broadened by collision and 
Doppler effects to affect a broader range of frequencies.  
 
Air molecules and particles in the atmosphere also scatter light. For spherical particles, 
Mie theory gives the complete solution of the scattering given the size of the sphere, the 
index of refraction, and the wavelength of the light. Scattering by nonspherical ice 
particles remains a research topic and can be treated with numerical techniques. 
For visible light, Rayleigh scattering by air molecules are important, but it becomes 
unimportant in the infrared as it is proportional to frequency to the fourth power. Cloud 
particles are big enough to be in the Mie scattering regime and the scattering is less 
wavelength-dependent.  
------------------------------------------- 
Our current goal is to determine the vertical temperature structure that arises if radiative 
processes act alone. Earlier, we looked at this problem with our simple greenhouse 
models and assumed the atmosphere is a homogeneous layer. Now we relax this 
assumption to look at the continuous case. To do so, we need the equation of radiative 
transfer. 
 
Changes of intensity over an infinitesimal path dl is described by the Lambert-Bouguer-
Beer’s law: 
  (1) 
where dIν is the gain in intensity (i.e. negative means loss in intensity), n is the number 
density, eν is, by definition, the extinction coefficient per molecule. We can also define 
the absorption coefficient, kν and the scattering coefficient sν. Since extinction is the 
combination of absorption and emission, eν=kν+sν. It is often useful to define the single-
scattering albedo aν=sν/eν. If we view the extinction process as a collision between a 
photon of negligible size and a molecule of a collision cross section, eν is this cross 
section. The physical content of this law is in the proportional dependence of dIν on Iν 
and n, which can be understood intuitively from the collision view. 
 
                                                
1 People have also sought to come up with molecules that are super efficient so that we 
can warm up Mars in case we need to migrate over there (Keeping Mars warm with new 
supergreenhouse gases, Gerstell, M.F.;  Francisco, J.S.;  Yung, Y.L.;  Boxe, C.;  
Aaltonee, E.T.; Published; Proceedings of the National Academy of Sciences of the 
United States of America , v. 98, p. 2154-2157, 2001) 

dIν = −eνnIνdl
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Over this infinitesimal path, the pencil of radiation can also gain intensity from emission 
and scattering of light coming from other directions. An example of the latter is the light 
beam we see when we added milk into water in the aquarium. Including these in the 
source function, we can write: 

  (2) 

Jv is the source function. This is the radiative transfer equation or the Schwartzchild’s 
equation of transfer. 
 
If you find the equation somewhat abstract, we have seen an analog of this already in our 
simple leaky greenhouse model. 
 
Radiative transfer in a plane parallel atmosphere 
 
The atmosphere is a thin layer and tends to vary more slowly horizontally than vertically. 
This makes a plane parallel atmosphere a good approximation in dealing with radiative 
transfer, where we regard the atmosphere as horizontally homogeneous and the radiation 
field horizontally uniform as well (still functions of height and directions). 
 
For convenience, define optical depth τ  

  (3) 

We have  

  (4) 

where µ=cosθ, θ being the zenith angle. τ/µ is the optical path and is greater than the 
optical depth when light comes in at a slant angle. The sign change is because τ is defined 
to be an integral from infinity to a certain height and increases with decreasing height. If 
the absorption and scattering properties and the temperature profiles of the atmosphere 
are known, together with boundary conditions, this equation can be solved for the 
radiation fields at every point and every direction. The solution in general requires 
numerical techniques.  
 
In the following, we will look at some limiting cases. 
 
We shall consider the case without scattering. Under clear sky (no aerosol or clouds) 
conditions, this is an excellent approximation for infrared radiation (why?). In this case, 
we only need to consider the emission source function. The amount of emission into the 
pencil of radiation is ενBν. By Kirchhoff’s law, the emissivity of the material along dl is 
the same as its absorptivity kνndl. Therefore, dIv=-nevdl+nkvBvdl. Without scattering, 
kν=eν we have  

  (5) 

With the proper boundary condition, Eq. (5) can be solved when T is known as a function 
of τ. Multiply both sides of Eq. (4) by exp(-τ/µ) and use  

dIν
neνdl

= −Iν + Jν

τ v (z) = nevdz 'z

∞

∫

µdIν
dτν

= Iν − Jν

µdIν
dτν

= Iν − Bν (T )
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 d e−τ /µ I( ) = −
1
µ
e−τ /µ Idτ + e−τ /µdI  

we have:  

µ
d e−τ /µ I( )

dτ
= −e−τ /µJ  

which can be integrated along a path. In the presence of scattering, this solution is only 
formal as J depends on I itself. But without scattering, the source function J is replaced by 
B(T), and this can indeed be integrated to give the solution. 
 
For instance, for an upward direction, the solution can be written as  

  (6) 

where 0<µ<=1. For a downward direction, the solution is: 

 Iν
− τν ,µ( ) = Iν− 0,µ( )exp τν z( )

µ
⎡
⎣⎢

⎤
⎦⎥
+ Bν τν '( )exp τν z( )−τν '

µ
⎡
⎣⎢

⎤
⎦⎥
dτν '
−µ0

τν z( )
∫  (7) 

where -1<=µ<0. τνs is the optical depth at the surface. 
 
For infrared radiation, the boundary conditions are Iν

+ τν ,µ( ) = B Ts( ); Iν− 0,µ( ) = 0   
For solar radiation, emission by the atmosphere is negligible. When we also neglect 
scattering, which is an acceptable approximation for calculating radiative heating, the 
source function is 0. The solution is then simply the exponential decay of the incoming 
solar beam and the reflected sun light. The latter can be calculated from the reflectivity of 
the surface, which can be a function of the incident and reflecting angles. A surface with 
reflectivity independent of the reflecting angle is called a Lambertian surface. 
 
Every part of the atmosphere absorbs and emits energy. The net value gives us the 
heating rate. Consider a thin layer in a plane parallel atmosphere. Define the net flux 
F=F+-F-, where F+ and F- are the upward and downward fluxes, respectively. The energy 
loss/gain is the difference between the net flux at the upper interface and that at the lower 
interface. The rate that air is heated by radiation is: 

  

To calculate the fluxes, we need to integrate Iv over all angles and all frequencies. This is 
straightforward but computationally expensive. This is true particularly for the 
integration over frequency because of the complicated and rapid changes of absorption 
cross sections. Approximate methods have been developed. One method is to use an 
effective absorption cross section for a whole spectral band. Integration over all angles 
can also be simplified by assuming some simple shapes for the radiation field. A popular 
one is to assume a semi-isotropic field of radiation. This gives the two-stream 
approximation. Such calculations can be done numerically. This is an example: 

Iv
+ (τ v ,µ) = Iv

+ (τ vs ,µ)exp
τ v (z) − τ vs

µ
⎡

⎣
⎢

⎤

⎦
⎥ + Bv (τ v ')τν (z )

τνs∫ exp τ v (z) − τ v '
µ

⎡

⎣
⎢

⎤

⎦
⎥
dτν

'

µ

∂T
∂t

=
−1
cpρ

∂F
∂z
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Here we shall make some simplifications and try to gain some understanding of the 
qualitative behavior. 
 
At frequencies of solar radiation, emission by the atmosphere is negligible, so Bν~0. We 
now consider that light beams only go up and down, so that F=I. (For light beams at a 
slant angle, simply replace the optical depth with the optical path below). 
 
We have  

 

dIv
↑

dτ v
= Iv

↑

− dIv
↓

dτ v
= Iv

↓

 (8) 

where optical depth τ is again defined as 

  (9) 

As F=I, and integrate over all (relevant) wavelengths, and use an effective optical depth 
τ, we have 

 
− dFv

↑

dτ v
= −Fv

↑

dFv
↓

dτ v
= −Fv

↓

    (10) 

We shall consider absorptions by O2 and O3 in the UV. These are very large, so we only 
need to consider the downward solar beam (nothing reaches the surface so there is no 
reflection), and Fv

↓ z( ) = Fv↓ ∞( )exp −τ v z( )( )   
where F(∞) is the incoming solar flux at z=inf. 

τ v (z) = nevdz 'z

∞

∫
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For a small frequency interval, the rate of energy absorption is 
dFv

↓ z( )
dz

dν  , and the heat 

rate due to absorption in this frequency range is: 
 

 
  

1
cpρ

dFv
↓ z( )
dz

dν=
−Fv

↓dν
cpρ

dτ
dz

=
Fv
↓dν
cpρ

nkv  

where n is the number density of the absorption molecules and k is the effective 
absorption cross section. Write ρ=nairMair, the product of the number density and the 
molecular weight of air, we have  

  

Fv
↓dν
cpρ

nkv =
Fv
↓dν

cpMair

n
nair

kv =
Fv
↓ ∞( )dν
cpMair

Ckv exp −τv z( )( )  

We have defined the volume mixing ratio C=n/nair. 
 
The heat rate is obtained by integrate the above expression over all frequencies. Note that 
for frequencies with stronger absorption, the solar beam gets attenuated more quickly as 
it moves downward, so the transmission function (exp(-τν)) is small, and the heating is 
the produce of kν and the transmission function. At height z, the absorption is the 
strongest at frequencies where the optical depth is close to 1. For frequencies with greater 
optical depth, the transmission function is too small (no enough photons reach there). For 
frequencies with smaller optical depth, which also implies a smaller absorption cross 
section, the molecules are not as good at absorbing the photons. Alternatively, for each of 
the frequencies, the same argument also gives a height range with the strongest 
absorption, which is known as the Chapman layer. At lower and lower heights, regions of 
zero/small transmission becomes wider and wider, frequencies with optical depth of one 
gest pushed to regions with smaller and smaller kν and the product of kν and (exp(-τν)) 
becomes smaller and smaller. 
 
Now let’s see what the atmospheric temperature profile should look like. As the sunlight 
goes through the atmosphere, higher energy UV light (shorter than 0.2micron) is strongly 
attenuated by O2, so |F| decreases, but the mixing ratio of O2 is constant. We should see 
large SW heating rates at higher altitudes. Assuming the infrared cooling capability is 
roughly the same with height, we should see temperature to be higher at high altitudes. 
This is what we see in the thermosphere.  
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The existence of an O3 layer that peaks between 20 and 30km modifies the picture. While 
O3 mixing ratio peaks there, F decreases as light moves downward through the 
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atmosphere. The product of the two, and hence the SW heating rate is higher, near 50km. 
This gives rise to the mesosphere and the stratosphere, separated by the stratopause. 
 
We have explained the existence of the thermosphere, mesosphere, and stratosphere! 
Note that the above discussion is only qualitative. The infrared cooling capability in 
reality is not constant, as the discussions below will illustrate. 
 
Now let us consider the radiative transfer in the longwave and radiative-equilibrium. 
Here the emission source function is Bv(T), and  
 
If the total radiative heating is nonzero over parts of the atmosphere, temperatures there 
will adjust, which then modifies the radiative heating field. In the absence of other 
processes, the equilibrium state is one with zero radiative heating everywhere, i.e. one in 
radiative-equilibrium. The adjustment of temperature mostly modifies the longwave 
radiation, which is tied to temperature by the Planck’s law. Shortwave heating rate has 
some dependence on temperature through the dependence of absorption coefficients on 
temperature but this dependence is weaker. 
 
So it is instructive to keep the shortwave heating fixed and consider the adjustment of 
temperature and longwave radiation alone. In fact, we will assume shortwave heating is 
zero for the atmosphere. We will also assume infrared absorption by the atmosphere is 
uniform at all wavelengths. This is called a gray atmosphere. The problem at hand is thus 
a continuous version of the leaky greenhouse problem we looked at before. 
 
We shall again assume that radiation is either straight upward or downward so that F=I. 
We could choose to use the semi-isotropic approximation, but the results only differ by 
replacing B with B*=πB. With these simplifications, we have  

  (11) 

    (12) 

Let’s define the net flux  and the total flux so that we have: 

   (13) 

Derivation of Eq. (13) from Eqs. (11) and (12) is trivial. But let us pause for a moment 
and look at their physical content to get an intuitive feeling. In the first equation, F-bar 
times dτ is the amount of energy absorbed and 2Bdτ is the amount of energy emitted. The 
second equation is more obscure physically, but says that the total flux can change with τ 
only when there is a net flux. If there is not, it is symmetric between up and down and the 
total flux gradient is zero.  
Radiative equilibrium requires F=const, so we have 
  (14) 

Iv (τ vs ,µ) = B(Ts ), Iv (0,µ) = 0

dF↑

dτ
= F↑ − B

−
dF↓

dτ
= F↓ − B

F = F↑ − F↓ F = F↑ + F↓

dF
dτ

= F − 2B

dF
dτ

= F

F = 2B
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Integrating the second Eq. in (13), we have 
  
Consider energy balance at the top of the atmosphere (TOA), where =F0=(1-
albedo)S/4, where S is the solar constant. Since F↓=0 at TOA,  

  

We have got the temperature structure in the atmosphere as a function of τ. Now consider 
energy balance at the surface (looks familiar?),  
  
From their definitions, we have 

  

As the net flux F is constant and equal to F0, and use Eq. (14), we have: 

  

Note the jump at the surface. 
 
We have solved the problem in optical depth space. To get the solution in height, we need 
to know τ as a function of z. To do so, we need to know how the number of absorbing gas 
molecules is distributed with height. The atmosphere is held close to the surface of the 
planet by gravity. The vertical forces acting on the atmosphere at rest are gravity and the 
pressure forces. 

 
These are in balance to a very good approximation as wave adjustment can very 
effectively remove any imbalance. This gives the hydrostatic balance. 

  (15) 

2B(τ ) = F = Fτ + 2B(τ = 0)
F↑

F = F = F↑ = F0
B(τ = 0) = F0 / 2

B(τ ) = F0
2
(τ +1)

B(Ts ) = F0 + F
↓(τ s )

F↓ =
1
2
F − F( )

B(Ts ) = B(τ s ) +
F0
2

dp
dz

= −ρg
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For an ideal gas, we have  
  (16) 
where R is the gas constant, which is the universal gas constant divided by the molecular 
weight of the gas in question. Eliminate ρ from the two equations, we have 

  

We have defined the scale height H=RT/g. 
 
While T is not a constant with height, assuming it is yields a simple expression for p as a 
function of height:  
  
The following figure shows it is not too far off. 

 
Fig 3.6 of Marshall and Plumb. Observed profile of pressure (solid) plotted against that 
calculated from the equation above with H=6.8km. 
 

For an isothermal atmosphere, the density profile is simply:  

The number density n of the absorbing gas is ρ times the volume mixing ratio C, then 
divided by the molecular weight of the air Mair. We will assume that C and kv are 
constant. These are not accurate but will give us the qualitative behavior. This gives an 
exponential distribution for τ 

  

For a gas with uniform mixing ratio such as CO2, τ has an exponential distribution with H 
equal to the scale height. In the troposphere, water vapor is the most important gas for 
infrared radiative transfer. We can also roughly fit an exponential for τ due to water 
vapor but H is considerably smaller (~2km) because of the rapid decrease in water vapor 
mixing ratio with height. Some examples of the resulting temperature profiles are shown 
here: 

p = ρRT

dp
p

= −
gdz
RT

= −
dz
H

p = pse
− z /H

ρ =
ps
RT

e− z /H

τ =
ps
g
C
M
kve

− z /H = τ se
− z /H
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The optical depth=4 case gives roughly the behavior of the radiative equilibrium of a 
realistic radiative transfer model. 
 
The above gives the basic feature, but the gray approximation exaggerates the 
discontinuity at the surface. The real atmosphere is not gray and absorption happens in 
spectral lines/bands. The radiative-equilibrium profiles can be calculated more accurately 
using a radiative transfer model, where band models have been developed for different 
gas species and applied to absorption and emission within relevant wavelength ranges. 
This is the approach that climate models use. 
 
With a more realistic radiative transfer model, there is SW heating and the discontinuity 
at the surface is relatively small (a few K). Below is a rough energy flow diagram. Note 
the LW flux from the atmosphere to the surface is greater than the SW flux absorbed by 
the surface!  
 
The SW absorption in the stratosphere is mainly by ozone and oxygen. That in the 
troposphere is mostly by water vapor (13 units out of the 17), and rest is by clouds (3 
units) and CO2, O3, and O2 (1 unit). 
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Compared with observed temperature profiles, the radiative equilibrium profile gives a 
temperature decrease with height -dT/dz, called the lapse rate, that is too large in the 
lower troposphere. To explain this, we need to consider hydrostatic instability. But before 
we do so, let’s look at some applications of what we have learned so far, including 
remote temperature sensing. 
 
Remote temperature sensing 
 
For infrared radiation, when τvs is large, we have at the top of the atmosphere (for an 
upward direction) 

 

When τvs is large, emission from the surface cannot penetrate to the TOA so the surface 
term dropped out. We are again considering the upward beam only. 
 
This is a weighted sum of Bv(T) which is related to the temperature profile T(z), and

is the kernel or weighting function, which represents the 

contribution efficiency from a layer of unit thickness to the satellite observed radiance. 
 

Iv (τ = 0) = Bv (T )0

τνs∫ exp −τ v '[ ]dτν
'

= −Bv (T )0

∞

∫ exp −τ v '[ ]dτν
'

dz
dz

Wv = − exp −τ v '[ ]dτν
'

dz
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In some textbooks, the peak in the weighting function is given a specially meaning. For 
example, if again assuming an exponential profile for τ, we have 

  (17) 

and can find where the weighting function peaks by differentiating W, and requiring it to 
be zero. This gives τ=1. Some call this the emission level. (τ/µ, the optical path or 
thickness, should be used if we consider a slant path), meaning that the region of unit 
optical thickness makes the largest contribution to the measured intensity. However, this 
is not correct because the peak is no longer present if a layer of unit mass (per unit area) 
instead of unit thickness is used. What is key to understanding remote temperature 
sensing is simply that these weighting functions are different. If we take measurements at 
frequencies that correspond to different absorption strengths (e.g. from line center to the 
wings), then we are measuring the weighted sum of Bv(T) with different weighting 
functions. As the absorption strength increases, the peak of this weighting function (or 
more generally regions contributing to the satellite observed radiance) moves upward 
towards lower pressure. This tells us the temperature structure. The following figures 
illustrate this. 
 
 

 
Monochromatic intensity of radiation emitted from a point on the Earth measured by an 
infrared spectrometer. 
 

Wv = exp −τ v '[ ]τν
'

H
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Finer resolution data from NASA ER-2 aircraft 
Intensity at a particular frequency is uniquely related to a blackbody temperature. So 
intensity measurements are often presented in terms of this temperature, which is called 
brightness temperature.  

 
Intensities and equivalent blackbody temperatures observed from the satellite. The 
channels are numbered in order of decreasing absorptance. 
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An illustration of weighting functions and transmissivity functions.  
 
Well-mixed trace gases such as CO2 are well suited for remote temperature sensing 
because it can be assured that the variations in the radiances from one sounding to 
another are mainly due to differences in the vertical profiles of Bv rather than to the 
differences in the vertical profiles of the concentrations of the absorbing constituents.  
 
What do we learn about the temperature profile from the above figures? 
 
With measurements over a number of channels, we can approximate the atmosphere as n 
isothermal layers, each with its own temperature Tn, and write  
 

� 

Ii = Wi,sBi Ts( ) + Wi,nBi Tn( )
n
∑  (18) 

We have included the contribution from surface temperature here as well. This can be 
solved for Tn and Ts, and is called an inverse problem, the simplest of which is a least-
square fit. 
 
The effect of doubling CO2 
 
We have learned most of what is needed to understand the radiative effects of doubling 
CO2. Let’s first consider the effect of doubling CO2 on the stratosphere. As we mentioned 
earlier, SW heating in this region is mostly by O3 and the absorption is largely 
independent of temperature. Therefore we may consider it as fixed. The LW heating rate 
of a layer of air is determined by its emission to space and it radiative energy exchange 
with air above and below. CO2 is the main emitter and absorber in this region in LW.  
 
Picture this as layers of the atmosphere exchanging photons. Consider two layers, A and 
B, separated by some parts of the atmosphere. At a particularly frequency, the number of 
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photons from layer A that are absorbed by layer B is the product of three things: the 
number of photons emitted by A, which is itself the product of the emissivity of layer A 
and its blackbody emission or Planck function), the transmission function across the 
atmosphere between A and B, and the absorptivity of B. The number of photons emitted 
by layer B that are absorbed by layer A is the product of the emissivity of layer B and its 
blackbody emission or Planck function, the same transmission function across the 
atmosphere between A and B, and the absorptivity of A. From the Kirchoff’s law, the 
exchange of photons between A and B is thus proportional to the difference in A and B’s 
Planck functions. Because the contrast between the temperature of a layer and those of 
the layers above and below is much smaller compared to the difference between the 
temperature of this layer and that of space. This allows us to neglect the radiation energy 
exchange between this layer and layers above and below and consider only the heat loss 
through radiation to space. This is called the cool-to-space approximation, and is 
surprisingly good in many cases, as long as temperature variations have large vertical 
wavelengths. 
 

 
Figure: Total LW cooling by the CO2 15 micron band (solid) and that from the cooling to 
space approximation (dashed). 
 
Now we have a situation where the SW heating is fixed, and we increase the number of 
emitters by doubling CO2. The stratosphere should cool because of doubling CO2. We 
can in fact estimate how much cooling should occur. Consider the radiative balance in the 
stratosphere:  

εB=SW heating. 
where ε is the emissivity and is proportional to the square root of the number of CO2 
molecules as CO2 absorption line centers are saturated in the 15 micron band. This 
behavior is illustrated in the following figure, and can be proven given the pressure 
broadening line shape and provided the lines are strong. 



 

 16 

(Houghton Fig.4.2) 

 
For weak lines, increasing the number of absorbers increases the absorption linearly. For 
strong lines, at the line center, there is already complete absorption, increasing the 
number of absorbers thus increases the total absorption by widening the spectral region 
where absorption is strong, which goes as the square root of the number concentration as 

seen from the pressure broadening line shape , where s is proportional to 

the number concentration, and for strong lines, we are interested in the wings and alpha 
can be neglected. 
 
Doubling CO2 will then cause B to decrease to (1/2)(1/2)

 of its current value, and the 
temperature to decrease to (1/2)(1/8)

 of its current value (say 280K). The expected 
temperature decrease is ~20K. This is not far from the results from more detailed models. 

� 

s
ν − ν0( )2 + α 2
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The effect of doubling CO2 on the troposphere. 
I’m sure everybody has heard about global warming due to CO2 increase. Some of you 
also know the perturbation of doubling CO2 on the radiation is ~4W/m2, and the effect of 
CO2 increase is not linear but about logarithmic. We have learned a number of reasons 
why the radiative effects should scale sublinearly with the concentration of the gas 
(saturation at line center, line overlapping). Below sketches another argument. From our 
discussion earlier about the CO2 15 micron band, we see that much of the emission comes 
from the upper troposphere. As we increase CO2, the emission level (τ=1) will move 
upwards. As temperature decreases with height in the troposphere, CO2 emission is at a 
lower temperature, giving rise to a greater greenhouse effect. The emission here is from 
wings of individual lines, for which one can show that τ∝p2 (based on the same argument 
presented earlier)2. So pressure at the emission level will decrease as [CO2]1/2. And the 
altitude of the emission level will increase as (ln[CO2])/2 because z∝lnp, so does the 
emission temperature, and hence the greenhouse effect, because the lapse rate dT/dz is 
roughly constant. For more discussions of these, go to Chapters 4 and 14 of John 
Houghton’s The physics of atmospheres, third edition, Cambridge University Press, 
2002). What we have discussed is an extension of the toy greenhouse models that we 
talked about. In the CO2 15 micron band, the absorption is strong so we can view it as 
opaque. In the toy greenhouse model, we assume the atmosphere to be homogeneous so 
that when it’s opaque, making it more opaque does not change things. The discussion 
above allows us to extend this to the case of an inhomogeneous atmosphere. 
 
Radiative timescale 
 
If we perturb the temperature field that is in radiative equilibrium, how long does it take 
to relax back to its original (equilibrium) state? The precise answer depends on the spatial 
scale of the perturbation. But for a very rough estimate, let’s consider the atmosphere as a 
blackbody and its temperature is perturbed by ΔT, we have  
  

 − dΔT
dt

= 1
cpρH

2ΔF = 8σT
3

cpρH
ΔT   

where H is the scale height. This gives a radiative relaxation timescale of ~6 days. The 
fact that the atmosphere is not a blackbody makes the relaxation timescale a little longer 
(on the order of 10 days). Thus radiative processes act slowly compared to other 
processes such as convection. Also over a diurnal cycle, we see temperature at 50km 
varies by ~4K as solar heating varies over the course of a day. This variation would be 
greater if the radiative timescale were shorter. 
 
 
                                                
2 If we consider the overlapping of different lines, then the dependence is further 
weakened. A limiting case is where there is enough overlap that all wavelengths are 
blocked and transmission is zero and remains zero no matter how much one increases the 
amount of absorbers. To read more on this, check out Chapter 4 of Goody and Yung, 
1989, Atmospheric Radiation, theoretical basis, second edition. 
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A few words on clouds 
 
Clouds consist of liquid water droplets or ice particles suspended in the atmosphere. Our 
everyday experience indicates that clouds can have complicated 3-dimensional shape. In 
climate models, it is often simplified as uniform and infinite in the horizontal within a 
grid box. 
 
Given the size distribution of cloud droplets/particles, the albedo of a cloud depends on 
the liquid/ice water content and the solar zenith angle. Clouds reflect more when there are 
more droplets/particles and when sunlight comes in at a slant angle (figure below). The 
albedo saturates at some point: it no longer increases when you increase the number of 
droplets. This situation is called optically thick, is the same reason why a large glass of 
milk looks no different from a small glass of milk. 

 
For the same amount of cloud water/ice, smaller particles tend to increase the albedo 
(figure below) as the total cross section is greater. Below is based on radiative transfer 
calculations for realistic atmospheric conditions. 
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The absorption by clouds decreases with solar zenith angle. This is because with a larger 
zenith angle, there is greater chance, because of the stronger forward scattering by cloud 
particles, for a photon to be scattered away from the clouds versus into the clouds. The 
latter may eventually lead to absorption. The same idea also explains why wet sand is 
darker than dry sand: in wet sand, the scattering is more in a forward direction so it takes 
a larger number of scattering events for light to come back out, hence more absorption. 
 
Even relatively thin clouds are opaque to terrestrial radiation (figure below). For 
example, a 1km thick status cloud with liquid water content of say 0.3g/m3 (for cirrus, 
this number can be 10 or 100 times smaller) will have an emissivity close to 1. So one 
may consider clouds as blackbodies. 

This is seen clearly from observations. 
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Radiative effects of clouds 
 
Clouds, being bright, reduce the amount of solar radiation that Earth absorbs. This is a 
cooling effect. It also reduces the amount of thermal emission, which is a warming 
(greenhouse) effect. The net effect is the difference between the two. The greenhouse is 
strongest for clouds at high altitudes (i.e. lower temperatures), and the weakest when 
clouds are close to the surface. The net radiative forcing of clouds is close to zero for 
clouds in tropical deep convection, which are white and cold, and is the strongest (on the 
negative side) for boundary layer clouds. Tenuous cirrus clouds, however, are cold and 
opaque in the infrared but not very reflective in the visible so that they have a net 
warming effect. The following is based on radiative transfer calculations (from 
Hartmann, Moy, Fu, J. Climate, 2001) and optical depth is for visible wavelength: 
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