
Chapter 3 

3.1 Introduction 

Oceanic Adjustment: I 

Twice a year, at the time of the equinoxes, westerly winds abruptly start to 
blow over the central Indian Ocean. The response of the ocean is dramatic 
and curious. An intense narrow eastward jet, with speeds comparable to 
that of the Gulf Stream, appears in the surface layers of the ocean within 
weeks after the onset of the winds (Wyrtki, 1973b). The jet is only a few 
hundred kilometers wide and clearly marks the location of the equator even 
though there is nothing exceptional about the structure of the winds in the 
neighborhood of the equator. At first the jet accelerates-during October 
1973 as shown in Fig. 3.1, for example-but t h s  acceleration stops abruptly 
after a few weeks, although the winds continue to provide eastward momen- 
tum to the ocean. Subsequently the jet decelerates and reverses direction. 
The winds, however, never reverse direction. The trajectories of buoys that 
drifted in the current in late 1979 indicate that the reversal of the jet first 
occurred in the east near Sumatra. In Fig. 3.2, buoy 1804 is seen to start 
traveling westward at a time when buoys 1090 and 1803 farther to the west 
are still traveling eastward at a high speed. The latter two buoys start to 
drift westward at points increasingly farther from the coast of Sumatra. It is 
as if a signal propagating westward at an approximate speed of 55  cm/sec 
caused the buoys to reverse direction. Presumably the arrival of this signal 
at Gan (Fig. 3.1) causes the deceleration of the jet observed there. 

The events described raise a number of questions. Why does a jet appear 
at the equator and what determines its width? What causes it to accelerate 
initially and to reverse direction subsequently? Why does the reversal start 
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in the east? How long would it have taken the ocean to reach a state of 
equilibrium had the winds remained constant after their sudden onset? In 
other words, how long is the “memory” of the ocean? 

Examples of the rapid response of tropical oceans to large-scale changes 
in the surface winds are numerous. Chapter 2 describes basinwide seasonal 
and interannual changes in the circulations of each of the three tropical 
oceans. In the subtropics and midlatitudes, on the other hand, comparable 
variability involving the Gulf Stream and Antarctic Circumpolar Current, 
for example, appears only on far longer time scales. This suggests that the 
time it takes the ocean to adjust to a change in the winds increases with 
increasing latitude. The memory of the ocean is far longer in high than in 
low latitudes. What physical processes determine the memory? 

The measurements in Figs. 3.1 and 3.2 describe variations in the Indian 
Ocean but an understanding of these variations can shed light on a host of 
other phenomena, including El Niiio. It is important to know how long the 
memory of the ocean is because it is this memory that presumably permits 
anomalous oceanic and atmospheric conditions associated with the South- 
ern Oscillation to persist for several seasons. (The time it takes the atmo- 
sphere to return to a state of radiative equilibrium after a change in its 
heating is of the order of a month, far shorter than the time scale of the 
Southern Oscillation.) Of interest is how long it takes the ocean to reach a 
state of dynamic equilibrium. For example, how long would it take the 
ocean to become motionless should the winds suddenly stop blowing? In 
the final state of rest there are no horizontal density gradients but there can 
be vertical gradients. The time to establish the vertical gradients, the 
stratification of the ocean, is believed to be of the order of decades. This is 
much longer than the time for the changes in the oceanic circulation 
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Figure 3.2. The movement of buoys that drifted with the surface currents along the equator 
in the Indian Ocean between 3 September 1979 and 1 March 1980. The first two buoys washed 
ashore on Sumatra. [From Gonella et (11. (1981).] 
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between El Ni5o and La Ni5a. In studies of the oceanic adjustment it is 
therefore assumed that the vertical stratification of the ocean is given- the 
processes that maintain the thermocline are not considered-and attention 
is focused on the manner in which the winds generate horizontal density 
gradients and currents on the relatively short time scale of the Southern 
Oscillation. 

3.2 The Shallow-Water Model 

An appealingly simple model of the tropical oceans can provide answers to 
the questions raised by Figs. 3.1 and 3.2. In the model, the interface 
between two immiscible layers of fluid, each of constant density, simulates 
the sharp and shallow tropical thermocline that separates the warm surface 
waters from the cold waters of the deep ocean. The upper layer has density 
p l ,  has a mean depth H, and is bounded above by a rigid lid. The lower 
layer has density p2 and is infinitely deep so that it must be motionless for 
the kinetic energy to be finite. (In reality the ocean is 4000 m deep and the 
thermocline is at a depth of approximately 100 m.) Linear hydrostatic 
motion in the upper layer is driven by the windstress T that acts as a body 
force. This motion is associated with a displacement TJ of the interface and 
is described by the shallow-water equations’ 

(3.la) 

(3.lb) 

(3 .1~)  

The Cartesian coordinate system, which is fixed in the rotating earth, is 
shown in Fig. 3.3. The velocity components in the eastward (x)  and 
northward ( y )  directions are u and u,  respectively, while t measures time. 
The equator is at y = 0. Effects caused by the rotation and curvature of the 
earth enter through the Coriolis parameter 

u, - fu + 8’17, = rX/H 

u, + fu + 8’7, = rY/H 

g’TJ, + c’( u, + u,) = 0 

f = By,  wherep = 252/a (3.2) 
Here 52 denotes the rate of rotation of the earth and a its radius. The 
gravitational acceleration g, because of the stratification, is effectively 
reduced to 

P2 - P1 

P1 
g g’ = ~ (3.3) 

The gravity wave speed is 

c = ( g‘H)1’2 (3.4) 
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Figure 3.3. The Cartesian coordinate system. 

This is sometimes written 

c = (gh)’’* (3.5) 

where h is known as the equivalent depth. Reasonable numerical values are 

P2 - P1 

P1 

~- - 0.002; H = 100 m; h = 20 cm; c = 1.4 m/sec 

Equations (3.1) can be reduced to a single equation for the northward 
velocity component u:  

(3.7) 
f 2  

( U X A  + U,J/ + Pux - c-2U/tt  - 7% = F 

where 

f 2  r x  1 r Y  1 3 d r x  d r y  
F = -  c 2 ( ~ ) ~ - ~ ( ~ ) ~ t + ~ ~ ( ~ - ~ ~  - 

In regions that are far from the equator and that have a latitudinal extent L 
sufficiently small for the Coriolis parameter to be regarded as a constant 
(even though its y derivative, /3, is also regarded as a nonzero constant), the 
vorticity equation (3.7) can be simplified provided the following conditions 
are satisfied: the time scale under consideration must be much longer than 
the local inertial period and the rotational Froude number of the motion 
( f L / c )  must be at most order one. Under these conditions, Eq. (3.7) can be 



108 3 Oceanic Adjustment: I 

written in terms of a stream function such that u = +x and u = -+" : 

+ + y y  - 7 4  + NX = curl, (3.8) i f 2  i t  
A steady solution to the original equations (3.1) can readily be written 
down without invoking the approximations that lead to Eq. (3.8): 

/3u = curl, T (3.9) 

This equation was first used by Sverdrup (1947) to explain how the curl of 
the wind drives the surface currents in Fig. 2.1. If the curl of the wind is 
zero then the solution to Eqs. (3.1) is 

u = u = 0, gfqx = r X / H  (3.10) 

This solution, and hence the inviscid model, appears unpromising at first 
because it predicts that steady, uniform, zonal winds maintain a pressure 
gradient but do not drive any currents. The model nonetheless deserves 
attention for its description of the evolution of equilibrium conditions after 
the sudden onset of the winds. To put it another way, the journey is more 
important than the destination. An understanding of the fascinating tran- 
sients that appear before equilibrium is attained greatly facilitates the 
interpretation of results from more realistic and complex models. 

3.3 The Equatorial Jet 

Consider the motion induced by the sudden onset of spatially uniform 
zonal winds that then remain steady. Initially the flow in the interior of the 
ocean basin, far from coasts, is independent of longitude. Zonal variations 
become important when the effects of coasts penetrate to the interior of the 
basin, but until such time set a / a x  = 0 in Eq. (3.7): 

utl + f 2u - c2uyy = - f r x / H  (3.11) 

At large distances L from the equator, and after a time longer than the 
local inertial period 2a/PL, the second term dominates the left-hand side 
of this equation so that 

u =  - r x / f H  (3.12) 

This expression for the Ekman drift, which is to the right of the wind in the 
Northern Hemisphere and to the left in the Southern Hemisphere, is valid 
provided the distance L from the equator exceeds the local value of the 
radius of deformation A*, where 

A* = c/ f  (3.13) 
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The Ekman drift, which converges on the equator if the winds are eastward, 
amplifies with decreasing latitude so that downwelling must be intense near 
the equator. Not only the vertical component of the velocity but also the 
zonal component is strong because Eq. (3.la) implies that, in the absence of 
zonal gradients, the wind accelerates the ocean steadily: u,  = r X / H  at 
y = 0. A distinctive equatorial zone clearly exists. Its width can be inferred 
from a scale analysis of (3.11) and is the distance from the equator where 
the second and third terms on the left-hand side of this equation have 
comparable magnitudes. This distance 

A = ( ~ / / 3 ) ' / ~  - 250 km (3.14) 

is known as the equatorial radius of deformation. The time scale 

T = ( P c ) - ' / ~  - 1.5 days (3.15) 

which determines the relative importance of the first two terms in Eq. 
(3.11), is the inertial time l/f at the latitude A. Shortly after the winds start 
to blow (0 < t << T )  the first term in (3.11) is far larger than the second 
term, which represents rotational effects. During t h s  period there is nothing 
distinctive about the neighborhood of the equator because the rotation of 
the earth is unimportant. It follows that T is the time it takes for a 
distinctive equatorial zone to form. 

Next confine attention to times much longer than T so that the first term 
in Eq. (3.11) is negligible. Physically, this approximation filters out high 
frequency inertia-gravity waves that are excited by the sudden onset of the 
winds. The solution to Eq. (3.11) can then be written as (Yoshida, 1959) 

T X  

H 
()= -- (P.1- 1/2Q (3.16a) 

r x  

H 
u = --t(l - [ Q )  (3.16b) 

t 
q =  - r X - Q E  (3 .16~)  

C 

where 

11 = Y/X 

The function Q, the velocity components, and the interface displacements 
are shown in Fig. 3.4. The solution describes an accelerating equatorial jet 
whose half-width is twice the radius of deformation, approximately 500 km. 
The meridional Ekman drift is steady and is maintained by a steady 
deepening of the thermocline near the equator. The associated increase in 
the latitudinal density gradient is such that the accelerating equatorial jet is 
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Figure 3.4. The latitudinal structure of the accelerating equatorial jet ( U ) ,  of the steady 
meridional flow ( V ) ,  and of the thermocline displacement ( P )  in response to spatially uniform 
eastward winds. The unit for latitude is the equatorial radius of deformation. [From Moore 
and Philander (1977).] 

always in geostrophic balance: 

fu + 8'7, = 0 (3.17) 

Geostrophic motion is a form of resonance because it persists in the 
absence of any forcing. Hence, if the winds should suddenly stop blowing 
after a time to ,  then the acceleration of the jet, the equatorward Ekman 
drift, and the deepening of the equatorial thermocline will all stop, while a 
steady geostrophic equatorial jet of intensity u = T ~ ~ , J H  at y = 0 will 
persist indefinitely in the absence of dissipation and meridional coasts. 
Under these conditions the ocean has a memory and records how long the 
winds had blown. To destroy the equatorial jet generated by winds that had 
blown eastward for a certain time, it is necessary to blow winds westward 
for exactly the same time. 

Accelerating jets eventually become nonlinear and unstable, but the next 
complication to account for is the effect of meridional coasts at x = 0 and 
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x = L. At these walls the zonal flow u must vanish at all times. This can be 
accomplished by superimposing on the wind-driven jet just described the 
free modes of oscillation of the ocean. These are discussed in the next 
section. 

3.4 Waves 

The model described by Eqs. (3.1) permits two types of waves: inertia-grav- 
ity waves, which have restoring forces owing to the stratification of the 
ocean and the rotation of the earth, and Rossby waves, which have 
restoring forces owing to the latitudinal variation of the Coriolis parameter. 
Consider waves with zonal wavelength 2n/k and frequency u: 

u = V (  y)exp( ikx - i u t )  (3.18) 

Adopt the convention that u is always positive so that the sign of k 
determines the direction of zonal phase propagation. (Phase propagation is 
eastward if k > 0 and westward if k -= 0.) Substitution of (3.18) into (3.8) 
gives 

P 2  
C 2  

Vyy+ - ( Y 2 - y 2 ) V = O  (3.19) 

where 

Solutions to Eq. (3.19) are wavelike (oscillatory) in an equatorial zone of 
width 2Y but are exponentially decaying poleward of latitudes 5 Y. These 
latitudes depend on the wave number and frequency of the wave and have a 
maximum value when 

k =  -P/2u (3.20) 

in which case 

(3.21) 

In Fig. 3.5, which shows Y,, as a function of frequency, the width of the 
equatorial waveguide has a minimum value at the frequency 

u = ( pc/2)”2 (3.22) 

In extraequatorial latitudes no waves are possible in a band of frequencies 
centered on this value. The approximate limits of the band, which separates 
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Figure 3.5. Periods, as a function of latitude, at whch fluctuating winds excite oceanic 
inertia-gravity, Rossby, and no free waves-in other words, only forced waves. At very long 
periods, whch depend on the zonal extent of the basin, the response to variable winds is an 
equilibrium Sverdrup balance. The Indian and Atlantic Oceans are assumed to be 5000 km 
wide and the Pacific 15,000 km wide. 

high-frequency inertia-gravity waves from low-frequency Rossby waves, can 
be obtained by assuming that the waves far from the equator have such 
short meridional wavelengths that the value of the Coriolis parameter is 
practically constant over several wavelengths. Locally the latitudinal depen- 
dence of V can then be written exp( iny). A dispersion relation follows from 
(3.19): 

u 2  = f ,  + g H ( k 2  + n 2  + p k / u )  (3.23) 

At high frequencies this expression simplifies to 

u2 = f, + gH( k 2  + n’) (3.24) 
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which is a dispersion relation for inertia-gravity waves. Their frequency 
always exceeds the local inertial frequency fo . 

At low frequencies u << fo , 

u = -pk/(k2 + n 2  + f : / c 2 )  (3.25) 

The frequency u is by definition positive so that the zonal wave number k 
must have a negative value. In other words, all Rossby waves have west- 
ward phase propagation. A further restriction on the wave number can be 
inferred from (3.25): 

k 2  + Dk/u < 0 (3.26) 

This means that Rossby waves are excited in the ocean only if the Fourier 
components of the forcing function have wave numbers and frequencies 
that satisfy this condition. The dispersion diagram for Rossby waves shows 
that although the waves have westward phase speed, their zonal group 
velocity can be either eastward (for waves with a zonal scale smaller than 
the radius of deformation A*) or westward (for long waves with a horizon- 
tal scale that exceeds A*) (Fig. 3.6). Waves with zero group velocity have 
the highest possible frequency 

U L  = Pc/2fo (3.27) 

Ths relation gives the maximum value that the Coriolis parameter can have 
for waves with frequency u. In other words, Rossby waves can propagate 
only equatorward of the latitude where the Coriolis parameter has the value 
given by Eq. (3.27). The very long waves are nondispersive, have a zonal 
velocity component that is in approximate geostrophic balance, and have a 
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Figure 3.6. A dispersion diagram for Rossby waves that can be written as u/pX = 

-kX/ ( l  + (kX)*), where u is frequency and X = c / j  is the radius of deformation. [From 
Gill (1985).] 
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speed 

s = -PC2/fo'  (3.28) 

The short waves, with eastward group velocities, are much slower than the 
long waves-their maximum group velocity is s/8-and are prone to 
dissipation. These short waves are relatively unimportant in the oceanic 
adjustment to a change in wind conditions, but the long nondispersive 
waves are of paramount importance in the adjustment. The long waves 
reflect off the western boundaries of ocean basins as short Rossby waves 
that do not propagate far offshore before being dissipated, so that energy 
tends to accumulate close to western boundaries. The zonal asymmetry of 
Rossby wave dispersion is of great importance in a number of phenomena 
to be studied later. 

3.4.1 Ray Paths 

Consider a packet of Rossby waves with a latitudinal scale sufficiently small 
for the Coriolis parameter f to be regarded as a local constant. As the 
packet propagates over a large latitudinal distance, the value of f changes 
so that the dispersion relation (3.25) can be regarded as a slowly varying 
function of latitude y .  This implies that the group velocity vector of the 
packet changes gradually with latitude. T h s  vector is the tangent to the ray 
path so that 

(3.29) 

The coordinates of the ray path are (x, y ) ,  and the dispersion relation 
(3.25) has been simplified by confining attention to long Rossby waves 
( k 2  >> f 2 / c 2 ) .  From (3.29) it follows that 

dx 

1 /2 

y = [-$) cos(;x + d o )  (3.30) 

The constant of integration is 0,. Figure 3.7 shows these rays for waves that 
emanate from the eastern boundary of the basin with a period of 0.5 year 
and with an initial meridional wave number that is zero. (The value of the 
meridional wave number changes along the path but the zonal wave 
number and frequency remain unchanged.) Figure 3.7 shows the equator- 
ward refraction of the wave packet because of the latitudinal variation of 
the Coriolis parameter. This refraction can result in waves that are equatori- 
ally trapped. 
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Figure 3.7. Ray paths for Rossby waves with a period of one year that start at the eastern 
boundary of the ocean basin with a meridional wave number equal to zero. [From Schopf et d. 
(1981).] 

The rays in Fig. 3.7 seem to be refracted towards a focal point (caustic) 
on the equator approximately 50" in longitude from the eastern coast. 
From Eq. (3.30) it follows that this distance is given by 

x = ( 2 r  + l)ac/4a, (3.31) 

(The constant 0, is zero for the case under consideration.) After passing 
through a focus the waves propagate poleward as far as their turning 
latitude and are then refracted towards another caustic on the equator. 
These results explain features of certain models but are of limited relevance 
to the ocean because of the neglect of mean currents. 

r = 0,1 ,2 , .  . . 

3.4.2 Equatorial& Trapped Waves 

The superposition of a wave that propagates towards its northern turning 
latitude and another wave with the same frequency and wave number that 
propagates to the south could result in a standing latitudinal mode. Such 
modes, which span the equator and which are evanescent poleward of the 
turning latitude, are known as equatorially trapped modes.2 An arbitrary 
superposition of waves traveling in opposite directions will in general not 
result in standing modes. Modes are possible only for certain discrete values 
of the meridional wave number n that are eigenvalues of Eq. (3.19) subject 
to the condition that solutions are bounded at large values of lyl. These 
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eigenvalues are given by the expression 

This is the dispersion relation for equatorially trapped modes whose latitu- 
dinal structure is described by the eigenfunctions of (3.19): 

v = D,(Y /X)  (3.33) 

D, = e-‘”/”H,([>, [ = y/X (3.34) 

The D, are Hermite functions of order n ,  

where H ,  is the nth Hermite p~lynomia l .~  The functions are orthogonal so 
that 

M 

D,D, d[  = 2 ” n ! 7 ~ ’ / ~ S , ~  (3.35) J- M 

where 

S,, = 1 ,  if m = n and S,, = 0, if m f n 

The zonal velocity component and pressure are given by the expressions 

(3.36) 

1 n’/2D,-1 ( n  + 1)1/2Dn+l  + [ a + c k  u - ck 
u = i(2p>”’exp(ikx - iat) 

n’/2D,,-, ( n  + 1)1/2D,,+1 
- [ a + c k  u - ck 

q = - (2P)’/’exp( ikx - ia t )  

For an equatorial wave mode with amplitude A the energy density is 

E = - J ( u2 + u2 + c 2 q 2 / H 2 )  dy 
1 m  

2 - M  

(3.37) 1 n + l  n 
2 +  4 (a  - ck) (a  + ck)/” 

and the zonal energy flux is 
m 

F = g ‘ /  q u d y  
- m  

1 n 
(3.38) 

The overbar denotes a time average. Since 

F = Ec, 
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the energy equation, which is derivable from Eqs. (3.1) in the absence of 
forcing, can be written 

E, + cgEx = 0 (3.39) 

The group velocity cg (= a a / d k )  can be calculated from the dispersion 
relation (3.32). Equation (3.32) gives two curves for each value of n: one for 
inertia-gravity waves and the other for Rossby waves, as shown in Fig. 3.8. 
The odd modes ( n  = 1,3,5,. . . ) are symmetrical about the equator and the 
even modes are antisymmetrical. Figure 3.9 depicts their structure. Since n 
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Figure 3.8. Dispersion diagram for equatorially trapped modes. The unit of frequency is 
(j3c)'l2 and the unit of zonal wave number k is the inverse of the radius of deformation 
(c/,!?)'/*. [From Cane and Sarachik (1976).] 
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b t 

t 
Figure 3.9. The latitudinal structure of (a) symmetrical and (b) antisymmetrical Hermite 

functions that describe the meridional velocity component. The unit of distance in the 
northward direction is the equatorial radius of deformation. 
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corresponds to the number of zeroes that a mode has, it can be regarded as 
a meridional wave number. As n increases, the turning latitude increases. 
For large values of n the Hermite functions are essentially sinusoidal except 
in the neighborhood of and poleward of their turning latitudes. For n >> 1 
the dispersion relation (3.23) is a good approximation to (3.32). 

The gravest equatorially trapped mode deserves special comment. Ac- 
cording to Eq. (3.32) there are two roots for n = 0: 

fJ/c k =  - 

k = oc - P / c  (3.40) 

The first root must be discarded because the associated u and q grow 
exponentially for large values of y even though u is bounded. The other 
root is known as the Rossby-gravity mode (see Note 2) because it is similar 
to inertia-gravity waves at high frequencies and similar to Rossby waves at 
low frequencies. The latitudinal shape of the meridional velocity component 
is a Gaussian centered on the equator; the zonal flow is antisymmetrical 
about the equator. Weisberg et al. (1979) describe measurements that are 
consistent with the structure of this wave. 

At low frequencies the dispersion relation (3.32) simplifies to 

- Pk 
n = 1,2 ,3 , .  2 n + 1 ’  

X2 

u =  

k 2 +  ___ 

(3.41) 

from which it follows that equatorially trapped Rossby waves are very 
similar to the Rossby waves discussed earlier: the slow, short, dispersive 
waves have eastward group velocities and the fast, long, nondispersive 
waves have westward group velocities c/(2n + 1). The most rapid 
Rossby wave (n = 1) travels at one-third the speed of long gravity waves. 
Its structure is shown in Fig. 3.10. The zonal current has a maximum and 
the thermocline displacement a minimum on the equator. 

The long Rossby waves are of paramount importance in the oceanic 
adjustment to a change in the winds. The inertia-gravity, Rossby-gravity, 
and short Rossby waves are relatively unimportant and can be filtered from 
the equations of motion by malung the “long wave” approximations. It is 
necessary that the scale of zonal variations, L,  be much larger than the 
radius of deformation A. The scale of latitudinal variations can, however, 
be comparable to A. It is also necessary that the magnitude of the zonal 
flow exceed that of the meridional flow by a factor of L/X at least. This 
assumption is justified by measurements at the equator that consistently 
show that at low frequencies-periods longer than a month-zonal velocity 
fluctuations are far more energetic than meridional velocity fluctuations 
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( b o x  and Anderson, 1985). Under these conditions the shallow-water 
equations simplify to 

6 
~ i Equvfor - ____-- 

I Iwo: 

% 

5 iwo- - 5 

/I) <n,,.r 

2wo- +- Y k Y I  - 

-LOO0 -2000 moo 4wo 
sown 1 I I '  " ' 

u, - fu + g'v, = 0 

fu + g'vy = 0 

g'qr + c'( u, + uJ = 0 

-1wo 5 

~ h (x,y) crn - zwo 

I ~ / , l . l , I  SOUTH 
00 moo dwo -1000 -2000 

These equations yield a vorticity equation 

(3.42) 

(3.43) 

so that 

where F is an arbitrary function and D,, is a Hermite function. These long 
Rossby waves have their zonal flow in geostrophic balance. 
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To isolate short, low-frequency Rossby waves, which are important 
primarily in the neighborhood of the western boundaries of ocean basins, it 
is necessary to assume that the zonal wave number is large (k  >> 1 / X )  and 
that the frequency is low [a << ( P c ) ’ / ~ ] .  The equations of motion then 
simplify to 

-fu + g‘qx = 0 

u, + fu + g’qy = 0 

u,  + uy = 0 (3.45) 

The meridional flow is in geostrophic balance and the horizontal motion is 
nondivergent. A single equation for the meridional velocity component 
readily follows: 

u,, + pu = 0 (3.46) 

This equation has solutions of the form ( ~ t / x ) ” ~ 2 J v ( 4 x ~ t ) ,  where v is a 
constant and J, is a Bessel function of order v. 

3.4.3 Kelvin Waves 

Equatorial Kelvin waves have no meridional velocity fluctuations so that 
the equations of motion (3.1) simplify to 

u,, - c*u,, = 0 (3.47a) 

fu, - c2uxy = 0 (3.47b) 

The first equation implies that 

u = E ( y ) F ( x  c t )  

where E and F are arbitrary functions. Disturbances propagate nondisper- 
sively either eastward or westward with speed c. Equation (3.47b) deter- 
mines the function E. It is unbounded at large values of y in the case of 
westward-propagating disturbances, which must therefore be ruled out. 
However, eastward equatorially trapped Kelvin waves are possible: 

u = g’q/c = epy2/2A2F(x - c t ) ,  u = 0 (3.48) 

For the case of wave disturbances F = exp(ikx - iat), Eq. (3.47a) gives the 
dispersion relation 

B = ck (3.49) 

A disturbance that is symmetrical about the equator will disperse into an 
eastward-traveling Kelvin wave and a westward-traveling Rossby pulse as 
shown in Fig. 3.10. 
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A Kelvin wave packet is nondispersive so that its components are always 
in phase with each other and can interact nonlinearly4 in an efficient 
manner. Nonlinearities modify the equation 

u, + cu, = 0 (3 S O )  

in essentially two ways. Advection increases the phase speed from c to 
c + u. There is an additional change in the phase speed because of the 
deepening of the thermocline by the wave itself: 

(3.51) H + H + 11 = H + cu/g’ 

. . . c + ( g’H + a)”* - c + u/2 for small u / c  

According to this heuristic argument (Ripa, 1982) these two nonlinear 
corrections amount to the replacement of c by c + 3u/2 in Eq. (3.53). ?‘he 
zonal current u is a function of latitude so that its effect has to be averaged 
in that direction. This procedure gives the following equation for the 
nonlinear Kelvin wave: 

u, + ( c  + E u j u ,  = 0 (3.52) 

Equation (3.54), which can be derived formally by means of a perturbation 
expansion provided u / c  << 1, has a solution that can be written in para- 
metric form (Ripa, 1982; Boyd, 1980a). Figure 3.11 shows this solution for 
a disturbance that initially is Gaussian: 

u ( x ,  t = 0) = A exp( - x 2 / 2 a 2 )  (3.53) 

The leading edge of the disturbance, which introduces eastward currents 
and deepens the thermocline as it propagates eastward, steepens until it 
forms a front after a time 

This singularity can be avoided by permitting not only Kelvin waves but 
also Rossby or inertia-gravity waves in the interactions. A Kelvin pulse with 
an amplitude of + 50 cm/sec and a zonal scale of 5906 km will steepen into 
a front after approximately 100 days-before it has crossed the Pacific if it 
were excited in the west. By that time its speed would have increased by 
almost 30%. If the amplitude were A = -50 cm/sec, so that the initial 
pulse elevates the thermocline, then nonlinearities decrease both the speed 
and zonal gradients across the pulse. Nonlinear effects such as these have 
been identified in numerical models and may contribute to discrepancies 
between observed and predicted Kelvin wave speeds. 



3.4 Waves 123 

1/t, - 0 1/2 I 

( x -  c t  ) / a  
Figure 3.11. The nonlinear evolution of a pulse of Kelvin waves, associated with eastward 

currents and a depression of the thermocline. Initially, at time t = 0, the pulse is a Gaussian. 
The curves show the zonal structure of the eastward current at different times. The x axis is 
shifted for each curve in such a way that the departure from the initial curve is a nonlinear 
effect. The dots show the front at time t = t*. [From Ripa (1982).] 

Although observations that show eastward phase propagation along the 
equator are plentiful, it is difficult to find measurements that unambigu- 
ously show the presence of Kelvin waves. This is because the waves are 
superimposed on other waves and on time-dependent wind-driven currents 
(which have no dispersion relation). Measurements that filter out some of 
this variability provide the most persuasive evidence of Kelvin waves. Knox 
and Halpern (1982), for example, integrate the zonal currents vertically to 
reveal a pulse that propagated nondispersively from the central to the 
eastern equatorial Pacific in the northern spring of 1980 (Fig. 3.21). The 
vertical structure of the pulse changed significantly during its journey, 
presumably because of the presence of fluctuations not attributable to 
Kelvin waves. Tide gauges and Inverted Echo Sounders (which detect 
changes in the travel time of sound pulses through the water column) 
measure a vertical average of the density. This filter tends to bring Kelvin 
waves into prominence (Eriksen et al., 1983; Katz, 1987a). As the 1982-1983 
El Niiio developed, tide-gauge records showed an eastward-traveling signal 
that appears to have been a first baroclinic mode Kelvin wave (Lukas et al., 
1984). Of far greater importance to the development of El Niiio, however, 
was the considerably slower, eastward migration of isotherms on the ocean 
surface shown in Fig. 1.20. This migration, and more generally the develop- 
ment of all El Niiio episodes, depends on far more than oceanic Kelvin 
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waves and involves the unstable ocean-atmosphere interactions described 
in Chapter 6. 

Kelvin waves are possible along the equator and also along coasts. If the 
coast is north-south then the mathematical description of these waves is 
complex because of the latitudinal variation of the Coriolis parameter 
(Moore, 1968). Section 3.4.5 on reflections pursues this matter. The next 
topic concerns the effect of east-west coasts. 

3.4.4 

Consider a zonal coast at such a high latitude that the value of the Coriolis 
parameter is essentially a constant fo within a radius of deformation c/fo 
of the coast. Explore motion with no meridional velocity component so that 
Eqs. (3.47) are the governing equations with f = f o .  It follows that distur- 
bances propagate nondispersively either eastward or westward along the 
coast with speed c. In the case of eastward-traveling waves, the amplitude 
grows exponentially with increasing distance from the coast at y = L. In 
the case of westward-propagating signals, 

Coasts Parallel to the Equator 

= expl(y - L ) f o / c I f b  - c t )  (3.54) 

The e-folding distance for these coastal waves is the local value of the 
radius of deformation. Their dispersion relation is 

U =  -ck (3.55) 

These are coastal Kelvin waves that travel with the coast on their right in 
the Northern Hemisphere and on their left in the Southern Hemisphere. 

If a zonal coast is near the equator then the properties of Kelvin waves 
along that coast are affected by the latitudinal variations of the Coriolis 
force. Such a coast will also affect the equatorially trapped waves. This can 
happen in the eastern tropical Atlantic, in the Gulf of Guinea, which has a 
coast near 5"N. Equation (3.19), which describes equatorial waves, must 
now be solved subject to the condition that u = 0 at 5"N. This means that 
the equatorial Kelvin wave is unaffected because it has no meridional 
velocity component. The dispersion relation for the other waves continues 
to be Eq. (3.32) but the integers n are replaced by positive eigenvalues p,, 
( n  = 0,1,2, . . . ). The eigenfunctions are Parabolic Cylinder Functions. 
(When the coasts are far from the equator, at kco then p n  = n and the 
Cylinder Functions are Hermite functions.) The first few eigenvalues that 
correspond to the conditions u = 0 at 5"N and u bounded at y = - 00 are 
(Cane and Sarachk, 1981) 

p o  = 0.01, p1 = 1.1, p 2  = 2.2, p 3  = 3.4, p4 = 4.8 

The difference between p,, and n is a measure of the degree to which the 
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Figure 3.12. The dispersion diagram when a wall is present along a circle of latitude 1.7 
radii of deformation north of the equator. This is the approximate location of the northern 
coast of the Gulf of Guinea. The unit of frequency is (/3c)'/' and the unit of wave number k 
is ( P / c ) ' / * .  The n = 0 Rossby-gravity curve of Fig. 3.8, which would have intersected the line 
for coastal Kelvin waves, now becomes two curves, for inertia-gravity-Kelvin and Rossby- 
Kelvin modes. [From Cane and Sarachik (1979).] 

east-west coast affects the equatorial waves. The gravest mode appears to 
be little affected but the dispersion diagram (Fig. 3.12) indicates otherwise. 
Instead of a Rossby-gravity and coastal Kelvin wave there are Rossby- 
Kelvin and inertia-Kelvin modes. The structure of these modes, in the wave 
number range where they have westward group velocities and are nondis- 
persive, resembles that of coastal Kelvin waves except that the meridional 
velocity component is not zero. Figure 3.13 shows the structure for a 
modified coastal Kelvin wave with frequency u = 0.5 and zonal wave 
number -0.6. [The unit of time is (Pc)- ' / '  and the unit of distance is the 
radius of deformation. J The existence of this very rapid westward-propagat- 
ing mode in the Gulf of Guinea could enable the northern part of the gulf 
to adjust very rapidly to changes in the winds. 
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Figure 3.13. The structure of a Rossby-Kelvin mode for the point u = 0.5, k = -0.501 in 
Fig. 3.12. The zonal velocity component ( u )  and thermocline depth ( h )  have maxima at the 
coast, as for coastal Kelvin waves, but the meridional velocity component ( 0 )  is nonzero. 
[From Cane and Sarachik (1979).] 

3.4.5 Reflections at Eastern Coasts 

The dispersion diagram (3.8) is strikingly asymmetrical about the k = 0 
axis at subinertial frequencies. At periods from a week to a month only 
Kelvin and Rossby-gravity waves are possible and their group velocities are 
strictly eastward. Therefore energy accumulates at the eastern sides of 
equatorial ocean basins at these periods because waves with westward 
group velocities are unavailable for the westward reflection of energy. The 
wave numbers k of the waves that ought to be available for reflection can 
be calculated from the dispersion relation (3.32): 

At frequencies close to (,@c)'/2-periods between a week and a month-the 
wave numbers k have complex values for all values of n. Since oscillations 
are assumed to have x dependence of the form exp(ikx), this result implies 
that a disturbance incident on an eastern boundary at x = L excites 
coastally trapped waves. Far from the equator, for y large and positive, the 
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sum of the coastally trapped disturbances asymptote to the expression 

where A is a constant. This expression resembles a coastal Kelvin wave: it 
propagates poleward at speed c and is confined to a coastal zone with a 
width equal to that of the local radius of deformation c/Py.  Although this 
width decreases with increasing latitude, the amplitude of the wave ( -  $I2) 
increases with increasing latitude so that energy is conserved. The wave 
differs from the coastal Kelvin wave of Eq. (3.50) because the velocity 
component normal to the coast is not zero and because the lines of constant 
phase are not normal to the coast. Similar waves are possible along the 
western sides of ocean basins where they propagate equatorward (Moore, 
1968). 

Analyses of sea level measurements along the western coasts of North 
and South America confirm the presence of coherent poleward-propagating 
disturbances, some of which are correlated with wind fluctuations over the 
equatorial Pacific Ocean (Enfield and Allen, 1980). 

At frequencies near ( P c ) ' / ~ ,  Kelvin or Rossby-gravity waves incident on 
an eastern boundary excite only coastally trapped waves as shown in Fig. 
3.8. As the frequency of the incident wave decreases, an increasing but 
always finite number of long Rossby waves become available for reflection. 
In Eq. (3.56) these waves are associated with the low values of n for which 
k is real. For large values of n ,  k is complex so that reflection involves a 
finite number of Rossby waves and an infinite number of coastally trapped 
waves. This means that there is always a poleward loss of energy at the 
eastern coast. This loss decreases with decreasing frequency. At very low 
frequencies the loss is negligible and an incident Kelvin wave of the form 

L - x  2 

u = exp( - s ) c o s a (  t - .) 
reflects as long nondispersive Rossby waves (Eq. (3.44)). The sum of the 
incident and reflected waves can be written as (Cane and Moore, 1981) 

u = - iqtan(s)  

u = iaqy sec2(s) 

1 [ 2A2 
Y 2  

q = cos'/2(s)exp iat + --tan(s) (3.58) 

where 
s = 2a(x - L ) / c  
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These expressions are singular at s = m/2,3~/2, .  . . , which are foci similar 
to those of Eq. (3.31) and Fig. 3.7. 

The results of Eq. (3.58) can be used to determine the reflection of a 
Kelvin wave front or bore at an eastern coast. Let the incident front be 
described by 

u = ~ ( x  - ct)exp( -y2/2X2) 

where S(x - ct) is a step function so that S = 0 if x < ct and S = 1 if 
x > ct. As the front propagates eastward into a motionless region it 
suppresses the thermocline and introduces a steady, geostrophic eastward 
jet. At the eastern boundary the front excites poleward-traveling coastal 
waves that initially are trapped within a radius of deformation of the coast. 
With time, westward Rossby dispersion becomes possible (Anderson and 
Rowlands, 1976b). According to Eq. (3.57) this happens after a time 
( 2 y / ~ ) ' / ~  at a latitude y .  The dispersion steadily increases the width of the 
coastal zone, more rapidly in low than in high latitudes because Rossby 
waves travel faster near the equator. After a long time the effect of all the 
reflected Rossby waves is to cancel the zonal current associated with the 
incident equatorial Kelvin front and to lower the thermocline uniformly 
everywhere (Cane and Sarachik, 1977). This asymptotic state is described 
by Eq. (3.58) in the limit u + 0: 

u = u = o ;  q = f i  (3.59) 

3.4.6 Reflections at Western Coasts 

The reflection of waves incident on the western boundary of an ocean basin 
involves a Kelvin or Rossby-gravity wave, depending on the symmetry of 
the incident wave. Because of ths ,  reflection at a western boundary, unlike 
that at an eastern, is not associated with a poleward loss of energy. 
Consider a Rossby wave with meridional wave number N and frequency u 
that is incident on a western coast at x = 0. In Eq. (3.56) the wave number 
of the incident wave corresponds to the plus sign for which group velocities 
are westward. The minus sign is appropriate for the reflected waves that 
have eastward group velocities. A recursive relation for the amplitude of the 
reflected waves can readily be written down (Moore and Philander, 1977); 
the solution has a number of important properties. The reflected waves are 
finite in number and have meridional wave numbers n that are all less than 
that of the incident wave. In other words, the incident wave reflects as a 
finite number of short Rossby waves plus a Kelvin or Rossby-gravity wave. 
The zonal wave numbers k of the reflected waves are all real so that the 
reflection does not involve coastally trapped waves. (Coastally trapped 
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waves come into play when coastal Kelvin waves along the northern or 
southern coast are incident on the western coast or when they are excited 
by forcing along the western coast.) The Hermite functions 0, that describe 
the reflected waves all have n < N + 1, where N is the meridional wave 
number of the incident wave. This means that the reflected wave is at least 
as equatorially trapped as the incident wave. 

At very low frequencies, reflections at western boundaries involve the 
short Rossby waves described by Eqs. (3.45). These nondivergent waves 
redistributed mass meridionally but they are not associated with a net zonal 
mass flux. Zonal mass flux into the western boundary is therefore returned 
eastward by the only other wave with an eastward group velocity, the 
equatorial Kelvin wave. This wave returns all the mass incident on the 
western coast, but it does not return all the energy incident on that coast. 
Suppose that the mass and energy flux incident on the western coast are 
associated with a long Rossby wave of meridional mode number N .  At 
frequencies sufficiently low for Eqs. (3.45) to be valid, the fraction R of the 
energy flux [see Eq. (3.38)] returned eastward by the Kelvin wave is (Clarke, 
1983) 

R = 0.5, N = l  

( ~ - 2 ) ( N - 4 )  ... 1 

( N +  1 ) ( N -  1 ) ( N -  3) ... 2 ’  
R =  N = 3 , 5 , 7 ,  ... (3.60) 

At most half the energy of the gravest equatorially trapped Rossby mode 
returns eastward as a Kelvin wave. In the case of an incident wave that is 
antisymmetrical about the equator, there is no meridionally integrated mass 
flux into the western coast x = 0, no Kelvin wave is excited, and short 
Rossby waves transport mass across the equator in a western boundary 
current. (The energy flux ratio R is zero in this case.) 

Reflections of Rossby waves off the western boundary of the Pacific 
Ocean are critically important in some coupled ocean-atmosphere models 
of the Southern Oscillation (Chapter 6). The Pacific of course does not have 
a continuous western boundary but if it is assumed that New Guinea, Irian 
Jaya, and Maluka form a barrier to westward-traveling equatorial Rossby 
modes then the slope of this barrier to meridians will affect reflections. In 
the Indian and Atlantic Oceans the coasts also slope relative to meridians. 
The condition that the incoming mass flux normal to the coast due to long 
Rossby waves must be returned by a Kelvin wave determines the reflections 
(Cane and Gent, 1984). Equatorial Kelvin waves can now be excited by 
Rossby waves that are symmetrical about the equator and also by those 
that are antisymmetrical. For the western equatorial Pacific it is estimated 
that the amplitude of reflected Kelvin waves is reduced on the order of 30% 
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from that which would be achieved if the boundary coincided with a 
meridian. 

The higher the meridional mode number of equatorially trapped Rossby 
waves, the larger the number of zeroes of the zonal velocity component and 
the smaller the meridionally integrated zonal mass flux. This is why the 
amplitude of the reflected Kelvin wave is small. A disturbance with a large 
zonal mass transport that is incident on a western coast at a relatively high 
latitude, near 15"N say, will give rise to an equatorial Kelvin wave with the 
same mass flux even though each of the Rossby waves, whose sum describes 
the disturbance, will excite a Kelvin wave with a relatively small amplitude. 
It is the mass transport normal to the coast that matters. 

3.4.7 Basin Modes 

Figure 3.14 depicts the structure of one class of resonant modes of a closed 
ocean basin. The period is approximately the time it takes equatorial and 
coastal Kelvin waves to travel around the basin, clockwise in the Southern 
Hemisphere and anticlockwise in the Northern Hemisphere. (Allowance 
must be made for the time it takes Kelvin waves to turn corners.) The 
period of this class of modes must be close to P = 2 7 r ( P ~ ) - ' / ~  for the 
mode to involve only equatorial and coastal Kelvin waves. As the difference 
between P and the resonant period increases, Rossby (or inertia-gravity) 
waves come into play and the width of the equatorial zone in Fig. 3.14 

trapped waves 

Figure 3.14. The structure of the modes of an ocean basin at frequencies (a) close to 
u ,  = (2Pc) ' / *  and (b) much lower than a,. In case (a) there is eastward phase propagation 
along the equator as Kelvin waves are the only equatorially trapped waves that are excited. In 
case (b) there are fixed nodal lines (the straight solid lines) and westward-propagating phase 
lines (the dashed lines). 
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widens. At very low (or high) frequencies it is possible to have modes 
without distinctive equatorial or coastal zones. iligure 3.14b shows the 
structure of such a low-frequency mode, which is a superposition of Rossby 
waves with eastward and westward group velocities (Moore, 1968). Low- 
frequency resonant modes of an ocean basin generally involve short Rossby 
waves with eastward group velocities. As noted earlier, the slow speeds and 
short scales of these waves make them prone to dissipation. A mode 
composed solely of equatorial Kelvin and long Rossby waves is therefore of 
special interest. Equation (3.58), whch describes the sum of a Kelvin wave 
incident on an eastern coast ( x  = L )  plus the long Rossby waves reflected 
there, also satisfies the condition u = 0 at a western (x  = 0) wall provided 
(Cane and Moore, 1981) 

(3.61) 

For m = 1 this period is the time L/c it takes an equatorial Kelvin wave to 
propagate eastward across the basin, plus the time 3L/c it takes the gravest 
equatorially trapped Rossby wave to travel westward across the basin. In a 
shallow-water model this mode is excited by an abrupt intensification of the 
wind (Section 3.6). 

P = 2a/a = 4L/crn, rn = 1 ,2 ,3 , .  . . 

3.4.8 Islands 

The Gilbert and Galhpagos Islands in the Pacific Ocean, and the Maldives 
in the Indian Ocean, fail to reflect or impede equatorial waves primarily 
because these islands have a latitudinal scale that is small relative to the 
equatorial radius of deformation (Yoon, 1981; Cane and du Penhoat, 1981; 
Rowlands, 1982). Small islands can and have been used as instrument 
platforms that do not affect the waves. Sea level measurements on the 
western side of the Galhpagos Islands confirm the latitudinal structure of 
equatorial Kelvin waves (Ripa and Hayes, 1981). Even an island with a 
large latitudinal extent will fail to impede Kelvin waves with a frequency 
close to (/3c)lI2 because the coastally trapped waves excited at the island 
will propagate as shown in Fig. 3.15 and will regenerate eastward-traveling 
equatorial Kelvin waves. 

Equator 

Figure 3.15. A schematic of Kelvin waves propagating around an island. 
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3.5 Generation of Sverdrup Flow 

The mean surface currents in the tropical Pacific Ocean, except for those 
within a radius of deformation of the equator, are to a reasonable approxi- 
mation in accord with the Sverdrup balance (3.9). These currents, shown in 
Fig. 2.1, have considerable seasonal and interannual variability. Assume 
that t h s  variability is described by Eq. (3.8). A scale analysis of this 
equation yields interesting information about the oceanic response to 
variable winds in different frequency ranges. The ratio of the two terms on 
the left-hand side of the equation defines a time scale T where 

T 2  = f 2 L / p c 2  = 2aLQ sin2 8/c2 cos 8 (3.62) 

Latitude is denoted by 8. If the time scale of the wind fluctuations is T* 
then the oceanic response depends critically on the ratio T to T*. 

T* << T and T >> l / f :  At high frequencies, wind fluctuations do not 
excite Rossby waves because the term (/3+,) in Eq. (3.8) is negligible. The 
response is local and the divergence of the Ekman drift determines vertical 
movements of the thermocline. 

T* - T: On time scales comparable to T the response is nonlocal 
because Rossby waves are important. 

T* >> T: At low frequencies the first term in Eq. (3.8) is negligible and 
the oceanic response is a Sverdrup flow that is in phase with the slowly 
varying winds. The ocean is always in equilibrium with the winds and in 
effect passes through a succession of steady states. 

If the forcing is at a fixed frequency, at a period of one year, say, so that 
T* = 1 year, then the inequalities stated above defice bands of latitude in 
which the oceanic response changes. In low latitudes, where T has a small 
value, T* >> T and the response is equilibrium Sverdrup flow; at higher 
latitudes, where T has a longer value, Rossby wave propagation is evident; 
and farther north, local Ekman suction determines the vertical movements 
of the thermocline. 

The time T,  which is the time L / s  it takes long Rossby waves with speed 
s to propagate a distance L, is the adjustment time of the ocean. To 
demonstrate this explicitly consider how the ocean adjusts to winds that 
suddenly start to blow and then remain steady. To simplify matters assume 
that the forcing has the latitudinal structure sin(ny) so that Eq. (3.8) after 
an appropriate redefinition of J ,  becomes 

(3.63) 

where 
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If the winds, wluch have a constant curl A ,  are assumed to be zonal then 
they can be viewed as an idealization of the winds that drive the subtropical 
gyre: westerly winds north of 30"N, say (where y = 0 and f = f o ) ,  and 
easterly winds to the south of this latitude. These winds start to blow 
suddenly at time t = 0 and then remain steady. The oceanic response can 
be written 

+ = +I + +LR + +SR 

where +' is the initial response in the oceanic interior, far from coasts. Ths 
response is independent of longitude: 

4' = -At/r2 (3.64) 

This steady vertical movement of the thermocline is caused by the diver- 
gence of the Ekman drift. Associated with this displacement of the thermo- 
cline is an accelerating geostrophic zonal current u ( = ( g ' / f o ) n 4  cos n y )  
that satisfies the boundary conditions on neither the western (x = 0) nor 
eastern (x = L )  coasts. To meet the boundary conditions it is necessary to 
superimpose on the particular integral (3.64) the free modes, namely 
Rossby waves. [All other waves are filtered from Eq. (3.8).] At the eastern 
coast, Rossby waves +LR with westward group velocities are excited. 
Assume that these waves are long so that they satisfy the hyperbolic 
equation 

-r2+kR + p4kR = o 
so that 

+LR = F( x + pt/r2) 

where F is a function which satisfies the equation 

F( L + pt/ r2)  = 0 for t < 0 

= At/r fo r t  > 0 

It follows that 

4' + +LR = -At/r2 for t < r2(  L - x) /p  

(3.65) 

= -A(L - x)/p fo r t  > r 2 ( L  - x)/P (3.66) 

This equation describes a dramatic change in the motion, from an accelerat- 
ing zonal current to steady Sverdrup flow: 

u = J/, = A / P  = curl, 7 (3.67) 

This happens after a time t = ( L  - x)r2/p, which is how long it takes a 
long nondispersive Rossby wave to travel from the wall at x = L to the 
point x. West of the front the accelerating flow is strictly zonal but to the 
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east of the front the Sverdrup flow has a meridional component given by 
Eq. (3.67). Since the flux across a circle of latitude must be zero in an ocean 
basin, the southward flux east of the front returns northward in the 
discontinuity at the front. 

To satisfy the boundary conditions at the western coast x = 0 it is 
necessary to invoke short Rossby waves I,LSR with eastward group velocities. 
Under the assumptions already made these waves satisfy Eqs. (3.45). The 
solution that satisfies the boundary condition at x = 0 and that merges 
with the interior solution (3.64) is 

At this stage three regimes characterize the oceanic response: a western 
boundary current described by Eq. (3.68); an interior region where the 
zonal current accelerates according to Eq. (3.64); and an eastern region 
where the westward-expanding Sverdrup balance given by Eq. (3.66) ob- 
tains. In due course-in the time it takes a long Rossby wave to propagate 
westward across the basin- the solution in Eq. (3.68) is inappropriate 
because the western boundary layer must merge, not with the accelerating 
zonal current, but with the Sverdrup balance, which is now established 
across the entire basin. Motion is now described by the expression 

A L  
= ---[I - 

P 
x / L  - (3.69) 

Far from the western coast there is steady Sverdrup flow. If the width of the 
western boundary current is taken to be the first zero of the Bessel function 
J then this width decreases with increasing time. However, the thinning 
current must return northward the Sverdrup transport 1;Ad.x that flows 
southward across a circle of latitude. It follows that the speed of the 
western boundary current must increase as its width decreases- this is 
evident in the solution shown in Fig. 3.16-so that the vorticity ux in the 
western boundary increases steadily. The wind imparts vorticity uniformly 
over the basin but it accumulates near the western coast, where a singularity 
develops with increasing time. Friction can be invoked to dissipate the 
vorticity near the coast (Stommel, 1948), but measurements do not show 
high levels of dissipation underneath the Gulf Stream, for example. A 
realistic alternative is to permit the western boundary current to become 
unstable, because of its shear. In that case the equilibrium response to 
steady winds is steady Sverdrup flow except for an unstable time-dependent 
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Figure 3.16. Displacements of the thermocline at different times (marked 1 to 15) after the 
wind turns on at time zero over an ocean initially at rest. In the center of the basin, Ekman 
pumping at first deepens the thermocline until the arrival of long Rossby waves from the east 
arrests the deepening and establishes a Sverdrup balance so that the thermocline has a zonal 
slope. The western boundary current becomes thinner and more intense with increasing time. 
[From Anderson and Gill (1975).] 

western boundary current. Waves radiated by this current can be dissipated 
in regions remote from the current. 

The time it takes the ocean to return to a state of equilibrium after a 
sudden change in the winds is essentially the time it takes a long Rossby 
wave to propagate from east to west across the basin of width L and is 
given by Eq. (3.62). This adjustment time decreases rapidly with decreasing 
latitude, as shown in Fig. 3.5, so that it takes far longer to generate, from 
rest, midlatitude currents such as the Gulf Stream than low-latitude cur- 
rents such as the Somali Current or those in Fig. 2.1. Measurements 
indicate that the time it takes the ocean to adjust to a change in the winds is 
indeed shorter in low than in high latitudes. There have also been attempts 
to compare measurements with the solutions of Eqs. (3.8) and (3.63) in a 
more quantitative manner. In studies of the North Equatorial Countercur- 
rent in the Pacific (Meyers, 1980) and Atlantic (Garzoli and Katz, 1983; 
Katz, 1987b), seasonal vertical movements of the thermocline have been 
explained in terms of Rossby waves near the southern boundary of the 
current and local Ekman suction near 10°N, consistent with the analysis of 
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Eq. (3.63). This agreement between measurements in low latitudes and the 
solution to Eq. (3.63) is a puzzle because some of the conditions that have 
to be satisfied for (3.63) to be valid are violated. For example, the assump- 
tion that the waves that effect the oceanic adjustment have a constant 
north-south wave number requires that the value of the Coriolis parameter 
f be relatively constant. This is a poor assumption in a latitude as low as 
10"N. If variations in f are taken into account then the waves propagate 
not with a fixed but with a variable north-south wave number. This results 
in Rossby wave dispersion such as that shown in Fig. 3.7. It follows that the 
waves excited near one meridian will fail to reach certain parts of the ocean 
because of refraction. In these shadow zones a Sverdrup balance is impossi- 
ble and local Ekman pumping determines thermocline movements. Along 
10"N there ought to be shadow zones between certain meridians while 
Rossby waves should be evident in other regions. If this is not observed 
then other factors, such as the presence of mean currents, must come into 
play. The point is that Eq. (3.63) is not valid in the region of the North 
Equatorial Countercurrent. The apparent agreement that has thus far been 
found between the measurements and the theory is perplexing, not reassur- 
ing. The matter is pursued in Section 3.9. 

The expression for the adjustment time of the ocean in Eq. (3.62) is 
singular at the equator because the approximations that were made in the 
derivation of this equation become invalid. Neglected factors that are 
important close to the equator include the change in the dispersion relation 
for Rossby waves, the existence of Kelvin waves, and the equatorial jet that 
can be generated by winds parallel to the equator. 

3.6 Equatorial Adjustment 

Near the equator the sudden onset of spatially uniform zonal winds at first 
generates the accelerating equatorial jet described in Section 3.3. Ultimately 
the zonal winds maintain a pressure gradient while the ocean approaches a 
state of rest (Eq. (3.10)). The adjustment from the initial state to the final 
equilibrium state is effected by the waves discussed in Section 3.4. In the 
case of a nonrotating tank of water, only gravity waves are available for the 
adjustment, but in the case of a rotating spherical shell of fluid, the gravity 
waves can be completely unimportant. This is because the inertia-gravity 
waves have periods strictly less than a week [ 2 ~ ( 2 p c ) - ' / ~ )  near the 
equator]. It follows that if the onset of the winds is gradual so that they 
attain full strength after a week or two, then the winds excite practically no 
inertia-gravity waves. Assume that the winds behave in this manner. Kelvin 
and Rossby waves are then responsible for the oceanic adjustment so that 
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the motion at any moment is a superposition of these waves and the 
wind-driven jet described by Eq. (3.16): 

u = uJET + U K  + U R  (3.70) 

The superscripts K and R indicate Kelvin and Rossby waves. The ampli- 
tudes of the waves are determined by the boundary conditions at the 
meridional coasts: 

u = 0 at x = Oand L (3.71) 

Only waves with eastward group velocities are excited at the western 
boundary x = 0. The short, slow Rossby waves, as pointed out in Section 
3.4, are important only near this coast where they redistribute mass merid- 
ionally (alongshore). They do not transport mass zonally at low frequencies 
so that the Kelvin wave is solely responsible for returning eastward any 
westward mass flux into the coast (Cane and 

dy=  -Im u K  dy 

This condition determines the function F in 
wave in Eq. (3.48): 

00 

I- -00 

Sarachk, 1977): 

a t x = O  (3.72) 

the expression for the Kelvin 

F ( - c t )  = 0 fort  < 0 

= --atrX/H fort  > 0 

It follows that 

u y x ,  y,  t )  = 0 for t < x / c  

for t > x / c  (3.73) 
ar 

cH 
u(x, y ,  t )  = -(x - ct)exp( -y2/2X2) 

where (Y is a constant with a value of 0.84. This expression describes a front 
or bore that is excited at the western coast at time t = 0 and that 
propagates eastward at speed c .  The front dramatically changes the initial 
response of the ocean to the zonal winds: in the wake of the front there is a 
sharp reduction in the acceleration of the zonal jet and in the intensity of 
the equatorial upwelling: 

u = r x x / H c  ony = 0 fort  > x / c  (3.74) 

This happens because the front introduces a steady zonal pressure gradient 
that balances the windstress: 

arx  

H 
qx = -exp( - y2 /2X2)  (3.75) 

In the wake of the front the zonal momentum balance near the equator 
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changes from u, = r X / H  to g’q, - rX /H .  The front also causes the jet to 
become horizontally divergent so that the poleward Ekman drift is no 
longer maintained by equatorial upwelling: the equation for the conserva- 
tion of mass changes from qr + huY = 0 to H(u ,  + uY) - 0. 

Consider next the waves with westward group velocities that are excited 
at the eastern coast. Of most importance are the long nondispersive Rossby 
waves 

7, 
UR - - - c a , S [ x  - L + c t / ( 2 n  + l ) ]R , (y )  (3.76) 

cH n 

where R, describes the latitudinal structure of the n th Rossby mode, which 
is given by Eq. (3.36) with u = - c k / ( 2 n  + 1). The function S has the 
property S(x) = 0 if x < 0 and S(x) = x if x > 0. The constants a,  are 
chosen such that the sum in Eq. (3.76) is equal to the expression for the 
equatorial jet [Eq. (3.16)]. The westward-traveling Rossby wave fronts, like 
the eastward-traveling Kelvin wave front, modify the equatorial jet by 
introducing zonal gradients. The Rossby waves, however, can extend to 
high latitudes, whereas the Kelvin wave affects only a region within a radius 
of deformation of the equator. The most rapid Rossby wave travels at speed 
c/3 and influences a narrow equatorial zone. The other Rossby modes 
travel more slowly, at speeds c/7, c / l l , . .  ., but they extend to higher 
latitudes. Far from the equator the initial motion is predominantly merid- 
ional Ekman drift u = r x / f H .  The long Rossby waves that emanate from 
the eastern coast ultimately eliminate both components of the horizontal 
flow so that the zonal wind maintains the pressure gradient of Eq. (3.10). 
The farther from the equator, the longer it takes to attain thls equilibrium 
state. Figure 3.17 shows schematically how the oceanic adjustment pro- 
ceeds: the initial response, an accelerating equatorial jet, persists longest in 
region I; a Kelvin front introduces steady motion in region 11; westward- 
traveling Rossby fronts affect region I11 similarly; and very short Rossby 
waves are important in the western boundary layer IV. 

After a time 3L/4c the Kelvin and Rossby fronts meet at the meridian 
x = 3L/4. There is now a zonal pressure gradient all along the equator, and 
the equatorial jet is practically steady at all meridians. The jet now starts to 
decelerate in the wake of the Kelvin front that propagates into the region 
already affected by the Rossby front, and similarly in the wake of the 
Rossby front as it propagates into the region x < 3L/c. Figure 3.18 clearly 
shows how the motion changes after the passage of the fronts. The Kelvin 
front incident on the eastern boundary at time L/c excites a new set of 
westward-traveling Rossby fronts. Subsequently there are repeated reflec- 
tions at both coasts as fronts propagate back and forth. Each reflection at 
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Figure 3.17. Schematic diagram that shows the distinct regions that characterize the 
oceanic adjustment to a sudden change in the winds. 

the eastern boundary results in a loss of energy to high latitudes. Because of 
this the kinetic and potential energies of the equatorial region approach 
their equilibrium values rapidly. 

Figure 3.19 shows that the adjustment time for the equatorial zone is, for 
practical purposes, 4L/c,  the time it takes a Kelvin wave to propagate 
eastward across the basin plus the time for the reflected Rossby wave to 
travel back westward across the basin. [This time 4L/c is also the period of 
the oscillations in the potential energy in Fig. 3.19 and is the period of the 
resonant equatorial mode of Eq. (3.61).] 

The adjustment time of the ocean-the time it takes to establish equilib- 
rium conditions after the sudden onset of steady winds-depends on the 
width of the basin and on latitude as shown in Fig. 3.5. Outside the 
equatorial zone the adjustment proceeds from the eastern coast and is 
effected by long Rossby waves as described in Section 3.5. Equation (3.62) 
gives the approximate adjustment time for that region. For the equatorial 
zone it is 4L/c. For the Pacific Ocean the adjustment time is of the order of 
a decade in midlatitudes and decreases to approximately 450 days near the 
equator. The width of the equatorial Atlantic is only 5000 km, one-third 
that of the equatorial Pacific, so that its adjustment time is approximately 
150 days. (The proximity of the northern coast of Brazil and the northern 
coast of the Gulf of Guinea to the equator probably reduces this estimate as 
mentioned earlier.) 

Once the inviscid ocean is in equilibrium with steady, spatially uniform 
winds, it is motionless and has a sloping thermocline with which is associ- 
ated a zonal pressure gradient that balances the wind. Suppose that the 
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Figure 3.18. Changes in the zonal velocity component (centimeters per second) and in departures from the mean depth of the 

thermocline along the equator after the sudden onset of spatially uniform eastward winds. The dashed lines indicate the speeds at 
which Kelvin and the gravest Rossby mode propagate. The thermocline is elevated and motion is westward in shaded areas. 
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Figure 3.19. The kinetic and potential energy for the latitude band 5"N to 5"s for the 

motion in Fig. 3.18. 

winds at this stage suddenly stop blowing. The pressure force will be left 
unbalanced and will initially accelerate the fluid in a direction opposite to 
that in which the wind had been blowing. The oceanic adjustment, back to 
a motionless state in which the thermocline is horizontal, will proceed 
exactly as before: waves excited at the coast will eliminate the zonal 
pressure gradient. T h s  response to winds that suddenly stop blowing 
should be contrasted with the response (discussed in Section 3.3) of a 
zonally unbounded ocean to a similar change in the winds.' 

3.7 Response to Remote Forcing 

The winds over the ocean vary spatially, a factor not taken into account in 
the analysis thus far. To determine some of the effects associated with this 
complication, assume that the ocean is zonally unbounded and that spa- 
tially uniform eastward winds suddenly start to blow at time t = 0, but only 
between meridians A at x = 0 and B at x = L. There is no wind over the 
regions x -= 0 and x > L. 

The response is composed of a wind-driven equatorial jet between A and 
B-it is similar to the jet described in Section 3.3-plus Kelvin and Rossby 
waves excited at A and B to ensure continuity of the zonal velocity 
component and of the thermocline displacements at A and B.  In the forced 
region, between A and B, the Kelvin front from A and the Rossby fronts 
from B introduce zonal pressure gradients that balance the windstress so 
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that the initial acceleration of the jet stops. The early evolution of the flow 
is therefore similar to that described in Section 3.6. In the absence of 
north-south walls from which waves reflect, there is no further adjustment 
so that the final equilibrium state includes a steady zonal jet (McCreary, 
1976; Cane and Sarachik, 1977): 

r " L  

fi Hc 
u = -exp( -y2/2A2) (3.77) 

The eastern unforced region (x  > L )  is motionless and has a horizontal 
thermocline until the arrival of the Kelvin front excited initially at B. This 
front introduces an accelerating equatorial jet and a steadily deepening 
thermocline that has a constant zonal slope: 

r"  

Hc 
u = - -(x - L - ct)exp( -y2/2A2) 

77 = -cu /g ' ,  x > L ;  t > (x  - L ) / c  (3.79) 

At a fixed point these conditions persist until the arrival of the second 
Kelvin front excited at A .  This front arrests the acceleration of the jet, 
stops the deepening of the thermocline, and eliminates the slope of the 
thermocline. The winds between A and B therefore maintain a steady jet 
and a deepened thermocline to the east of B in a region that steadily 
expands eastward: 

r " L  

fi Hc 
u = -exp( -y2 /2A2) ,  x > L ;  t > x/c (3.80) 

In the region to the west of B,  where Rossby waves excited at A and B 
introduce an eastward jet and alter the topography of the thermocline, the 
latitudinal structure of the flow is more complex than in the east but the 
temporal evolution is similar. 

The effect of a meridional boundary to the east of x = L can be 
calculated by using the results of Section 3.4. From Eq. (3.58), which 
describes the long-term effect of a Kelvin front incident on an eastern 
boundary, it can be inferred that reflections at an eastern boundary will 
ultimately eliminate the equatorial jet established by the Kelvin waves in 
the region east of B but will leave the thermocline deeper than it originally 
was : 

u = u = o  

11 = f i r x L / H c ,  x > L ,  t >> x / c  (3.81) 



3.7 Response to Remote Forcing 143 

Figure 3.20 shows changes in the depth of the thermocline in response to 
winds with a limited zonal extent. After a long time the thermocline is seen 
to have a slope in the forced region only. The uniform deepening of the 
thermocline to the east of the forced region gradually spreads poleward 
along the coast. 

If the eastward winds, over a region with a zonal extent L,  last for a time 
T, and if these winds start and stop abruptly, then the region to the east is 
affected by four Kelvin waves: two are excited at the extremes of the forced 
region when the winds start to blow and two more are excited when the 
winds stop blowing. From the analysis that leads to Eqs. (3.80) and (3.81) it 
follows that there is an eastward current, and a deepening of the thermo- 
cline, for a time T + L/c at a point east of the forced region. From 
measurements in the eastern side of the basin it is impossible to distinguish 
between winds that persist for a long time over a small region and winds 
that persist for a short time over a large region. The oceanic response 
depends on both the zonal extent of the forced region and the length of 
time for which the winds blow. 

The remote response to winds with a complex structure can be calculated 
as follows. Expand the forcing function and the dependent variables as a 
series of Parabolic Cylinder Functions D,( y )  after the introduction of new 

Equations for q,, r,, and u, can readily be derived 
orthogonality of the Cylinder Functions. The equation for qo is 

by exploiting the 

840 840 - + c- = X 0 ( x ,  t )  
a t  a x  (3.82) 

where Xo is the projection of the zonal windstress onto a Gaussian (the 
Cylinder Function Do). Equation (3.82) describes the Kelvin waves excited 
by the wind and has the solution 

qo(x ,  t )  = 1‘ X 0 [ x  + c( t ’  - t ) ,  t’] dt’ (3.83) 
-a2 

For winds that are described by a Gaussian in longitude and time, 

X = exp[ - (2x /L) ’  - (2 t /T ) ’ ]  (3.84) 

the solution to (3.82) is 

( L2 + c 2 T 2 )  L2 + c 2 T 2  
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Figure 3.20. Changes in the depth of the thermocline in response to a patch of easterly 
winds with the zonal and latitudinal structure shown in (a). The maximum value of the 
windstress is 0.5 dyne/cm2. The instantaneous pictures show conditions after (a) 1 month, (b) 
3 months, (c) 13 months, and (d) 60 months. Shaded regions indicate an elevation of the 
thermocline. The contour interval for curves that show departures from the mean depth of the 
thermocline is 10 m. [From McCreary and Anderson (1984).] (Figure conlinues.) 

where E = cT/L. Far to the east of the forced region the response is 
an eastward-traveling Gaussian pulse. At a fixed point it lasts a time 
( T 2  + L2/c2 )1 /2 .  Fig. 3.21 shows a pulse, generated in the western Pacific, 
that traveled eastward nondispersively for several thousand kilometers 
along the equator. 

The oceanic response is complicated if the areal extent of the forcing 
function gradually expands. Ths happened in 1982 when eastward winds 
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km 

Figure 3.20 (Continued) 

slowly penetrated farther and farther eastward in the tropical Pacific. Tang 
and Weisberg (1984) show that the response to a patch of westerly winds 
increases in amplitude if the patch moves eastward instead of remaining 
stationary. If the patch moves at the speed of a Kelvin wave then the 
response grows linearly with time. The eastward expansion of westerly 
winds during El NiEo of 1982-1983 contributed to its large amplitude. In 
the tropical Atlantic the seasonal intensification of the southeast trades 
starts in the east and progresses westward. Rossby waves can then be forced 
resonantly (Weisberg and Tang, 1983, 1985; McCreary and Lukas, 1986). 

Figure 3.20 depicts the oceanic response to eastward winds over a band 
of meridians in the middle of the basin. At first the winds deepen the 
thermocline to the east of the forced region but elevate it to the west. The 
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Figure 3.21. Eastward transport per unit width (essentially the average zonal current over 

the depth range 0 to 250 m) on the equator at 152"W and l1O"W and sea level at Isabela 
Island in the GalApagos. A pulse progresses eastward. Its leading edge reaches 152"W on April 
7, l lOoW on April 25, and Isabela on May 3. [From Knox and Halpern (1982).] 

elevation propagates westward as Rossby waves and reflects off the western 
coast an an equatorial Kelvin wave that elevates the thermocline as it 
propagates eastward. In due course this elevation cancels the initial deepen- 
ing of the thermocline in the forced region. This feature of the oceanic 
response is of enormous importance in some coupled ocean-atmosphere 
models of the Southern Oscillation (Chapter 6). 

3.8 The Effects of Dissipation 

In the absence of any mixing processes, steady, spatially uniform, zonal 
winds maintain a zonal pressure gradient but do not drive any currents (Eq. 
(3.10)). This property of linear inviscid models can disappear if nonlinear or 
dissipative processes are taken into account. In the shallow-water equations 
(3.1), include Rayleigh damping represented by a coefficient a and Newto- 
nian cooling represented by a coefficient b: 

U, - P ~ u  + 8'9, = -UU + T X / H  

u, + pyu + 8'9, = -uu + +/H 

g'ql + c y u ,  + u,) = -69 (3.85) 
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If b = 0 and if a steady state is assumed so that a stream function I+L can be 
introduced, then 

av24 - PIC/, = curIz(7/H) (3.86) 

This equation implies that a wind with a curl that is zero does not maintain 
steady currents. The state of no motion that characterizes linear, inviscid 
models can persist even in the presence of Rayleigh damping. It is not the 
mixing of momentum but the mixing of heat that permits spatially uniform 
winds to drive steady currents. T h s  is true for a bounded ocean. In a 
zonally unbounded ocean, spatially uniform zonal winds drive a steady 
equatorial jet (Yamagata and Philander, 1985): 

1 

1 1 =  - . ( ab)  ’” r X  ’’ Q, 
C 

(3.87) 

where 

5 = y/A’ and A’ = (0gh/b/3~)”~ 

This jet is a steady version of the one in Section 3.3 so that its structure-the 
function Q-is that shown in Fig. 3.4. Note the change in the latitudinal 
scale, the radius of deformation. It decreases as a approaches zero so that 
the jet becomes very narrow. 

If north-south walls are present then the waves that are excited at the 
coast and that effect the oceanic adjustment attenuate as they propagate 
away from the coast. In the case of the Kelvin wave (McCreary, 1981b), 

u = Do( ()exp[ - ( ~ b ) ’ / ~ x / c ]  (3.88) 

where Do is a Gaussian. If a = b = 0 then the steady solution in the 
presence of north-south walls is a state of no motion in which a zonal 
pressure gradient balances the spatially uniform wind. If a # 0, b = 0 then 
the steady state is again one of no motion. However, if a = 0, b # 0 then 

exp( Pby2( x - L ) / c 2 )  
2 C 2 T X  C 2  

by4p2H + (bpy2 
u =  -~ 

(3.89) 
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The waves attenuate as they propagate across the basin and the pressure 
gradient they establish is too weak to balance the wind. At the equator the 
flow is singular unless the mixing of momentum is taken into account. In 
other words, nonzero but finite-amplitude steady currents depend on the 
mixing of both heat and momentum. The steady equatorial currents 
described by this model are generally unrealistic because nonlinearities, 
discussed in the next chapter, are important. 

3.9 The Effects of Mean Currents 

The ratio of the speed of waves to that of mean currents is a measure of the 
influence currents have on waves. The equatorial Kelvin wave, which travels 
at 140 cm/sec, is faster than the observed equatorial currents and is least 
affected by the currents. Rossby waves, on the other hand, have a maximum 
speed of 50 cm/sec, which is less than the speed of the eastward equatorial 
jet in Fig. 3.1, and which is barely comparable to the speed of the North 
Equatorial Countercurrent. A simple model with whch to study how these 
currents affect the waves assumes that the mean flow U ( y )  depends on 
latitude only and is in geostrophic balance so that the thermocline depth 
H ( y )  is given by 

PyU + g’Hy = 0 

Linear waves in the presence of the mean flow satisfy the equations 

2.4, + uu, - ( f  - U,)U + 8’71, = 0 

u, + UU, + f u  + g’q, = 0 

71, + u71x + ( f f u ) ,  + (HUL = 0 (3.90) 

Let 1 /a denote the time scale of the motion, L a zonal scale, and a zonal 
velocity scale, then the assumptions u << f and T?/fL -=K 1, neither of 
which is valid near the equator, permit derivation of the vorticity equation 

R-271] + Bq, = 0 (3.91) 

where 

~a a 
Dt a t  ax 

- +u-  

The effective p is 
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and the effective radius of deformation is R: 

R2 = g ' /e f  

The potential vorticity is 

Q = (f - U , ) / H ( Y )  

If the quasi-geostrophic approximations are adopted then the radius of 
deformation is the constant X = ( c / f  )1/2 and Eq. (3.91) simplifies to 

(3.92) 
Dt 

From this equation there follows a dispersion relation for plane waves of 
the form exp[i(kx + ny - at)], where the latitudinal scale l / n  is much 
smaller than that of the mean current: 

P - uyy + (U/X2)  
a = k U - k  

k 2  + n 2  + (1/A2) 

Uk(k2 + n2) - pk + kUyy 

k 2  + n 2  + (1/X2) 
- - (3.93) 

Long waves (k2, n 2  << 1/X2 and k < ( U / p ) ' / 2 )  have the dispersion rela- 
tion 

u = - kX2( p - Uyy) 

and are unaffected by a mean current without shear. Contrary to expecta- 
tions, the frequency u is not equal to that of a Rossby wave in the absence 
of mean flow, Doppler shifted by kU. The Doppler shift is canceled by the 
effect of the mean thermocline slope on the vorticity gradient. This shows 
that the ratio of the speed of the wave to that of the current is not a reliable 
indicator of the effect of currents on waves. 

The quasi-geostrophic equations assume a constant value for the Coriolis 
parameter and its derivative. To explore how the latitudinal variations of 
the Coriolis parameter, as well as the presence of mean currents, affect the 
propagation of Rossby wave packets, it is necessary to revert to Eq. (3.91). 
If the nonconstant coefficients of this equation are assumed to be slowly 
varying functions of latitude in comparison with the meridional scale l / n  
of the waves, then the application of the WKB method leads to the 
dispersion relation (Chang, 1988; Chang and Philander, 1988) 

a = kU - Bk/(n2 + k 2  + R - ' )  

where 

f 
f -  u, 

B = ( p  - Uyy + U/R2) -  
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This dispersion relation can be used to calculate ray paths for packets of 
waves with a fixed frequency u and zonal wave number k provided the 
initial meridional wave number n is specified. As a simple example consider 
the case in which the shear of the mean flow is so small that U,, << f and 
U,,, << ,8 so that 

R2 - g ' W y ) / f 2 ( y )  

and 

B - ,8 + U / R 2  

If the long (zonal) wave approximation is made then 

0 - - P k g ' H ( Y ) / f 2  

Although the curvature of the mean flow may not modify the ,8 effect, the 
slope of the thermocline associated with the mean geostrophic current 
strongly influences Rossby wave propagation. The shallower the thermo- 
cline, the slower the waves. A westward current, and the associated equator- 
ward shoaling of the thermocline, can cause the zonal speed of Rossby 
waves to decrease with decreasing latitude. (In the absence of mean currents 
this speed increases as the equator is approached.) Eastward mean currents, 
on the other hand, magnify the zonal speed of Rossby waves. 

Realistic mean currents strongly affect ray paths as is evident from Fig. 
3.22. Waves with a period of one year, and with the indicated wavelengths, 
are seen to have critical layers near 10°N and 3"N, where their phase speed 
equals that of the mean flow and where the mean current absorbs the 
waves. This absorption can prevent the waves from reaching certain re- 
gions. Figure 3.22 clearly shows that the waves from the Southern Hemi- 
sphere have difficulty penetrating farther north than approximately 3"N 
while those from the north cannot penetrate much farther south than 10"N. 
Westward currents such as the North Equatorial Current enhance the 
westward speed of Rossby waves but inhbit their meridional propagation. 
In Fig. 3.22, waves to the north of 10"N are therefore capable of crossing a 
basin as wide as the Pacific before they reach the critical layer near 10"N. 
(In the absence of mean currents-see Fig. 3.7-the waves have a far larger 
meridional group velocity.) This could explain why, in the measurements, 
waves to the north of 1O"N appear to propagate across the Pacific without 
significant equatorward refraction (Pazan et al., 1986). 

The oceanic adjustment to a change in the winds is effected by waves 
described by Eq. (3.91). In the absence of mean currents there is an infinite 
set of discrete latitudinal modes. The fastest ones are equatorially trapped; 
slower ones propagate to higher latitudes. In the presence of mean currents 
the slower waves have critical layers and the set of waves that effects the 
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Figure 3.22. Ray paths of wave packets with a period of one year and with the indicated zonal wavelength in the presence of the realistic mean current5 
shown in the left-hand panel. The dashed lines are constant phase contours at intervals of 30 days. [From Chang and Philander (1988).] 
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adjustment falls into two groups. One group consists of a finite number of 
discrete latitudinal modes that are equatorially trapped and the other group 
consists of a continuum (not a discrete set) of modes each of which is 
bounded by either two critical layers or a critical layer and a turning 
latitude. The meridional structures of the equatorially trapped modes no 
longer correspond to the gravest Hermite functions but are affected by the 
mean currents and can be calculated by perturbation methods (McPhaden 
and Knox, 1979; Ripa and Marinone, 1983) or numerically (Philander, 
1979a). This finite set of modes together with the continuum forms a 
complete set. Chang (1988) has developed a formalism that describes the 
oceanic response to wind variations in terms of these two groups of waves. 
The adjustment near the equator involves the modified equatorially trapped 
modes and is very similar to that described in Section 3.6. The adjustment 
far from the equator involves the continuum whose members all have 
critical layers. If the forcing function excites waves with small meridional 
group velocities-waves with long zonal wavelengths satisfy this condition 
-then critical layer absorption is unimportant and the waves, whose 
structure and speed depend on the mean flow, succeed in effecting an 
adjustment. This happens if the forcing function corresponds to an abrupt 
change in winds that are otherwise steady, or if the winds are periodic and 
have a low frequency. The waves have a significant meridional group 
velocity in the case of the annual and semiannual cycles. This means that 
critical layer absorption is important so that the waves fail to reach certain 
regions, which therefore respond strictly to local winds. In such regions, 
vertical movements of the thermocline are dictated by local Ekman suction 
and do not correspond to a Sverdrup balance. Figure 3.22 suggests that the 
neighborhood of 10"N is such a region, a result consistent with measure- 
ments (Meyers, 1980; Katz, 1987b). The same figure shows that eastward 
currents enhance meridional propagation and hence the speed with which 
waves reach critical layers. For this reason it is expected that the western 
part of the North Equatorial Countercurrent will not have a Sverdrup 
balance. Measurements with which to check this result are unavailable at 
this time. 

3.10 Instabilities 

Currents can become unstable under certain conditions that permit small 
perturbations to amplify. The conditions necessary for stability can readily 
be determined for currents U ( y )  that are zonal and that are a function of 
latitude only. Assume that these currents are in geostrophic balance so that 
perturbations to the flow are described by Eqs. (3.90). The current U ( y )  is 



3.10 Instabilities 153 

stable to infinitesimal perturbations provided there exists a constant a such 
that (Ripa, 1983) 

( a  - u)Q,>O (3.94a) 

(3.94b) 

for all y ,  where Q = (Py - U y ) / H ( y )  is the potential vorticity of the 
mean flow. A well-known special case of this general stability condition 
requires that the flow be nondivergent [g’ + 00, Q y  --* ( p  - Uy,)/H] so 
that condition (3.94b) is trivially satisfied. By choosing a to be outside the 
range of U, stability is then assured provided the potential vorticity 
gradient Qy does not change sign. 

Stability analyses indicate that eastward equatorial jets with widths 
similar to those of the Equatorial Undercurrent are unstable provided their 
speeds exceed 1.5 m/sec. (The jets are assumed to be steady.) This sinuous 
mode of instability causes the jet to have eastward-propagating meanders 
about the equator. Its period to close to a month and its wavelength is of 
the order of 1000 km (Philander, 1976). Such instabilities have been excited 
in numerical models of the oceanic circulation but have not yet been 
observed in the ocean because eastward equatorial jets seldom attain a 
sufficiently high speed for a prolonged period. (There is also a varicose 
mode of instability in which perturbations remain symmetrical about the 
equator but the growth rate of this mode is slower than that of the sinuous 
mode.) 

Instabilities associated with the shear of the westward South Equatorial 
Current and the eastward North Equatorial Countercurrent are common in 
the Pacific and Atlantic Oceans and are described in Section 2.7. Calcula- 
tions for the observed currents indicate that they are stable in March and 
April, when both the South Equatorial Current and the North Equatorial 
Countercurrent are weak. They are unstable during the rest of the year, 
primarily because of the westward jet just north of the equator. Figure 3.23 
shows a dispersion diagram for waves caused by instabilities of the surface 
currents in Fig. 2.1. The period, structure, and wavelength of the most 
unstable wave are in reasonable agreement with the measurements. This 
analysis, based on Eqs. (3.90), simplifies the vertical structure of the flow 
considerably. Calculations with a model that has realistic vertical structure 
indicate that the instabilities draw on both the kinetic and the potential 
energy6 of the mean flow (Cox, 1980). Realistic General Circulation Models 
include an additional complication-zonal and temporal inhomogeneities 
of the mean flow. The simulations, shown in Fig. 2.24, are strikingly similar 
to sea surface temperature patterns in satellite photographs. Further analy- 
ses of the results from the models are necessary. 

(a - w < g”y) 
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Figure 3.23. The e-folding time and period as a function of wavelength of waves associated 
with instabilities of the surface currents shown in Fig. 2.1. The curves correspond to different 
amplitudes of the zonal current. The shape of the profile U ( y )  is the same for all the 
calculations, but the amplitude, which is taken to be the maximum speed of the South 
Equatorial Current, is varied. [From Phlander (1978b).] 

3.11 Discussion 

The shallow-water model is one of the most powerful tools available to 
oceanographers. It provides answers to the questions raised by the measure- 
ments depicted in Figs. 3.1 and 3.2, but the measurements, which motivated 
the analyses presented here, prove too meager for a rigorous test of the 
theoretical results. Because the data are sparse, different interpretations of 
the measurements are possible. If the onset of the westerly winds over the 
Indian Ocean is taken to be instantaneous, then Kelvin and Rossby wave 
fronts are excited at the western and eastern extremes of the forced region, 
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respectively. The Kelvin wave establishes a zonal pressure gradient and can 
be invoked to explain why, in Fig. 3.1, the acceleration of the jet stops a few 
weeks after the sudden onset of the winds. The Rossby wave could have 
caused the subsequent deceleration of the jet. Figure 3.2 seems to confirm 
the presence of the Rossby wave but there are no measurements to confirm 
that a Kelvin wave actually arrested the initial acceleration of the jet. This 
opens the door to a different interpretation of the data provided it is taken 
into account that the wind changes are not instantaneous but occur over a 
period of weeks. This is far longer than the few days it takes a Kelvin wave 
to propagate from the western extreme of the forced region to Gan, where 
the measurements in Fig. 3.1 were made. (The westerly winds do not extend 
far west of Gan.) A zonal pressure gradient to balance the wind is therefore 
established within a matter of days. Hence the high correlation between the 
intensifying winds and the accelerating jet in Fig. 3.1 can be interpreted as 
an equilibrium response. The wind at each moment is balanced by a 
pressure force; the acceleration of the jet stops when the wind becomes 
steady; and the jet decelerates several weeks later when the eastward winds 
relax. However, if the relaxation is too sudden then the westward pressure 
force that the winds had maintained is left unbalanced and it decelerates 
the jet. This cannot be the entire story because Fig. 3.2 suggests that a 
Rossby wave played a role. A unique interpretation of the data in Fig. 3.1 
clearly requires more measurements. 

The shallow-water model is useful not only for studying idealized situa- 
tions but also for simulating certain aspects of the oceanic response to the 
observed winds. The model is reasonably good at reproducing seasonal and 
interannual variations in the depth of the thermocline (Busalacchi and 
O'Brien, 1980, 1981; Busalacchi et al., 1983). In certain parts of the ocean, 
the eastern tropical Pacific for example, there is a high correlation between 
sea surface temperature and thermocline depth variations so that the 
shallow-water model provides some information about sea surface tempera- 
tures. It is possible to go a step further by introducing thermodynamics in a 
simplified manner, so that sea surface temperature is an explicit variable, 
while retaining the one-layer Formalism for dynamical purposes. An exam- 
ple of an equation for the temperature T of the upper ocean, from 
Anderson and McCreary (1985), is 

( T I T ) ,  + ( u ~ T ) ,  4- ( u ~ T ) ~  = Q / p c ,  + wT' - WT (3.95) 

where T' is the specified constant temperature of the deep ocean, W is a 
specified vertical velocity component that brings cold, deep water into the 
upper ocean, and w is an entrainment velocity given by 

q( T - T') w = 2r  - qQ/pc ,  
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where Q is the prescribed heat flux across the ocean surface and r is a 
specified rate of potential energy increase due to mechanical stirring by the 
wind. Schopf and Cane (1983) have a somewhat more elaborate procedure 
for calculating the temperature of the upper ocean. These simple models 
have proved valuable in studies of the interactions between the ocean and 
atmosphere (Chapter 6). They provide reasonable descriptions of sea sur- 
face temperature variations in response to certain windstress patterns but, 
because of the various approximations that are made, are sometimes 
unrealistic. To improve on these models it is necessary to take into account 
the continuous stratification of the ocean. The next chapter examines this 
subject. 

Notes 

1. Equations (3.1) in a spherical coordinate system, and with the appropriate forcing 
function, are Laplace's Tidal Equations. The Cartesian coordinate system of Section 3.2, 
known as the equatorial /3-plane coordinates system, is an approximation to spherical 
coordinates and is accurate provided motion in a thin shell on a large sphere is confined to the 
tropics. Gill (1982) and Pedlosky (1987) derive these equations formally and state the 
approximations explicitly. 

2. Matsuno (1966) provided the first consistent description of the properties of equatorially 
trapped waves in a shallow-water ocean. Lindzen (1967) first discussed their vertical propaga- 
tion (Section 4.4). Some oceanographers refer to Rossby-gravity modes as Yanai waves, 
presumably after Professor Yanai, whose analysis of meteorological data revealed the presence 
of this mode in the atmosphere (Yanai and Marayama, 1966). If these oceanographers were 
consistent they would refer to equatorial Kelvin waves as Wallace-Kousky (1968) modes. 

3. The first few Hermite polynomials are 

H, = 1, H, = 26 

H2 = 462 - 2, H3 = 8c3 - 126 

Note that 

H4 = 16E4 - 48c2 + 12, H, = 326' - 160t3 + 1206 

6Hn = nH,- ,  + O.5Hn+, 

4. The nonlinear interactions between various equatorial waves have been studied by &pa 
(1982), Boyd (1980a and b), and others. One goal of these efforts is to explain the continuous 
spectrum of relatively hgh-frequency fluctuations in the ocean. In regions far from the equator 
where the fluctuations correspond to inertia-gravity waves, nonlinear interactions redistribute 
energy so that the spectrum, between the Brunt-VEs2la frequency and the inertia frequency, 
has a universal shape known as the Garrett and Munk (1979) spectrum. Close to the equator 
the fluctuations below the thermocline correspond to equatorially trapped waves but the 
spectrum is apparently not a universal one (Eriksen, 1981, 1985). 
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5. The seminal paper on oceanic adjustment is Lighthill’s (1969) study of the generation of 
the Somali Current from a state of rest. The role of the equatorial Kelvin wave, which Lighthill 
overlooked, was pointed out by D. W. Moore and by Gill (1975), who investigated the 
generation of the Equatorial Undercurrent, and by McCreary (1976) and Kurlburt er d. 
(1976), who investigated the oceanic response to the relaxation of the trades during El Niiio. 
The elliptically written series of papers by Cane and Sarachik (1976, 1977, 1979, 1981, 1983a) 
is a valuable and exhaustive study of the adjustment of a shallow-water ocean to various 
windstress patterns. 

6. Baroclinic instability is not possible in a shallow-water model. In a two-layer system, 
currents with a given vertical shear become baroclinically more stable as their mean latitude 
decreases until, near the equator. there is no baroclinic instability. This is an artifact of the 
two-layer model. In a continuously stratified model the vertical scale of the baroclinically 
unstable waves decreases with decreasing latitude-it is zero at the equator-so that a 
two-layer model fails to resolve the waves near the equator (Held, 1978). Baroclinic instability 
near the equator has received little attention. 


