
Dynamic Equations 
 
At this moment, we would like to introduce the equations for fluid motions.  
 
Lagrange (material) derivative versus Eulerian (local) derivative 
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For a Eulerian perspective, see Marshall and Plumb, Chapter 6 or the Dynamic equation 
notes under reference books on the course webpage, which is taken from Holton’s 
Dynamic Meteorology book. It is somewhat easier mathematically to look at this from 
the Lagrangian perspective by using the Reynolds’ transport theorem. Consider a finite 
material volume V(t), i.e. one that contains a fixed collection of matter. Consider how the 
integral property changes with time 

 

 

D
Dt

ψ (x, y, z,t)dV '
V (t )∫

=
∂ψ
∂t

dV '
V (t )∫ + ψ v • ndS '

S(t )∫
 

The equality is a generalization of the Leibniz’s rule for differentiating an integral with 
variable limits (the volume is changing). Now apply the Gauss’ theorem, we have 
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    (1.2) 

This is the Reynolds’ transport theorem. Now we can derive the equations of fluid motion 
more readily. 
 
Conservation of mass: 
For a fixed collection of matter, the mass does not change. Since Eq. (1.2) holds for 
arbitrary material volume, we have: 
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For incompressible flow, we have  ∇ • v = 0 . 
 
Momentum equation: 
Now take  ψ = ρv , we have 
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We have used the mass conservation in the last step.  
Now consider the Newton’s second law on this fixed collection of matter: 
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where f is the (specific) body force, and tau is the stress tensor acting on its surface. 
Again use the Gauss’ theorem, and recognize this works for arbitrary volume, we have 
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For motions in the atmosphere and ocean, the body force is gravity, and the second term 
on the right hand side can be split into a pressure gradient term and a drag term due to 
viscosity. 
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The same can be done to the first law of thermodynamics. 
 
 


