
Chapter 6

The equations of fluid motion

In order to proceed further with our discussion of the circulation of the at-
mosphere, and later the ocean, we must develop some of the underlying
theory governing the motion of a fluid on the spinning Earth. A differen-
tially heated, stratified fluid on a rotating planet cannot move in arbitrary
paths. Indeed, there are strong constraints on its motion imparted by the
angular momentum of the spinning Earth. These constraints are profoundly
important in shaping the pattern of atmosphere and ocean circulation and
their ability to transport properties around the globe. The laws governing
the evolution of both fluids are the same and so our theoretical discussion
will not be specific to either atmosphere or ocean, but can and will be applied
to both. Because the properties of rotating fluids are often counter-intuitive
and sometimes difficult to grasp, alongside our theoretical development we
will describe and carry out laboratory experiments with a tank of water on
a rotating table (Fig.6.1). Many of the laboratory experiments we make use
of are simplified versions of ‘classics’ that have become cornerstones of geo-
physical fluid dynamics. They are listed in Appendix 13.4. Furthermore we
have chosen relatively simple experiments that, in the main, do nor require
sophisticated apparatus. We encourage you to ‘have a go’ or view the atten-
dant movie loops that record the experiments carried out in preparation of
our text.

We now begin a more formal development of the equations that govern
the evolution of a fluid. A brief summary of the associated mathematical
concepts, definitions and notation we employ can be found in an Appendix
13.2.
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154 CHAPTER 6. THE EQUATIONS OF FLUID MOTION

Figure 6.1: Throughout our text, running in parallel with a theoretical develop-
ment of the subject, we study the constraints on a differentially heated, stratified
fluid on a rotating planet (left), by making use of laboratory analogues designed
to illustrate the fundamental processes at work (right). A complete list of the
laboratory experiments can be found in Section 13.4.

6.1 Differentiation following the motion

When we apply the laws of motion and thermodynamics to a fluid to derive
the equations that govern its motion, we must remember that these laws
apply to material elements of fluid which are usually mobile. We must learn,
therefore, how to express the rate of change of a property of a fluid element,
following that element as it moves along, rather than at a fixed point in space.
It is useful to consider the following simple example.

Consider again the situation sketched in Fig.4.13 in which a wind blows
over a hill. The hill produces a pattern of waves in its lee. If the air is
sufficiently saturated in water vapor, the vapor often condenses out to form
cloud at the ‘ridges’ of the waves as described in Section 4.4 and seen in
Figs.4.14 and 4.15.

Let us suppose that a steady state is set up so the pattern of cloud does
not change in time. If C = C(x, y, z, t) is the cloud amount, where (x, y) are
horizontal coordinates, z is the vertical coordinate, t is time, then:



6.1. DIFFERENTIATION FOLLOWING THE MOTION 155

µ
∂C

∂t

¶
fixed point
in space

= 0,

where we keep at a fixed point in space, but at which, because the air is mov-
ing, there are constantly changing fluid parcels. The derivative

¡
∂
∂t

¢
fixed point

is called the ‘Eulerian derivative’ after Euler1.
But C is not constant following along a particular parcel ; as the parcel

moves upwards into the ridges of the wave, it cools, water condenses out,
cloud forms, and so C increases (recall GFD Lab 1, Section 1.3.3); as the
parcel moves down into the troughs it warms, the water goes back in to the
gaseous phase, the cloud disappears and C decreases. Thusµ

∂C

∂t

¶
fixed
particle

6= 0

even though the wave-pattern is fixed in space and constant in time.
So, how do we mathematically express ‘differentiation following the mo-

tion’? In order to follow particles in a continuum a special type of differen-
tiation is required. Arbitrarily small variations of C(x, y, z, t), a function of
position and time, are given to the first order by:

δC =
∂C

∂t
δt+

∂C

∂x
δx+

∂C

∂y
δy +

∂C

∂z
δz

where the partial derivatives ∂
∂t
etc. are understood to imply that the other

variables are kept fixed during the differentiation. The fluid velocity is the

1 Leonhard Euler (1707-1783). Euler made vast contributions to
mathematics in the areas of analytic geometry, trigonometry, calculus and number the-
ory. He also studied continuum mechanics, lunar theory, elasticity, acoustics, the wave
theory of light, hydraulics and laid the foundation of analytical mechanics. In the 1750’s
Euler published a number of major pieces of work setting up the main formulas of fluid
mechanics, the continuity equation and the Euler equations for the motion of an inviscid
incompressible fluid.
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rate of change of position of the fluid element, following that element along.
The variation of a property C following an element of fluid is thus derived by
setting δx = uδt, δy = vδt, δz = wδt, where u is the speed in the x-direction,
v is the speed in the y-direction and w is the speed in the z-direction, thus:

(δC)
fixed
particle

=

µ
∂C

∂t
+ u

∂C

∂x
+ v

∂C

∂y
+ w

∂C

∂z

¶
δt

where (u, v, w) is the velocity of the material element which by definition is
the fluid velocity. Dividing by δt and in the limit of small variations we see
that: µ

∂C

∂t

¶
fixed
particle

=
∂C

∂t
+ u

∂C

∂x
+ v

∂C

∂y
+ w

∂C

∂z
=

DC

Dt

in which we use the symbol D
Dt
to identify the rate of change following the

motion:

D

Dt
≡ ∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
≡ ∂

∂t
+ u.∇ . (6.1)

Here u = (u, v, w) is the velocity vector and ∇ ≡
³

∂
∂x
, ∂
∂y
, ∂
∂z

´
is the gradient

operator. D
Dt
is called the Lagrangian derivative (after Lagrange; 1736 -

1813) [it is also called variously the ‘substantial’, the ‘total’ or the ‘material’
derivative]. Its physical meaning is ‘time rate of change of some characteristic
of a particular element of fluid’ (which in general is changing its position). By
contrast, as introduced above, the Eulerian derivative ∂

∂t
, expresses the rate

of change of some characteristic at a fixed point in space (but with constantly
changing fluid element because the fluid is moving).
Some writers use the symbol d

dt
for the Lagrangian derivative, but this

is better reserved for the ordinary derivative of a function of one variable,
the sense it is usually used in mathematics. Thus, for example, the rate of
change of the radius of a rain drop would be written dr

dt
with the identity

of the drop understood to be fixed. In the same context D
Dt
could refer to

the motion of individual particles of water circulating within the drop itself.
Another example is the vertical velocity, defined as w = Dz/Dt: if one sits
in an air parcel and follow it around, w is the rate at which one’s height
changes2.

2Meteorologists like working in pressure coordinates in which p is used as a vertical
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The term u.∇ in Eq.(6.1) represents advection and is the mathematical
representation of the ability of a fluid to carry its properties with it as it
moves. For example, the effects of advection are evident to us every day.
In the northern hemisphere southerly winds (from the south) tend to be
warm and moist because the air carries with it properties typical of tropi-
cal latitudes; northerly winds tend to be cold and dry because they advect
properties typical of polar latitudes.
We will now use the Lagrangian derivative to help us apply the laws of

mechanics and thermodynamics to a fluid.

6.2 Equation of motion for a non-rotating fluid

The state of the atmosphere or ocean at any time is defined by five key
variables:

u = (u, v, w); p and T ,

(six if we include specific humidity in the atmosphere, or salinity in the
ocean). Note that by making use of the equation of state, Eq.(1.1), we can
infer ρ from p and T . To ‘tie’ these variables down we need five independent
equations. They are:

1. the laws of motion applied to a fluid parcel; this yields three indepen-
dent equations in each of the three orthogonal directions

2. conservation of mass

3. the law of thermodynamics, a statement of the thermodynamic state
in which the motion takes place.

These equations, five in all, together with appropriate boundary condi-
tions, are sufficient to determine the evolution of the fluid.

coordinate rather than z. In this coordinate an equivalent definition of “vertical velocity”
is:

ω =
Dp

Dt
,

the rate at which pressure changes as the air parcel moves around. Since pressure varies
much more quickly in the vertical than in the horizontal, this is still, for all practical
purposes, a measure of vertical velocity, but expressed in units of hPa s−1. Note also that
upward motion has negative ω.
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Figure 6.2: An elementary fluid parcel, conveniently chosen to be a cube of side
δx, δy, δz, centered on (x, y, z). The parcel is moving with velocity u.

6.2.1 Forces on a fluid parcel

We will now consider the forces on an elementary fluid parcel, of infinitesimal
dimensions (δx, δy, δz) in the three coordinate directions, centered on (x, y, z)
(see Fig.6.2).
Since the mass of the parcel is δM = ρ δx δy δz, then, when subjected

to a net force F, Newton’s Law of Motion for the parcel is

ρ δx δy δz
Du

Dt
= F , (6.2)

where u is the parcel’s velocity. As discussed earlier we must apply Eq.(6.2)
to the same material mass of fluid, i.e., we must follow the same parcel
around. Therefore, the time derivative in Eq.(6.2) is the total derivative,
defined in Eq.(6.1), which in this case is

Du

Dt
=

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

=
∂u

∂t
+ (u ·∇)u .
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Figure 6.3: Pressure gradient forces acting on the fluid parcel. The pressure of
the surrounding fluid applies a force to the right on face A and to the left on face
B.

Gravity

The effect of gravity acting on the parcel in Fig.6.2 is straightforward: the
gravitational force is g δM , and is directed downward,

Fgravity = −gρbz δx δy δz, (6.3)

where bz is the unit vector in the upward direction and g is assumed constant.
Pressure gradient

Another kind of force acting on a fluid parcel is the pressure force within the
fluid. Consider Fig.6.3. On each face of our parcel there is a force (directed
inward) acting on the parcel equal to the pressure on that face multiplied by
the area of the face. On face A, for example, the force is

F (A) = p(x− δx

2
, y, z) δy δz ,

directed in the positive x-direction. Note that we have used the value of p at
the mid-point of the face, which is valid for small δy, δz. On face B, there is
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an x-directed force

F (B) = −p(x+ δx

2
, y, z) δy δz ,

which is negative (toward the left). Since these are the only pressure forces
acting in the x-direction, the net x-component of the pressure force is

Fx =

·
p(x− δx

2
, y, z)− p(x+

δx

2
, y, z)

¸
δy δz .

If we perform a Taylor expansion about the midpoint of the parcel, we have

p(x+
δx

2
, y, z) = p(x, y, z) +

δx

2

µ
∂p

∂x

¶
,

p(x− δx

2
, y, z) = p(x, y, z)− δx

2

µ
∂p

∂x

¶
,

where the pressure gradient is evaluated at the midpoint of the parcel, and
where we have neglected the small terms of O(δx2) and higher. Therefore
the x-component of the pressure force is

Fx = −∂p
∂x

δx δy δz .

It is straightforward to apply the same procedure to the faces perpendicular
to the y- and z-directions, to show that these components are

Fy = −∂p
∂y

δx δy δz ,

Fz = −∂p
∂z

δx δy δz .

In total, therefore, the net pressure force is given by the vector

Fpressure = (Fx, Fy, Fz)

= −
µ
∂p

∂x
,
∂p

∂y
,
∂p

∂z

¶
δx δy δz (6.4)

= −∇p δx δy δz.

Note that the net force depends only on the gradient of pressure, ∇p: clearly,
a uniform pressure applied to all faces of the parcel would not introduce any
net force.



6.2. EQUATION OF MOTION FOR A NON-ROTATING FLUID 161

Friction

For typical atmospheric and oceanic flows, frictional effects are negligible
except close to boundaries where the fluid rubs over the Earth’s surface. The
atmospheric boundary layer – which is typically a few hundred meters to 1
km or so deep – is exceedingly complicated. For one thing, the surface is
not smooth: there are mountains, trees, and other irregularities that increase
the exchange of momentum between the air and the ground. (This is the
main reason why frictional effects are greater over land than over ocean.)
For another, the boundary layer is usually turbulent, containing many small-
scale and often vigorous eddies; these eddies can act somewhat like mobile
molecules, and diffuse momentum more effectively than molecular viscosity.
The same can be said of oceanic boundary layers which are subject, for
example, to the stirring by eddies generated by the action of the wind, as will
be discussed in Section 10.1. At this stage, we will not attempt to describe
such effects quantitatively but instead write the consequent frictional force
on a fluid parcel as

Ffric = ρ F δx δy δz (6.5)

where, for convenience, F is the frictional force per unit mass. For the
moment we will not need a detailed theory of this term. Explicit forms for
F will be discussed and employed in Sections 7.4.2 and 10.1.

6.2.2 The equation of motion

Putting all this together, Eq.(6.2) gives us

ρ δx δy δz
Du

Dt
= Fgravity + Fpressure + Ffric ,

Substituting from Eqs.(6.3), (6.4), and (6.5), and rearranging slightly, we
obtain

Du

Dt
+
1

ρ
∇p+ gbz = F . (6.6)

This is our equation of motion for a fluid parcel.
Note that because of our use of vector notation, Eq.(6.6) seems rather

simple. However, when written out in component form, as below, it becomes
somewhat intimidating, even in Cartesian coordinates:



162 CHAPTER 6. THE EQUATIONS OF FLUID MOTION

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
+
1

ρ

∂p

∂x
= Fx (a) (6.7)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
+
1

ρ

∂p

∂y
= Fy (b)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
+
1

ρ

∂p

∂z
+ g = Fz . (c)

Fortunately often we will be able to make a number of simplifications. One
such simplification, for example, is that, as discussed in Section 3.2, large-
scale flow in the atmosphere and ocean is almost always close to hydrostatic
balance, allowing Eq.(6.7c) to be radically simplified as follows.

6.2.3 Hydrostatic balance

From the vertical equation of motion, Eq.(6.7c), we can see that if friction
and the vertical acceleration Dw/Dt are negligible, we obtain:

∂p

∂z
= −ρg (6.8)

thus recovering the equation of hydrostatic balance, Eq.(3.3). For large-scale
atmospheric and oceanic systems in which the vertical motions are weak, the
hydrostatic equation is almost always accurate, though it may break down
in vigorous systems of smaller horizontal scale such as convection.3

6.3 Conservation of mass

In addition to Newton’s laws there is a further constraint on the fluid motion:
conservation of mass. Consider a fixed fluid volume as illustrated in Fig.6.4.
The volume has dimensions (δx, δy, δz). The mass of the fluid occupying
this volume, ρ δx δy δz, may change with time if ρ does so. However, mass

3It might appear from Eq.(6.7c) that |Dw/Dt| << g is a sufficient condition for the
neglect of the acceleration term. This indeed is almost always satisfied. However, for
hydrostatic balance to hold to sufficient accuracy to be useful, the condition is actually
|Dw/Dt| << g∆ρ/ρ, where∆ρ is a typical density variation on a pressure surface. Even in
quite extreme conditions this more restrictive condition turns out to be very well satisfied.
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Figure 6.4: The mass of fluid contained in the fixed volume, ρδxδyδz, can be
changed by fluxes of mass out of and in to the volume, as marked by the arrows.

continuity tells us that this can only occur if there is a flux of mass into (or
out of) the volume, i.e.,

∂

∂t
(ρ δx δy δz) =

∂ρ

∂t
δx δy δz = (net mass flux into the volume) .

Now the volume flux in the x-direction per unit time into the left face in
Fig.6.4 is u

¡
x− 1

2
δx, y, z

¢
δy δz, so the corresponding mass flux is [ρu]

¡
x− 1

2
δx, y, z

¢
δy δz

where [ρu] is evaluated at the left face. That out through the right face is
[ρu]

¡
x+ 1

2
δx, y, z

¢
δy δz; therefore the net mass import in the x-direction

into the volume is (again employing a Taylor expansion)

− ∂

∂x
(ρu) δx δy δz .

Similarly the rate of net import of mass in the y-direction is

− ∂

∂y
(ρv) δx δy δz

and in the z-direction is

− ∂

∂z
(ρw) δx δy δz.
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Therefore the net mass flux into the volume is −∇ · (ρu) δx δy δz. Thus our
equation of continuity becomes

∂ρ

∂t
+∇ · (ρu) = 0 . (6.9)

This has the general form of a physical conservation law:

∂Concentration
∂t

+∇ · (flux) = 0
in the absence of sources and sinks.
Using the total derivative D/Dt, Eq.(6.1), and noting that∇·(ρu) = ρ∇·

u+ u·∇ρ (see the vector identities listed in Section 13.2) we may therefore
rewrite Eq.(6.9) in the alternative, and often very useful, form:

Dρ

Dt
+ ρ∇ · u = 0 . (6.10)

6.3.1 Incompressible flow

For incompressible flow (e.g. for a liquid such as water in our laboratory tank
or in the ocean), the following simplified approximate form of the continuity
equation almost always suffices:

∇ · u =∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0 ; (6.11)

Indeed this is the definition of incompressible flow: it is non-divergent –
no bubbles allowed! Note that in any real fluid, Eq.(6.11) is never exactly
obeyed. Moreover, despite Eq.(6.10), use of the incompressibility condition
should not be understood as implying that Dρ

Dt
= 0; the density of a parcel

of water can be changed by internal heating and/or conduction (see, for
example, Section 11.1). While these density changes may be large enough to
affect the buoyancy of the fluid parcel, they are too small to affect the mass
budget. For example, the thermal expansion coefficient of water is typically
2× 10−4K−1 and so the volume of a parcel of water changes by only 0.02%
per degree of temperature change.

6.3.2 Compressible flow

A compressible fluid such as air is nowhere close to being non-divergent – ρ
changes markedly as fluid parcels expand and contract. This is inconvenient
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in the analysis of atmospheric dynamics. However it turns out that, provided
the hydrostatic assumption is valid (as it nearly always is), one can get around
this inconvenience by adopting pressure coordinates. In pressure coordinates,
(x, y, p), the elemental fixed “volume” is δx δy δp. Since z = z (x, y, p),
the vertical dimension of the elemental volume (in geometric coordinates) is
δz = ∂z

∂p
δp and so its mass is δM given by:

δM = ρ δx δy δz

= ρ

µ
∂p

∂z

¶−1
δx δy δp

= −1
g
δx δy δp ,

where we have used hydrostatic balance, Eq.(3.3). So the mass of an elemen-
tal fixed volume in pressure coordinates cannot change! In effect, comparing
the top and bottom line of the above, the equivalent of “density” in pressure
coordinates – the mass per unit “volume” – is 1/g, a constant. Hence, in
the pressure-coordinate version of the continuity equation, there is no term
representing rate of change of density; it is simply

∇p · up = ∂u

∂x
+

∂v

∂y
+

∂ω

∂p
= 0. (6.12)

where the subscript p reminds us that we are in pressure coordinates. The
greater simplicity of this form of the continuity equation, as compared to
Eqs.(6.9) or (6.10), is one of the reasons why pressure coordinates are favored
in meteorology.

6.4 Thermodynamic equation

The equation governing the evolution of temperature can be derived from
the first law of thermodynamics applied to a moving parcel of fluid. Dividing
Eq.(4.12) by δt and letting δt −→ 0 we find:

DQ

Dt
= cp

DT

Dt
− 1

ρ

Dp

Dt
. (6.13)

DQ
Dt
is known as the ‘diabatic heating rate’ per unit mass. In the atmosphere,

this is mostly due to latent heating and cooling (from condensation and
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evaporation of H2O) and radiative heating and cooling (due to absorption
and emission of radiation). If the heating rate is zero then DT

Dt
= 1

ρcp

Dp
Dt
:

as discussed in Section 4.3.1, the temperature of a parcel will decrease in
ascent (as it moves to lower pressure) and increase in descent (as it moves to
higher pressure). Of course this is why we introduced potential temperature
in Section 4.3.2: in adiabatic motion, θ is conserved. Written in terms of θ,
Eq.(6.13) becomes

Dθ

Dt
=

µ
p

p0

¶−κ ·
Q

cp
. (6.14)

where
·
Q (with a dot over the top) is a shorthand for DQ

Dt
. Here θ is given

by Eq.(4.17), the factor
³

p
p0

´−κ
converts from T to θ, and

·
Q
cp
is the diabatic

heating in units of Ks−1. The analogous equations that govern the evolution
of temperature and salinity in the ocean will be discussed in Chapter 11.

6.5 Integration, boundary conditions and re-
strictions in application

Eqs.(6.6), (6.11)/(6.12) and (6.14) are our five equations in five unknowns.
Together with initial conditions and boundary conditions, they are sufficient
to determine the evolution of the flow.
Before going on, we make some remarks about restrictions in the ap-

plication of our governing equations. The equations themselves apply very
accurately to the detailed motion. In practice, however, variables are always
averages over large volumes. We can only tentatively suppose that the equa-
tions are applicable to the average motion, such as the wind integrated over
a 100 km square box. Indeed, the assumption that the equations do apply
to average motion is often incorrect. The treatment of turbulent motions
remains one of the major challenges in dynamical meteorology and oceanog-
raphy. Finally, our governing equations have been derived relative to a ‘fixed’
coordinate system. As we now go on to discuss, this is not really a restriction,
but is usually inconvenient.
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6.6 Equation of motion for a rotating fluid

Eq.(6.6) is an accurate representation of Newton’s laws applied to a fluid
observed from a fixed, inertial, frame of reference. However, we live on a
rotating planet and observe winds and currents in its rotating frame. For
example the winds shown in Fig.5.20 are not the winds that would be ob-
served by someone looking back at the earth, as in Fig.1. Rather, they are
the winds measured by observers on the planet rotating with it. In most
applications it is easier and more desirable to work with the governing equa-
tions in a frame rotating with the earth. Moreover it turns out that rotating
fluids have rather unusual properties and these properties are often most
easily appreciated in the rotating frame. To proceed, then, we must write
down our governing equations in a rotating frame. However, before going on
to a formal ‘frame of reference’ transformation of the governing equations,
we describe a laboratory experiment that vividly illustrates the influence of
rotation on fluid motion and demonstrates the utility of viewing and thinking
about fluid motion in a rotating frame.

6.6.1 GFD Lab III: Radial inflow

We are all familiar with the swirl and gurgling sound of water flowing down a
drain. Here we set up a laboratory illustration of this phenomenon and study
it in rotating and non-rotating conditions. We rotate a cylinder about its
vertical axis: the cylinder has a circular drain hole in the center of its bottom,
as shown in Fig.6.5. Water enters at a constant rate through a diffuser on its
outer wall and exits through the drain. In so doing, the angular momentum
imparted to the fluid by the rotating cylinder is conserved as it flows inwards,
and paper dots floated on the surface acquire the swirling motion seen in
Fig.6.6 as the distance of the dots from the axis of rotation decreases.

The swirling flow exhibits a number of important principles of rotating
fluid dynamics – conservation of angular momentum, geostrophic (and cy-
clostrophic) balance (see Section 7.1) – all of which will be made use of in
our subsequent discussions. The experiment also gives us an opportunity to
think about frames of reference because it is viewed by a camera co-rotating
with the cylinder.
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Figure 6.5: The radial inflow apparatus. A diffuser of 30 cm inside diameter is
placed in a larger tank and used to produce an axially symmetric, inward flow of
water toward a drain hole at the center. Below the tank there is a large catch basin,
partially filled with water and containing a submersible pump whose purpose is
to return water to the diffuser in the upper tank. The whole apparatus is then
placed on a turntable and rotated in an anticlockwise direction. The path of fluid
parcels is tracked by dropping paper dots on the free surface. See Whitehead and
Potter (1977).
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Figure 6.6: Trajectories of particles in the radial inflow experiment viewed in the
rotating frame. The positions are plotted every 1

30
s. On the left Ω = 5rpm. On

the right Ω = 10rpm. Note how the pitch of the particle trajectory increases as Ω
increases and how, in both cases, the speed of the particles increases as the radius
decreases.

Observed flow patterns

When the apparatus is not rotating, water flows radially inward from the
diffuser to the drain in the middle. The free surface is observed to be rather
flat. When the apparatus is rotated, however, the water acquires a swirling
motion: fluid parcels spiral inward as can be seen in Fig.6.6. Even at modest
rotation rates of Ω = 10rpm (corresponding to a rotation period of around 6
seconds)4, the effect of rotation is marked and parcels complete many circuits
before finally exiting through the drain hole. The azimuthal speed of the
particle increases as it spirals inwards, as indicated by the increase in the
spacing of the particle positions in the figure. In the presence of rotation the
free surface becomes markedly curved, high at the periphery and plunging
downwards toward the hole in the center, as shown in the photograph, Fig.6.7.

4An Ω of 10rpm (revolutions per minute) is equivalent to a rotation period τ = 60
10 = 6 s.

Various measures of table rotation rate are set out in Appendix 13.4.1.
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Figure 6.7: The free surface of the radial inflow experiment, in the case when
the apparatus is rotated anticyclonically. The curved surface provides a pressure
gradient force directed inwards that is balanced by an outward centrifugal force
due to the anticlockwise circulation of the spiraling flow.

Dynamical balances

In the limit in which the tank is rotated rapidly, parcels of fluid circulate
around many times before falling out through the drain hole (see the right
hand frame of Fig.6.6); the pressure gradient force directed radially inwards
(set up by the free surface tilt) is in large part balanced by a centrifugal force
directed radially outwards.
If Vθ is the azimuthal velocity in the absolute frame (the frame of the

laboratory) and vθ is the azimuthal speed relative to the tank (measured
using the camera co-rotating with the apparatus) then (see Fig.6.8):

Vθ = vθ + Ωr (6.15)

where Ω is the rate of rotation of the tank in radians per second. Note that
Ωr is the azimuthal speed of a particle stationary relative to the tank at
radius r from the axis of rotation.
We now consider the balance of forces in the vertical and radial directions,

expressed first in terms of the absolute velocity Vθ and then in terms of the
relative velocity vθ.
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Figure 6.8: The velocity of a fluid parcel viewed in the rotating frame of reference:
vrot = (vθ, vr) in polar coordinates – see Section 13.2.3.

Vertical force balance We suppose that hydrostatic balance pertains in
the vertical, Eq.(3.3). Integrating in the vertical and noting that the pressure
vanishes at the free surface (actually p = atmospheric pressure at the surface,
which here can be taken as zero), and with ρ and g assumed constant, we
find that:

p = ρg (H − z) (6.16)

where H(r) is the height of the free surface (where p = 0) and we suppose
that z = 0 (increasing upwards) on the base of the tank (see Fig.6.5, left).

Radial force balance in the non-rotating frame If the pitch of the
spiral traced out by fluid particles is tight (i.e. in the limit that vr

vθ
<< 1,

appropriate when Ω is sufficiently large) then the centrifugal force directed
radially outwards acting on a particle of fluid is balanced by the pressure
gradient force directed inwards associated with the tilt of the free surface.
This radial force balance can be written in the non-rotating frame thus:

V 2
θ

r
=
1

ρ

∂p

∂r
.
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Using Eq.(6.16), the radial pressure gradient can be directly related to the
gradient of free surface height enabling the force balance to be written5:

V 2
θ

r
= g

∂H

∂r
(6.17)

Radial force balance in the rotating frame Using Eq.(6.15), we can
express the centrifugal acceleration in Eq.(6.17) in terms of velocities in the
rotating frame thus:

V 2
θ

r
=
(vθ + Ωr)2

r
=

v2θ
r
+ 2Ωvθ + Ω2r (6.18)

Hence
v2θ
r
+ 2Ωvθ + Ω2r = g

∂H

∂r
(6.19)

The above can be simplified by measuring the height of the free surface
relative to that of a reference parabolic surface6, Ω2r2

2
as follows

η = H − Ω2r2

2g
. (6.20)

Then, since ∂η
∂r
= ∂H

∂r
− Ω2r

g
, Eq.(6.19) can be written in terms of η thus:

v2θ
r
= g

∂η

∂r
− 2Ωvθ (6.21)

Eq.(6.17) (non-rotating) and Eq.(6.21) (rotating) are completely equiv-
alent statements of the balance of forces. The distinction between them is
that the former is expressed in terms of Vθ, the latter in terms of vθ. Note
that Eq.(6.21) has the same form as Eq.(6.17) except (i) η (measured relative
to the reference parabola) appears rather than H (measured relative to a flat
surface) and (ii) an extra term, −2Ωvθ, appears on the rhs of Eq.(6.21) –
this is called the ‘Coriolis acceleration’. It has appeared because we have

5Note that the balance Eq.(6.17) cannot hold exactly in our experiment because ra-
dial accelerations must be present associated with the flow of water inwards from the
diffuser to the drain. But if these acceleration terms are small the balance (6.17) is a good
approximation.

6By doing so, we thus eliminate from Eq.(6.19) the centrifugal term Ω2r associated
with the background rotation. We will follow a similar procedure for the spherical earth
in Section 6.6.3 (see also GFD Lab IV in Section 6.6.4).
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chosen to express our force balance in terms of relative, rather than absolute
velocities. We shall see that the Coriolis acceleration plays a central role in
the dynamics of the atmosphere and ocean.

Angular momentum

Fluid entering the tank at the outer wall will have angular momentum be-
cause the apparatus is rotating. At r1, the radius of the diffuser in Fig.6.5,
fluid has velocity Ωr1 and hence angular momentum Ωr21. As parcels of fluid
flow inwards they will conserve this angular momentum (provided that they
are not rubbing against the bottom or the side). Thus conservation of angular
momentum implies that:

Vθ r = constant = Ωr21 (6.22)

where Vθ is the azimuthal velocity at radius r in the laboratory (inertial)
frame given by Eq.(6.15). Combining Eqs.(6.22) and (6.15) we find

vθ = Ω
(r21 − r2)

r
. (6.23)

We thus see that the fluid acquires a sense of rotation which is the same as
that of the rotating table but which is greatly magnified at small r. If Ω > 0
– i.e. the table rotates in an anticlockwise sense – then the fluid acquires
an anticlockwise (cyclonic7) swirl. If Ω < 0 the table rotates in a clockwise
(anticyclonic) direction and the fluid acquires a clockwise (anticyclonic) swirl.
This can be clearly seen in the trajectories plotted in Fig.6.6. Eq.(6.23) is,
in fact, a rather good prediction for the azimuthal speed of the particles seen
in Fig.6.6. We will return to this experiment later in Section 7.1.3 where we
discuss the balance of terms in Eq.(6.21) and its relationship to atmospheric
flows.

6.6.2 Transformation into rotating coordinates

In our radial inflow experiment we expressed the balance of forces in both
the non-rotating and rotating frames. We have already written down the
equations of motion of a fluid in a non-rotating frame, Eq.(6.6). Let us now

7The term cyclonic (anticyclonic) means that the swirl is in the same (opposite) sense
as the background rotation.
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formally transform it in to a rotating reference frame. The only tricky part
is the acceleration term Du/Dt, which requires manipulations analogous
to Eq.(6.18) but in a general framework. We need to figure out how to
transform the operator D/Dt (acting on a vector) into a rotating frame. Of
course, D/Dt of a scalar is the same in both frames, since this means “the
rate of change of the scalar following a fluid parcel”. The same fluid parcel
is followed from both frames, and so scalar quantities (e.g. temperature or
pressure) do not change when viewed from the different frames. However,
a vector is not invariant under such a transformation, since the coordinate
directions relative to which the vector is expressed are different in the two
frames.
A clue is given by noting that the velocity in the absolute (inertial) frame

uin and the velocity in the rotating frame urot, are related (see Fig.6.9)
through:

uin = urot +Ω× r , (6.24)

where r is the position vector of a parcel in the rotating frame, Ω is the
rotation vector of the rotating frame of reference, and Ω× r is the vector
product of Ω and r. This is just a generalization (to vectors) of the trans-
formation used in Eq.(6.15) to express the absolute velocity in terms of the
relative velocity in our radial inflow experiment. As we shall now go on to
show, Eq.(6.24) is a special case of a general ‘rule’ for transforming the rate
of change of vectors between frames, which we now derive.
Consider Fig.6.9. In the rotating frame, any vector A may be written

A =bxAx + byAy + bzAz (6.25)

where (Ax, Ay, Az) are the components of A expressed instantaneously in
terms of the three rotating coordinate directions, for which the unit vectors
are (bx, by,bz). In the rotating frame, these coordinate directions are fixed, and
so µ

DA

Dt

¶
rot

= bxDAx

Dt
+ byDAy

Dt
+ bzDAz

Dt
.

However, viewed from the inertial frame, the coordinate directions in the
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Figure 6.9: On the left is the velocity vector of a particle uin in the inertial frame.
On the right is the view from the rotating frame. The particle has velocity urot
in the rotating frame. The relation between uin and urot is uin = urot +Ω× r
where Ω× r is the velocity of a particle fixed (not moving) in the rotating frame
at position vector r. The relationship between the rate of change of any vector A
in the rotating frame and the change of A as seen in the inertial frame is given
by:

¡
DA
Dt

¢
in
=
¡
DA
Dt

¢
rot
+Ω×A .
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rotating frame are not fixed, but are rotating at rate Ω, and soµ
Dbx
Dt

¶
in

= Ω×bx ,µ
Dby
Dt

¶
in

= Ω×by ,µ
Dbz
Dt

¶
in

= Ω×bz .
Therefore, operating on Eq.(6.25),µ

DA

Dt

¶
in

= bxDAx

Dt
+ byDAy

Dt
+ bzDAz

Dt

+

µ
Dbx
Dt

¶
in

Ax +

µ
Dby
Dt

¶
in

Ay +

µ
Dbz
Dt

¶
in

Az

= bxDAx

Dt
+ byDAy

Dt
+ bzDAz

Dt
+Ω× (bxAx + byAy + bzAz) ,

whence µ
DA

Dt

¶
in

=

µ
DA

Dt

¶
rot

+ Ω×A . (6.26)

which yields our transformation rule for the operator D
Dt
acting on a vector.

Setting A = r, the position vector of the particle in the rotating frame,
we arrive at Eq.(6.24). To write down the rate of change of velocity following
a parcel of fluid in a rotating frame,

¡
Duin
Dt

¢
in
, we set A −→ uin in Eq.(6.26)

using Eq.(6.24) thus:µ
Duin
Dt

¶
in

=

·µ
D

Dt

¶
rot

+Ω×
¸
(urot +Ω× r)

=

µ
Durot
Dt

¶
rot

+ 2Ω× urot +Ω×Ω× r , (6.27)

since, by definition µ
Dr

Dt

¶
rot

= urot .

Eq.(6.27) is a more general statement of Eq.(6.18): we see that there is a
one-to-one correspondence between the terms.
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6.6.3 The rotating equation of motion

We can now write down our equation of motion in the rotating frame. Sub-
stituting from Eq.(6.27) into the inertial-frame equation of motion (6.6), we
have, in the rotating frame,

Du

Dt
+
1

ρ
∇p+ gbz = −2Ω× u| {z }

Coriolis
acceln

+ −Ω×Ω× r| {z }
Centrifugal
acceln

+F (6.28)

where we have dropped the subscripts “rot” and it is now understood that
Du/Dt and u refer to the rotating frame.
Note that Eq.(6.28) is the same as Eq.(6.6) except that u = urot and

‘apparent’ accelerations, introduced by the rotating reference frame, have
been placed on the right-hand side of Eq.(6.28) [just as in Eq.(6.21)]. The
apparent accelerations have been given names: the centrifugal acceleration
(−Ω×Ω× r) is directed radially outward (Fig.6.9) the Coriolis acceleration
(−2Ω× u) is directed ‘to the right’ of the velocity vector ifΩ is anticlockwise,
sketched in Fig.6.10. We now discuss these apparent accelerations in turn.

Centrifugal acceleration

As noted above, −Ω×Ω× r is directed radially outwards. If no other forces
were acting on a particle, the particle would accelerate outwards. Because
centrifugal acceleration can be expressed as the gradient of a potential thus

− Ω×Ω× r =∇
µ
Ω2r2

2

¶
where r is the distance normal to the rotating axis (see Fig.6.9) it is conve-

nient to combine∇
³
Ω2r2

2

´
with gbz = ∇ (gz), the gradient of the gravitational

potential gz, and write Eq.(6.28) in the succinct form:

Du

Dt
+
1

ρ
∇p+∇φ = −2Ω× u+F (6.29)

where

φ = gz − Ω2r2

2
(6.30)
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is a modified (by centrifugal accelerations) gravitational potential ‘measured’
in the rotating frame.8 In this way gravitational and centrifugal accelerations
can be conveniently combined in to a ‘measured’ gravity, ∇φ. This is dis-
cussed in Section 6.6.4 at some length in the context of experiments with a
parabolic rotating surface GFD Lab IV.

Coriolis acceleration

The first term on the rhs of Eq.(6.28) is the “Coriolis acceleration”9 – it
describes a tendency for fluid parcels to turn, as shown in Fig.6.10 and inves-
tigated in GFD Lab V. (Note that in this figure, the rotation is anticlockwise,
i.e. Ω > 0, like that of the northern hemisphere viewed from above the north
pole; for the southern hemisphere, the effective sign of rotation is reversed,
see Fig.6.17.)
In the absence of any other forces acting on it, a fluid parcel would ac-

celerate as
Du

Dt
= −2Ω× u (6.31)

With the signs shown, the parcel would turn to the right in response to the
Coriolis force (to the left in the southern hemisphere). Note that since, by
definition, (Ω× u) · u = 0, the Coriolis force is workless: it does no work,
but merely acts to change the flow direction.
To breath some life in to these acceleration terms we will now describe

experiments with a parabolic rotating surface.

8Note that φ
g = 1 − Ω

2r2

2g is directly analogous to Eq.(6.20) adopted in the analysis of
the radial inflow experiment.

9 Gustave Gaspard Coriolis (1792-1843). French mathematician who
discussed what we now refer to as the "Coriolis force" in addition to the already-known
centrifugal force. The explanation of the effect sprang from problems of early 19th-century
industry, i.e. rotating machines such as water-wheels.
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Figure 6.10: A fluid parcel moving with velocity urot in a rotating frame experi-
ences a Coriolis acceleration −2Ω× urot, directed ‘to the right’ of urot if, as here,
Ω is directed upwards, corresponding to anticlockwise rotation.

6.6.4 GFD Lab IV and V: Experiments with Coriolis
forces on a parabolic rotating table

GFD Lab IV: studies of parabolic equipotential surfaces

We fill a tank with water, set it turning and leave it until it comes in to solid
body rotation, i.e., the state in which fluid parcels have zero velocity in the
rotating frame of reference. This is easily determined by viewing a paper
dot floating on the free surface from a co-rotating camera. We note that the
free-surface of the water is not flat; it is depressed in the middle and rises
up to its highest point along the rim of the tank, as sketched in Fig.6.11.
What’s going on?
In solid-body rotation, u = 0, F = 0, and so Eq.(6.29) reduces to 1

ρ
∇p+

∇φ = 0 (a generalization of hydrostatic balance to the rotating frame). For
this to be true:

p

ρ
+ φ = constant

everywhere in the fluid (note that here we are assuming ρ = constant). Thus
on surfaces where p = constant, φmust be constant too: i.e., p and φ surfaces
must be coincident with one another.
At the free surface of the fluid, p = 0. Thus, from Eq.(6.30)
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Figure 6.11: (a) Water placed in a rotating tank and insulated from external
forces (both mechanical and thermodynamic) eventually comes in to solid body
rotation in which the fluid does not move relative to the tank. In such a state the
free surface of the water is not flat but takes on the shape of a parabola given by
Eq.( 6.33). (b) parabolic free surface of water in a tank of 1m square rotating at
Ω = 20 rpm.

gz − Ω2r2

2
= constant (6.32)

the modified gravitational potential. We can determine the constant of pro-
portionality by noting that at r = 0, z = h(0), the height of the fluid in the
middle of the tank (see Fig.6.11a). Hence the depth of the fluid h is given
by:

h(r) = h(0) +
Ω2r2

2g
(6.33)

where r is the distance from the axis or rotation. Thus the free surface takes
on a parabolic shape: it tilts so that it is always perpendicular to the vector
g∗ (gravity modified by centrifugal forces) given by g∗ = −gbz − Ω×Ω× r.
If we hung a plumb line in the frame of the rotating table it would point
in the direction of g∗ i.e. slightly outwards rather than directly down. The
surface given by Eq.(6.33) is the reference to which H is compared to define
η in Eq.(6.20).
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Let us estimate the tilt of the free surface of the fluid by inserting numbers
into Eq.(6.33) typical of our tank. If the rotation rate is 10 rpm (so Ω ' 1
s−1) and the radius of the tank is 0.30 m, then with g = 9.81 m s−2, we find
Ω2r2

2g
∼ 5mm, a noticeable effect but a small fraction of the depth to which

the tank is typically filled. If one uses a large tank at high rotation, however
– see Fig.6.11(b) in which a 1m square tank was rotated at a rate of 20 rpm
– the distortion of the free surface can be very marked. In this case Ω2r2

2g
∼

0.2m.
It is very instructive to construct a smooth parabolic surface on which

one can roll objects. This can be done by filling a large flat-bottomed pan
with resin on a turntable and letting the resin harden while the turntable
is left running for several hours (this is how parabolic surfaces are made).
The resulting parabolic surface can then be polished to create a low friction
surface. The surface defined by Eq.(6.32) is an equipotential surface of the
rotating frame and so a body carefully placed on it at rest (in the rotating
frame) should remain at rest. Indeed if we place a ball-bearing on the rotat-
ing parabolic surface – and make sure that the table is rotating at the same
speed as was used to create the parabola! – then we see that it does not
fall in to the center, but instead finds a state of rest in which the component
of gravitational force, gH resolved along the parabolic surface is exactly bal-
anced by the outward-directed horizontal component of the centrifugal force,
(Ω2r)H , as sketched in Fig.6.12 and seen in action in Fig.6.13.

GFD Lab V: visualizing the Coriolis force We can use the parabolic
surface discussed in Lab IV, in conjunction with a dry ice ‘puck’, to help us
visualize the Coriolis force. On the surface of the parabola, φ = constant and
so ∇φ = 0. We can also assume that there are no pressure gradients acting
on the puck because the air is so thin. Furthermore, the gas sublimating off
the bottom of the dry ice almost eliminates frictional coupling between the
puck and the surface of the parabolic dish; thus we may also assume F = 0.
Hence the balance Eq.(6.31) applies.10

We can play games with the puck and study its trajectory on the parabolic
turntable, both in the rotating and laboratory frames. It is useful to view the
puck from the rotating frame using an overhead co-rotating camera. Fig.6.14
plots the trajectory of the puck in the inertial (left) and in the rotating

10A ball-bearing can also readily be used for demonstration purposes, but it is not quite
as effective as a dry ice puck.
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Figure 6.12: If a parabola of the form given by Eq.(6.33) is spun at rate Ω, then
a ball carefully placed on it at rest does not fall in to the center but remains at
rest: gravity resolved parallel to the surface, gH , is exactly balanced by centrifugal
accelerations resolved parallel to the surface, (Ω2r)H .

Figure 6.13: Studying the trajectories of ball bearings on a rotating parabola. A
co-rotating camera views and records the scene from above.
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(right) frame. Notice that the puck is ‘deflected to the right’ by the Coriolis
force when viewed in the rotating frame if the table is turning anticlockwise
(cyclonically). The following are useful reference experiments:

1. We place the puck so that it is motionless in the rotating frame of
reference – it follows a circular orbit around the center of the dish in
the laboratory frame.

2. We launch the puck on a trajectory that crosses the rotation axis.
Viewed from the laboratory the puck moves backwards and forwards
along a straight line (the straight line expands out in to an ellipse if
the frictional coupling between the puck and the rotating disc is not
negligible; see Fig.6.14a). When viewed in the rotating frame, however,
the particle is continuously deflected to the right and its trajectory
appears as a circle as seen in Fig.6.14b. This is the ‘deflecting force’ of
Coriolis. These circles are called ‘inertial circles’. (We will look at the
theory of these circles below).

3. We place the puck on the parabolic surface again so that it appears
stationary in the rotating frame, but is then slightly perturbed. In the
rotating frame, the puck undergoes inertial oscillations consisting of
small circular orbits passing through the initial position of the unper-
turbed puck.

Inertial circles It is straightforward to analyze the motion of the puck in
GFD Lab V. We adopt a Cartesian (x, y) coordinate in the rotating frame of
reference whose origin is at the center of the parabolic surface. The velocity
of the puck on the surface is urot = (u, v) where urot = dx/dt and vrot = dy/dt
and we have reintroduced the subscript rot to make our frame of reference
explicit. Further we assume that z increases upwards in the direction of Ω.

Rotating frame Let us write out Eq.(6.31) in component form (replac-
ing D

Dt
by d

dt
, the rate of change of a property of the puck). Noting that (see

VI, Appendix 13.2):

2Ω× urot = (0, 0, 2Ω)× (urot, vrot, 0) = (−2Ωvrot, 2Ωurot, 0)
the two horizontal components of Eq.(6.31) are:
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Figure 6.14: Trajectory of the puck on the rotating parabolic surface during one
rotation period of the table 2π

Ω
in (a) the inertial frame and (b) the rotating frame

of reference. The parabola is rotating in an anticlockwise (cyclonic) sense.

durot
dt
− 2Ωvrot = 0; dvrot

dt
+ 2Ωurot = 0 (6.34)

urot =
dx

dt
; vrot =

dy

dt
.

If we launch the puck from the origin of our coordinate system x(0) = 0;
y(0) = 0 (chosen to be the center of the rotating dish) with speed urot(0) = 0;
vrot(0) = vo, the solution to Eq.(6.34) satisfying these boundary conditions
is:

urot (t) = vo sin 2Ωt; vrot (t) = vo cos 2Ωt

x (t) =
vo
2Ω
− vo
2Ω
cos 2Ωt; y (t) =

vo
2Ω
sin 2Ωt (6.35)

The puck’s trajectory in the rotating frame is a circle (see Fig.6.15) with a
radius of vo

2Ω
. It moves around the circle in a clockwise direction (anticycloni-

cally) with a period π
Ω
, known as the ‘inertial period’. Note from Fig.6.14
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that in the rotating frame the puck is observed to complete two oscillation
periods in the time it takes to complete just one in the inertial frame.

Inertial frame Now let us consider the same problem but in the non-
rotating frame. The acceleration in a frame rotating at angular velocity Ω
is related to the acceleration in an inertial frame of reference by Eq.(6.27).
And so, if the balance of forces is Durot

Dt
= −2Ω×urot these two terms cancel

out in Eq.(6.27), and it reduces to11:

duin
dt

= Ω×Ω× r (6.36)

If the origin of our inertial coordinate system lies at the center of our
dish, then the above can be written out in component form thus:

duin
dt

+ Ω2x = 0;
dvin
dt

+ Ω2y = 0 (6.37)

where the subscript in means inertial. This should be compared to the equa-
tion of motion in the rotating frame – see Eq.(6.34).
The solution of Eq.(6.37) satisfying our boundary conditions is:

uin (t) = 0; vin (t) = vo cosΩt

xin (t) = 0; yin (t) =
vo
Ω
sinΩt (6.38)

The trajectory in the inertial frame is a straight line shown in Fig.6.15.
Comparing Eqs.(6.35) and (6.38), we see that the length of the line marked
out in the inertial frame is twice the diameter of the inertial circle in the
rotating frame and the frequency of the oscillation is one-half that observed
in the rotating frame, just as observed in Fig.6.14.
The above solutions go a long way to explaining what is observed in GFD

Lab V and expose many of the curiosities of rotating versus non-rotating

11Note that if there are no frictional forces between the puck and the parabolic surface,
then the rotation of the surface is of no consequence to the trajectory of the puck. The
puck just oscillates back and forth according to:

d2r

dt2
= −g dh

dr
= −Ω2r

where we have used the result that h, the shape of the parabolic surface, is given by
Eq.(6.33). This is another (perhaps more physical) way of arriving at Eq.(6.37).
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Figure 6.15: Theoretical trajectory of the puck during one complete rotation
period of the table,2πΩ , in GFD Lab V in the inertial frame (straight line) and in
the rotating frame (circle). We launch the puck from the origin of our coordinate
system x(0) = 0; y(0) = 0 (chosen to be the center of the rotating parabola) with
speed u(0) = 0; v(0) = vo. The horizontal axes are in units of

vo
2Ω
. Observed

trajectories are shown in Fig.6.14.

frames of reference. The deflection ‘to the right’ by the Coriolis force is
indeed a consequence of the rotation of the frame of reference: the trajectory
in the inertial frame is a straight line!
Before going on we note in passing that the theory of inertial circles

discussed here is the same as that of the ‘Foucault pendulum’, named after
the French experimentalist who in 1851 demonstrated the rotation of the
earth by observing the deflection of a giant pendulum swinging inside the
Pantheon in Paris.

Observations of inertial circles Inertial circles are not just a quirk of
this idealized laboratory experiment. They are in fact a common feature of
oceanic flows. For example Fig.6.16 shows inertial motions observed by a
current meter deployed in the main thermocline of the ocean at a depth of
500m. The period of the oscillations is:
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Figure 6.16: Inertial circles observed by a current meter in the main thermocline
of the Atlantic Ocean at a depth of 500m; 28◦N, 54◦W. Five inertial periods are
shown. The inertial period at this latitude is 25.6h and 5 inertial periods are
shown. Courtesy of Carl Wunsch, MIT.

Inertial Period =
π

Ω sinϕ
(6.39)

where ϕ is latitude; the sinϕ factor (not present in the theory developed in
Section 6.6.4) is a geometrical effect due to the sphericity of the Earth, as
we now go on to discuss. At the latitude of the mooring, 28◦N, the period of
the inertial circles is 25.6 hrs.

6.6.5 Putting things on the sphere

Hitherto our discussion of rotating dynamics has made use of a laboratory
turntable in which Ω and g are parallel or antiparallel to one another. But
on the spherical Earth Ω and g are not aligned and we must take into ac-
count these geometrical complications, illustrated in Fig.6.17. We will now
show that, by exploiting the thinness of the fluid shell (Fig.1.1) and the over-
whelming importance of gravity, the equations of motion that govern the
fluid on the rotating spherical Earth are essentially the same as those that
govern the motion of the fluid of our rotating table if 2Ω is replaced by (what
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Figure 6.17: In the rotating table used in the laboratory Ω and g are always par-
allel or (as sketched here) anti-parallel to one another. This should be contrasted
with the sphere.

is known as) the ‘Coriolis parameter’ f = 2Ωsinϕ. This is because it turns
out that a fluid parcel on the rotating earth “feels” a rotation rate of only
2Ω sinϕ – 2Ω resolved in the direction of gravity, rather than the full 2Ω.

The centrifugal force, modified gravity and geopotential surfaces
on the sphere

Just as on our rotating table, so on the sphere the centrifugal term on the
right of Eq.(6.28) modifies gravity and hence hydrostatic balance. For an
inviscid fluid at rest in the rotating frame, we have

1

ρ
∇p = −gbz −Ω×Ω× r .

Now, consider Fig. 6.18.
The centrifugal vector Ω×Ω× r has magnitude Ω2r, directed outward

normal to the rotation axis, where r = (a+ z) cosϕ ' a cosϕ, a is the mean
Earth radius, z is the altitude above the spherical surface with radius a, and
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Figure 6.18: The centrifugal vector Ω×Ω× r has magnitude Ω2r, directed out-
ward normal to the rotation axis. Gravity, g, points radially inwards to the center
of the Earth. Over geological time the surface of the Earth adjusts to make itself
an equipotential surface – close to a reference ellipsoid – which is always perpen-
dicular the the vector sum of Ω×Ω× r and g. This vector sum is ‘measured’
gravity: g∗ = −gbz − Ω×Ω× r.
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ϕ is latitude, and where the ‘shallow atmosphere’ approximation has allowed
us to write a+ z ' a. Hence on the sphere Eq.(6.30) becomes:

φ = gz − Ω2a2 cos2 ϕ

2
defining the modified gravitational potential on the Earth. At the axis of
rotation the height of a geopotential surface is geometric height, z (because
ϕ = π

2
). Elsewhere geopotential surfaces are defined by:

z∗ = z +
Ω2a2 cos2 ϕ

2g
. (6.40)

We can see that Eq.(6.40) is exactly analogous to the form we derived in
Eq.(6.33) for the free surface of a fluid in solid body rotation in our rotating
table when we realize that r = a cosϕ is the distance normal to the axis of
rotation. A plumb line is always perpendicular to z∗ surfaces, and modified
gravity is given by g∗ = −∇z∗.
Since (with Ω = 7.27× 10−5 s−1 and a = 6.37× 106m) Ω2a2/2g ≈ 11 km,

geopotential surfaces depart only very slightly from a sphere, being 11 km
higher at the equator than at the pole. Indeed, the figure of the Earth’s
surface – the geoid – adopts something like this shape, actually bulging
more than this at the equator (by 21 km, relative to the poles)12. So, if
we adopt these (very slightly) aspherical surfaces as our basic coordinate
system, then relative to these coordinates the centrifugal force disappears
(being subsumed into the coordinate system) and hydrostatic balance again
is described (to a very good approximation) by Eq.(6.8). This is directly
analogous, of course, to adopting the surface of our parabolic turntable as a
coordinate reference system in GFD Lab V.

Components of the Coriolis force on the sphere: the Coriolis para-
meter

We noted in Chapter 1 that the thinness of the atmosphere allows us (for
most purposes) to use a local Cartesian coordinate system, neglecting the
Earth’s curvature. First, however, we must figure out how to express the
Coriolis force in such a system. Consider Fig.6.19.
12The discrepancy between the actual shape of the Earth and the prediction Eq.(6.40)

is due to the mass distribution of the equatorial bulge which is not taken in the calculation
presented here.
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Figure 6.19: At latitude ϕ, longitude, λ, we define a local coordinate system such
that the three coordinates in the (x, y, z) directions point (eastward, northward,
upward): dx = a cosϕdλ; dy = adϕ; dz = dz where a is the radius of the earth.
The velocity is u = (u, v, w) in the directions (x, y, z). See also Section 13.2.3.

At latitude ϕ, we define a local coordinate system such that the three
coordinates in the (x, y, z) directions point (eastward, northward, upward),
as shown. The components of Ω in these coordinates are (0,Ω cosϕ,Ω sinϕ).
Therefore, expressed in these coordinates,

Ω× u = (0,Ω cosϕ,Ω sinϕ)× (u, v, w)
= (Ω cosϕ w − Ω sinϕ v,Ω sinϕ u,−Ω cosϕ u) .

We can nowmake two (good) approximations. First, we note that the vertical
component competes with gravity and so is negligible if Ωu¿ g. Typically,
in the atmosphere |u| ∼ 10m s−1, so Ωu ∼ 7 × 10−4ms−2, which is utterly
negligible compared with gravity (we will see in Chapter 9 that ocean currents
are even weaker and so Ωu¿ g there too). Second, because of the thinness of
the atmosphere and ocean, vertical velocities (typically ≤ 1 cm s−1) are very
much less than horizontal velocities; so we may neglect the term involving w
in the x-component of Ω× u. Hence we may write the Coriolis term as

2Ω× u ' (−2Ω sinϕ v, 2Ω sinϕ u, 0) (6.41)

= fbz× u ,
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latitude f (×10−4 s−1) β (×10−11 s−1m−1)
90◦ 1. 46 0
60◦ 1. 26 1. 14
45◦ 1. 03 1. 61
30◦ 0.73 1. 98
10◦ 0.25 2. 25
0◦ 0 2. 28

Table 6.1: Values of the Coriolis parameter, f = 2Ω sinϕ– Eq.(6.42) – and its
meridional gradient, β = df

dy
= 2Ω

a
cosϕ – Eq.(10.10) – tabulated as a function

of latitude. Here Ω is the rotation rate of the Earth and a is the radius of the
Earth.

where:
f = 2Ω sinϕ (6.42)

is known as the Coriolis parameter. Note that Ω sinϕ is the vertical compo-
nent of the Earth’s rotation rate – this is the only component that matters
(a consequence of the thinness of the atmosphere and ocean). For one thing
this means that since f → 0 at the equator, rotational effects are negligible
there. Furthermore, f < 0 in the southern hemisphere – see Fig.6.17(right).
Values of f at selected latitudes are set out in Table 6.1.
We can now write Eq.(6.29) as (rearranging slightly),

Du

Dt
+
1

ρ
∇p + ∇φ + fbz× u = F . (6.43)

where 2Ω has been replaced by fbz. Writing this in component form for our
local Cartesian system (see Fig.6.19), and making the hydrostatic approxi-
mation for the vertical component, we have

Du

Dt
+
1

ρ

∂p

∂x
− fv = Fx ,

Dv

Dt
+
1

ρ

∂p

∂y
+ fu = Fy , (6.44)

1

ρ

∂p

∂z
+ g = 0 ,
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where (Fx,Fy) are the (x, y) components of friction (and we have assumed
the vertical component of F to be negligible compared with gravity).
The set, Eq.(6.43) – in component form, Eq.(6.44) – is the starting

point for discussions of the dynamics of a fluid in a thin spherical shell on a
rotating sphere, such as the atmosphere and ocean.

6.6.6 GFD Lab VI: An experiment on the Earth’s ro-
tation

A classic experiment on the Earth’s rotation was carried out by Perrot in
185913. It is directly analogous to the radial inflow experiment, GFD Lab III,
except that the Earth’s spin is the source of rotation rather than a rotating
table. Perrot filled a large cylinder with water (the cylinder had a hole in the
middle of its base plugged with a cork, as sketched in Fig.6.20) and left it
standing for two days. He returned and released the plug. As fluid flowed in
toward the drain-hole it conserved angular momentum, thus ‘concentrating’
the rotation of the Earth, and acquired a ‘spin’ that was cyclonic (in the
same sense of rotation as the Earth)
According to theory below, we expect to see the fluid spiral in the same

sense of rotation as the Earth. The close analogue with the radial inflow
experiment is clear when one realizes that the container sketched in Fig 6.20
is on the rotating Earth and experiences a rotation rate of Ω× sinlat!

Theory We suppose that a particle of water initially on the outer rim of
the cylinder at radius r1 moves inwards conserving angular momentum until
it reaches the drain hole, at radius ro – see Fig. 6.21. The earth’s rotation
Ωearth resolved in the direction of the local vertical is Ωearth sinϕ where ϕ is
the latitude. Therefore a particle initially at rest relative to the cylinder at
radius r1, has a speed of v1 = r1Ωearth sinϕ in the inertial frame. Its angular
momentum is A1 = v1r1. At ro what is the rate of rotation of the particle?
If angular momentum is conserved, then Ao = Ωor

2
o = A1, and so the rate

of rotation of the ball at the radius ro is:

Ωo =

µ
r1
ro

¶2
Ωearth sinϕ

13Perrot’s experiment can be regarded as the fluid-mechanical analogue of Foucault’s
1851 experiment on the Earth’s rotation using a pendulum.
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Figure 6.20: A leveled cylinder is filled with water, covered by a lid and left
standing for several days. Attached to the small hole at the center of the cylinder
is a hose (also filled with water and stopped by a rubber bung) which hangs down
in to a pail of water. On releasing the bung the water flows out and, according to
theory, should acquire a spin which has the same sense as that of the Earth.

Figure 6.21: The Earth’s rotation is magnified by the ratio
³
r1
ro

´2
>> 1, if the

drain hole has a radius ro, very much less than the tank itself, r1.
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Thus if r1
ro
>> 1 the earth’s rotation can be ‘amplified’ by a large amount. For

example, at a latitude of 42◦N, appropriate for Cambridge, Massachusetts,
sinϕ = 0.67, Ωearth = 7.3 × 10−5 s−1, and if the cylinder has a radius of
r1 = 30 cm and the inner hole has radius ro = 0.15 cm, we find that Ωo =
1.96 rad s−1, or a complete rotation in only 3 seconds!
Perrot’s experiment, although based on sound physical ideas, is rather

tricky to carry out: the initial (background) velocity has to be very tiny
(v << fr) for the experiment to work, thus demanding great care in set-up.
Apparatus such as that shown in Fig.6.20 can be used but the experiment
must be repeated many times. More often than not the fluid does indeed
acquire the spin of the Earth, swirling cyclonically as it exits the reservoir.

6.7 Further reading

Discussions of the equations of motion in a rotating frame can be found in
most texts on atmospheric and ocean dynamics, such as Holton (2004).

6.8 Problems

1. Consider the zonal-average zonal flow, u, shown in Fig.5.20. Concen-
trate on the vicinity of the subtropical jet near 30◦N in winter (DJF).
If the x−component of the frictional force per unit mass in Eq.(6.44)
is

Fx = ν∇2u ,

where the kinematic viscosity coefficient for air is ν = 1.34×10−5m2 s−1
and ∇2 ≡ ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2, compare the magnitude of this
eastward force with the northward or southward Coriolis force and thus
convince yourself that the frictional force is negligible. [10◦ of latitude
' 1100 km; the jet is at an altitude of about 10 km. An order-of-
magnitude calculation will suffice to make the point unambiguously.]

2. Using only the equation of hydrostatic balance and the rotating equa-
tion of motion, show that a fluid cannot be motionless unless its den-
sity is horizontally uniform. (Do not assume geostrophic balance, but
you should assume that a motionless fluid is subjected to no frictional
forces.)
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3. a. What is the value of the centrifugal acceleration of a particle fixed
to the earth at the equator and how does it compare to g? What is
the deviation of a plumb line from the true direction to the centre of
the earth at 45◦N?

b. By considering the centrifugal acceleration on a particle fixed to
the surface of the earth, obtain an order-of-magnitude estimate for
the earth’s ellipticity

h
r1−r0
r0

i
, where r1 is the equatorial radius and

r0 is the polar radius. As a simplifying assumption the gravitational
contribution to g may be taken as constant and directed toward the
centre of the earth. Discuss your estimate given that the ellipticity is
observed to be 1

297
. You may assume that the mean radius of the earth

is 6000 km.

4. A punter kicks a football a distance of 60m on a field at latitude 45◦N.
Assuming the ball, until being caught, moves with a constant forward
velocity (horizontal component) of 15m s−1, determine the lateral de-
flection of the ball from a straight line due to the Coriolis effect. [Ne-
glect friction and any wind or other aerodynamic effects.]

5. Imagine that Concord is (was) flying at speed u from New York to
London along a latitude circle. The deflecting force due to Coriolis is
toward the south. By lowering the left wing ever so slightly the pilot
(or perhaps more conveniently the computer on board) can balance this
deflection. Draw a diagram of the forces – gravity, uplift normal to
the wings and Coriolis – and use it to deduce that the angle of tilt,
γ, of the aircraft from the horizontal required to balance the Coriolis
force is

tan γ =
2Ω sinϕ× u

g
,

where Ω is the Earth’s rotation, the latitude is ϕ and gravity is g. If u =
600m s−1, insert typical numbers to compute the angle. What analogies
can you draw with atmospheric circulation? [Hint: cf Eq.(7.8).]

6. Consider horizontal flow in circular geometry in a system rotating
about a vertical axis with a steady angular velocity Ω. Starting from
Eq.(6.29), show that the equation of motion for the azimuthal flow in
this geometry is, in the rotating frame (neglecting friction and assuming
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2-dimensional flow)

Dvθ
Dt

+ 2Ωvr ≡ ∂vθ
∂t
+ vr

∂vθ
∂r

+
vθ
r

∂vθ
∂θ

+
vθvr
r
+ 2Ωvr = − 1

ρr

∂p

∂θ
(6.45)

where (vr, vθ) are the components of velocity in the (r, θ) = (radial,
azimuthal) directions (see Fig.6.8). [Hint: write out Eq.(6.29) in cylin-
drical coordinates (see Appendix 13.2.3) noting that vr = Dr

Dt
; vθ = rDθ

Dt

and that the gradient operator is ∇ = ( ∂
∂r
, 1
r
∂
∂θ
). ]

(a) Assume that the flow is axisymmetric (i.e., all variables are in-
dependent of θ). For such flow, angular momentum (relative to
an inertial frame) is conserved. This means, since the angular
momentum per unit mass is

A = Ωr2 + vθr , (6.46)

that

DA

Dt
≡ ∂A

∂t
+ vr

∂A

∂r
= 0 . (6.47)

Show that Eqs.(6.45) and (6.47) are mutually consistent for ax-
isymmetric flow.

(b) When water flows down the drain from a basin or a bath tub, it
usually forms a vortex. It is often said that this vortex is anti-
clockwise in the northern hemisphere, and clockwise in the south-
ern hemisphere. Test this saying by carrying out the following
experiment.

Fill a basin or a bath tub (preferably the latter – the bigger the
better) to a depth of at least 10 cm, let it stand for a minute or
two, and then let it drain. When a vortex forms14, estimate, as
well as you can, its angular velocity, direction, and radius (use
small floats, such as pencil shavings, to help you see the flow).
Hence calculate the angular momentum per unit mass of the vor-
tex.

14A clear vortex (with a “hollow” center, as in Fig.6.7) may not form. As long as there is
an identifiable swirling motion, however, you will be able to proceed; if not, try repeating
the experiment.
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Now, suppose that, at the instant you opened the drain, there was
no motion (relative to the rotating Earth). Now if only the vertical
component of the Earth’s rotation matters, calculate the angular
momentum density due to the Earth’s rotation at the perimeter
of the bath tub or basin. [Your tub or basin will almost certainly
not be circular, but assume it is, with an effective radius R such
that the area of your tub or basin is πR2 in order to determine
m.]

(c) Since angular momentum should be conserved, then if there was
indeed no motion at the instant you pulled the plug, the maximum
possible angular momentum per unit mass in the drain vortex
should be the same as that at the perimeter at the initial instant
(since that is where the angular momentum was greatest). Com-
pare your answers and comment on the importance of the Earth’s
rotation for the drain vortex. Hence comment on the validity of
the saying.

(d) In view of your answer to (c), what are your thoughts on Perrot’s
experiment, GFD Lab VI?

7. We specialize Eq.(6.44) to two-dimensional, inviscid (F = 0) flow of a
homogeneous fluid of density ρref thus:

Du

Dt
+

1

ρref

∂p

∂x
− fv = 0

Dv

Dt
+

1

ρref

∂p

∂y
+ fu = 0

where D
Dt
= ∂

∂t
+ u ∂

∂x
+ v ∂

∂y
and the continuity equation is

∂u

∂x
+

∂v

∂y
= 0.

(a) By eliminating the pressure gradient term between the two mo-
mentum equations and making use of the continuity equation,
show that the quantity

³
∂v
∂x
− ∂u

∂y
+ f

´
is conserved following the

motion: i.e.
D

Dt

µ
∂v

∂x
− ∂u

∂y
+ f

¶
= 0.
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Figure 6.22: Circulation integral schematic.

(b) Convince yourself that

bz.∇× u =∂v

∂x
− ∂u

∂y
(6.48)

(see Appendix 13.2.2), i.e. that ∂v
∂x
− ∂u

∂y
is the vertical component

of a vector quantity known as the vorticity, ∇×u, the curl of the
velocity field.
The quantity ∂v

∂x
− ∂u

∂y
+ f is known as the ‘absolute’ vorticity and

is made up of ‘relative’ vorticity (due to motion relative to the
rotating planet) and ‘planetary’ vorticity, f , due to the rotation
of the planet itself.

(c) By computing the ‘circulation’ – the line integral of u about the
rectangular element in the (x, y) plane shown in Fig.6.22 – show
that:

circulation
area enclosed

= average normal component
of vorticity

.

Hence deduce that if the fluid element is in solid body rotation
then the average vorticity is equal to twice the angular velocity of
its rotation.

(d) If the tangential velocity in a hurricane varies like v = 106

r
ms−1

where r is the radius, calculate the average vorticity between an
inner circle of radius 300 km and an outer circle of radius 500 km.
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Express your answer in units of planetary vorticity f evaluated at
20oN . What is the average vorticity within the inner circle?


