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The Problem

Problem:

We want to estimate a p-dimensional covariance matrix
based on an i.i.d. sample of size n

The classic estimator is the sample covariance matrix Sn

However, this estimator is ill-conditioned when p is of
the same magnitude as n, and tends to perform poorly
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The Problem

Problem:

We want to estimate a p-dimensional covariance matrix
based on an i.i.d. sample of size n

The classic estimator is the sample covariance matrix Sn

However, this estimator is ill-conditioned when p is of
the same magnitude as n, and tends to perform poorly

Note:

One of the most important problems in multivariate statistics

Applications are plentiful
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Previous Approaches

(1) Incorporate additional knowledge in the estimation process:

Rely on a sparsity, such as Bickel and Levina (2008, AoS)

Rely on a graph model, such as Rajaratnam et al. (2008, AoS)

Rely on a factor structure, such as Fan et al. (2013, JRSS-B)
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Previous Approaches

(1) Incorporate additional knowledge in the estimation process:

Rely on a sparsity, such as Bickel and Levina (2008, AoS)

Rely on a graph model, such as Rajaratnam et al. (2008, AoS)

Rely on a factor structure, such as Fan et al. (2013, JRSS-B)

(2) Linear shrinkage:

Consider estimators of the form:

δ · s̄2
n · Ip + (1 − δ) · Sn

where s̄2
n is the grand mean of the sample variances s2

n,i

Ledoit and Wolf (2004, JMVA) derive asymptotically optimal
bona fide shrinkage intensity δ under the Frobenius loss



The Problem Finite Samples Large-Dimensional Asymptotics Kernel Estimation Monte Carlo Study Conclusion

Linear Shrinkage

Immediate interpretation:

Shrink the elements of Sn to the elements of s̄2
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Immediate interpretation:

Shrink the elements of Sn to the elements of s̄2
n · Ip

with common intensity δ

Alternative interpretation:

Decompose the sample covariance matrix into eigenvalues
and eigenvectors: {(λn,1, . . . , λn,p); (un,1, . . . ,un,p)}

Keep the sample eigenvectors

Shrink the sample eigenvalues λn,i to their grand mean λ̄n

with common intensity δ:

λshrunk
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..= δλ̄n + (1 − δ)λn,i
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Linear Shrinkage

Immediate interpretation:

Shrink the elements of Sn to the elements of s̄2
n · Ip

with common intensity δ

Alternative interpretation:

Decompose the sample covariance matrix into eigenvalues
and eigenvectors: {(λn,1, . . . , λn,p); (un,1, . . . ,un,p)}

Keep the sample eigenvectors

Shrink the sample eigenvalues λn,i to their grand mean λ̄n

with common intensity δ:

λshrunk
n,i

..= δλ̄n + (1 − δ)λn,i

In particular:

The shrunken eigenvalues are obtained by applying
a linear transformation to the sample eigenvalues
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Nonlinear Shrinkage

More general approach:

Decompose the sample covariance matrix into eigenvalues
and eigenvectors: {(λn,1, . . . , λn,p); (un,1, . . . ,un,p)}

Keep the sample eigenvectors

Shrink the sample eigenvalues λn,i to their grand mean λ̄n,
but at distinct intensities (even allowed to be negative)
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Nonlinear Shrinkage

More general approach:

Decompose the sample covariance matrix into eigenvalues
and eigenvectors: {(λn,1, . . . , λn,p); (un,1, . . . ,un,p)}

Keep the sample eigenvectors

Shrink the sample eigenvalues λn,i to their grand mean λ̄n,
but at distinct intensities (even allowed to be negative)

In particular:

The shrunken eigenvalues are obtained by applying
a nonlinear transformation to the sample eigenvalues

Doing so should yield even better results, if done right.
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Reasonable Restriction

Rotation-Equivariant Estimators

Yn are the observed data, an n × p matrix

W is a p × p orthogonal matrix

Σ̂n
..= Σ̂n(Yn) is an estimator of Σn

It is rotation-equivariant if Σ̂n(YnW) =W′Σ̂n(Yn)W

Without specific knowledge about Σn, it is reasonable to restrict
attention to this class of estimators.
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Reasonable Restriction

Rotation-Equivariant Estimators

Yn are the observed data, an n × p matrix

W is a p × p orthogonal matrix

Σ̂n
..= Σ̂n(Yn) is an estimator of Σn

It is rotation-equivariant if Σ̂n(YnW) =W′Σ̂n(Yn)W

Without specific knowledge about Σn, it is reasonable to restrict
attention to this class of estimators.

We use the following class of rotation-equivariant estimators
going back to Stein (1975, 1986):

Σ̂n
..= Un∆̂nU′n where ∆̂n

..= Diag(δ̂n,1, . . . , δ̂n,p) is diagonal
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Finite-Sample Optimality

Starting objective:

Find the matrix in this class that is closest to Σn

Distance is measured by the minimum-variance loss

LMV
n

(
Σ̂n,Σn

)
..=

Tr
(
Σ̂−1

n ΣnΣ̂
−1
n

)/
p

[
Tr

(
Σ̂−1

n

)/
p
]2
−

1

Tr
(
Σ−1

n

)
/p
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Starting objective:

Find the matrix in this class that is closest to Σn
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Minimization problem :

min
∆̂n
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n

(
Un∆̂nU′n,Σn)

Solution:

∆∗n
..= Diag(δ∗n,1, . . . , δ

∗
n,p) where δ∗n,i

..= u′n,iΣnun,i
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Finite-Sample Optimality

Starting objective:

Find the matrix in this class that is closest to Σn

Distance is measured by the minimum-variance loss

LMV
n

(
Σ̂n,Σn

)
..=

Tr
(
Σ̂−1

n ΣnΣ̂
−1
n

)/
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[
Tr

(
Σ̂−1

n

)/
p
]2
−

1

Tr
(
Σ−1

n

)
/p

Minimization problem :

min
∆̂n

LMV
n

(
Un∆̂nU′n,Σn)

Solution:

∆∗n
..= Diag(δ∗n,1, . . . , δ

∗
n,p) where δ∗n,i

..= u′n,iΣnun,i

Note: Using the Frobenius loss instead yields the same solution.
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Asymptotic Framework

Let p ..= p(n) and assume p/n→ c ∈ (0, 1), as n→∞.

The following set of assumptions is maintained throughout:

A1 The population covariance matrix Σn is a nonrandom
p-dimensional positive definite matrix.

A2 Let Xn be an n × p matrix of real i.i.d. random variables with
zero mean, unit variance, and finite 16th moment.
One observes Yn

..= XnΣ
1/2
n .

A3 Let {(τn,1, . . . , τn,p); (vn,1, . . . , vn,p)} denote the eigenvalues
and eigenvectors of Σn. The e.d.f. of the population eigenvalues,
denoted by Hn, converges weakly to some limit e.d.f. H.

A4 Supp(H), the support of H, is the union of a finite number of
closed intervals, bounded away from zero and infinity.
Furthermore, there exists a compact interval in (0,+∞) which
contains Supp(Hn) for all large enough n.

Note: The paper also discusses an extension to the case p > 1.
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Random Matrix Theory

A foundational result going back to Marčenko and Pastur (1967)
states that the limiting distribution of the sample eigenvalues is
deterministic

Under the stated assumptions, there exists a continuous limiting

sample spectral distribution F such that ∀x ∈ R Fn(x)
a.s.
−→ F(x) .

The limiting sample spectral c.d.f. F is uniquely determined by c and H;
thus, we will refer to it as Fc,H

..= F whenever clarification is needed.

A further implication is that the support of F is the union of a finite
number of compact intervals.
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Illustration

H is a point mass at one (such as for the identity covariance matrix).

Plot the density of F for various values of c:
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Hilbert Transform

The Hilbert transform of a real function g is defined as

∀x ∈ R Hg(x) ..=
1

π
PV

∫ +∞

−∞

g(t)
dt

t − x

where PV denotes the Cauchy Principal Value.

It is thus the convolution of g with the Cauchy kernel dt
πt .

(Since the Cauchy kernel is singular, the integral does not converge in
the usual sense and recourse to the Cauchy Principal Value is needed.)
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Hilbert Transform

The Hilbert transform of a real function g is defined as

∀x ∈ R Hg(x) ..=
1

π
PV

∫ +∞

−∞

g(t)
dt

t − x

where PV denotes the Cauchy Principal Value.

It is thus the convolution of g with the Cauchy kernel dt
πt .

(Since the Cauchy kernel is singular, the integral does not converge in
the usual sense and recourse to the Cauchy Principal Value is needed.)

Intuition:

The Hilbert transform operates like a local attraction force

It pushes x towards local mass centers

For an illustration, plot the Hilbert transform of four densities
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Illustration
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Optimal Nonlinear Shrinkage Formula

In our class of estimators, we can think of δ̂n,i as δ̂n(λn,i),

where δ̂n is an unrestricted nonlinear shrinkage function,

assumed to converge to a limit δ̂.
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where δ̂n is an unrestricted nonlinear shrinkage function,

assumed to converge to a limit δ̂.

Under the stated assumptions:

For any δ̂, the limiting loss of the estimator Σ̂n is deterministic

One can minimize this deterministic limiting loss wrt δ̂

The solution yields an oracle nonlinear shrinkage formula
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Optimal Nonlinear Shrinkage Formula

In our class of estimators, we can think of δ̂n,i as δ̂n(λn,i),

where δ̂n is an unrestricted nonlinear shrinkage function,

assumed to converge to a limit δ̂.

Under the stated assumptions:

For any δ̂, the limiting loss of the estimator Σ̂n is deterministic

One can minimize this deterministic limiting loss wrt δ̂

The solution yields an oracle nonlinear shrinkage formula

The oracle formula is given by

∀x ∈ Supp(F) δo(x) ..=
x

[
πcxf (x)

]2
+

[
1 − c − πcxHf (x)

]2

where f denotes the density of F.
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Nonlinear Shrinkage as Local Attraction

The oracle formula results in local attraction:
any sample eigenvalue is moved towards local mass centers.



The Problem Finite Samples Large-Dimensional Asymptotics Kernel Estimation Monte Carlo Study Conclusion

Nonlinear Shrinkage as Local Attraction

The oracle formula results in local attraction:
any sample eigenvalue is moved towards local mass centers.

This phenomenon is easier to see based on the ‘scaled’ density
ϕ(x) ..= πxf (x), which yields the equivalent oracle formula

∀x ∈ Supp(F) δo(x) =
x

1 + c2
[
ϕ2(x) +H2

ϕ(x)
]
− 2cHϕ(x)
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Nonlinear Shrinkage as Local Attraction

The oracle formula results in local attraction:
any sample eigenvalue is moved towards local mass centers.

This phenomenon is easier to see based on the ‘scaled’ density
ϕ(x) ..= πxf (x), which yields the equivalent oracle formula

∀x ∈ Supp(F) δo(x) =
x

1 + c2
[
ϕ2(x) +H2

ϕ(x)
]
− 2cHϕ(x)

Crucial advantage over global, linear shrinkage:

Sample eigenvalues may be moved away from the grand mean,
towards a local mass center

It is helpful to consider an illustration:
H is a two-point mass at {0.8, 2.0}, n = 18, 000, and p = 4, 000
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Illustration
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From Oracle to Feasible

The oracle estimator Σ̂o
n

..= Un∆
oU′n is not available in practice.

A bona fide estimator that also minimizes the asymptotic loss could
be obtained via uniformly consistent estimation of δo.
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Previous Approaches

QuEST:

Indirect estimation of δo

Proposed by Ledoit and Wolf (2012, AoS; 2015, JMVA)

First find consistent estimator Ĥn of H

Then feed Ĥn into the Marc̆enko-Pastur equation,

together with ĉn
..= p/n, and make us of the resulting F̂n

Difficult to implement and slow to execute

Cannot go much beyond dimension p = 1000 computationally



The Problem Finite Samples Large-Dimensional Asymptotics Kernel Estimation Monte Carlo Study Conclusion

Previous Approaches

QuEST:

Indirect estimation of δo

Proposed by Ledoit and Wolf (2012, AoS; 2015, JMVA)

First find consistent estimator Ĥn of H

Then feed Ĥn into the Marc̆enko-Pastur equation,

together with ĉn
..= p/n, and make us of the resulting F̂n

Difficult to implement and slow to execute

Cannot go much beyond dimension p = 1000 computationally

NERCOME:

Proposed by Abadir et al. (2104, JoE) and Lam (2106, AoS)

Based on repeated sample splits to estimate the two components
of δ∗

n,i
..= u′

n,i
Σnun,i separately

Requires brute-force spectral decomposition of many matrices

Easy to implement but also slow to execute

Cannot go much beyond dimension p = 1000 computationally
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New Approach: Direct Estimation

Recall:

∀x ∈ Supp(F) δo(x) ..=
x

[
πcxf (x)

]2
+

[
1 − c − πcxHf (x)

]2

Therefore, uniformly consistent estimation of δo can be based on:

(i) consistent estimation of c

(ii) uniformly consistent estimation of f

(iii) uniformly consistent estimation ofHf
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Recall:

∀x ∈ Supp(F) δo(x) ..=
x

[
πcxf (x)

]2
+

[
1 − c − πcxHf (x)

]2

Therefore, uniformly consistent estimation of δo can be based on:

(i) consistent estimation of c

(ii) uniformly consistent estimation of f

(iii) uniformly consistent estimation ofHf

Problem (i) is trivially solved by using ĉn
..= p/n.

Problems (ii) and (iii) can be solved by kernel estimation.
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New Approach: Direct Estimation

Recall:

∀x ∈ Supp(F) δo(x) ..=
x

[
πcxf (x)

]2
+

[
1 − c − πcxHf (x)

]2

Therefore, uniformly consistent estimation of δo can be based on:

(i) consistent estimation of c

(ii) uniformly consistent estimation of f

(iii) uniformly consistent estimation ofHf

Problem (i) is trivially solved by using ĉn
..= p/n.

Problems (ii) and (iii) can be solved by kernel estimation.

Advantages:

Easy to implement and fast to execute

Can go to at least dimension p = 10, 000 computationally
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Choice of Kernel

A kernel k(·) is assumed to satisfy the following properties:

k is a continuous, symmetric density with finite support,
mean zero, and variance one

Its Hilbert transformHk exists and is continuous

Both the kernel k and its Hilbert transformHk are functions
of bounded variation
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We use the semi-circle kernel dating back to Wigner (1955, AoM).
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Choice of Kernel

A kernel k(·) is assumed to satisfy the following properties:

k is a continuous, symmetric density with finite support,
mean zero, and variance one

Its Hilbert transformHk exists and is continuous

Both the kernel k and its Hilbert transformHk are functions
of bounded variation

We use the semi-circle kernel dating back to Wigner (1955, AoM).

Of the 48 elementary functions whose Hilbert transform is known
in closed form, it is the only one satisfying all the above assumptions.
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Choice of Bandwidth

We propose to use a variable bandwidth that is proportional to
the magnitude of a given sample eigenvalue.

The bandwidth applied to λn,i is hn,i
..= λn,ihn, where hn → 0.

We use hn
..= n−0.35, close to the choice n−1/3 by Jing et al. (2010, AoS).

(Although they use a uniform bandwidth hn,i ≡ n−1/3).
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Kernel Estimators & Feasible Shrinkage Formula

Kernel estimators of f andHf :

∀x ∈ R f̃n(x) ..=
1

p

p∑

i=1

1

hn,i
k

(
x − λn,i

hn,i

)
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Kernel estimators of f andHf :

∀x ∈ R f̃n(x) ..=
1

p

p∑

i=1

1

hn,i
k

(
x − λn,i

hn,i

)

∀x ∈ R H
f̃n

(x) ..=
1

p

p∑

i=1

1

hn,i
Hk

(
x − λn,i

hn,i

)
=

1

π
PV

∫
f̃n(t)

x − t
dt
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Kernel Estimators & Feasible Shrinkage Formula

Kernel estimators of f andHf :

∀x ∈ R f̃n(x) ..=
1

p

p∑

i=1

1

hn,i
k

(
x − λn,i

hn,i

)

∀x ∈ R H
f̃n

(x) ..=
1

p

p∑

i=1

1

hn,i
Hk

(
x − λn,i

hn,i

)
=

1

π
PV

∫
f̃n(t)

x − t
dt

Feasible nonlinear shrinkage estimation:

∀x ∈ Supp(F) δ̃n(x) ..=
x

[
π̂cnx̃fn(x)

]2
+

[
1 − ĉn − π̂cnxH

f̃n
(x)

]2
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Kernel estimators of f andHf :

∀x ∈ R f̃n(x) ..=
1

p

p∑

i=1

1

hn,i
k

(
x − λn,i

hn,i

)

∀x ∈ R H
f̃n

(x) ..=
1

p

p∑

i=1

1

hn,i
Hk

(
x − λn,i

hn,i

)
=

1

π
PV

∫
f̃n(t)

x − t
dt

Feasible nonlinear shrinkage estimation:

∀x ∈ Supp(F) δ̃n(x) ..=
x

[
π̂cnx̃fn(x)

]2
+

[
1 − ĉn − π̂cnxH

f̃n
(x)

]2

Σ̃n
..= Un∆̃nU′n
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Executive Summary

Performance of direct nonlinear shrinkage:

Much better than linear shrinkage

Basically as good as QuEST

Somewhat better than NERCOME
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Executive Summary

Performance of direct nonlinear shrinkage:

Much better than linear shrinkage

Basically as good as QuEST

Somewhat better than NERCOME

Speed of direct nonlinear shrinkage:

Basically as fast as linear shrinkage

Much faster than QuEST

Much faster than NERCOME

=⇒ Get the best of both worlds!
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Main Performance Measure

Percentage Relative Improvement in Average Loss (PRIAL):

PRIALMV
n

(
Σ̂n

)
..=
E

[
LMV

n

(
Sn,Σn)

]
− E

[
LMV

n

(
Σ̂n,Σn)

]

E

[
LMV

n

(
Sn,Σn)

]
− E

[
LMV

n

(
S∗n,Σn)

] × 100%
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Main Performance Measure

Percentage Relative Improvement in Average Loss (PRIAL):
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By construction:

Sample covariance matrix has PRIALMV
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Finite-sample optimal estimator has PRIALMV
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S∗n

)
= 100%
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Main Performance Measure

Percentage Relative Improvement in Average Loss (PRIAL):

PRIALMV
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]
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(
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]
− E

[
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(
S∗n,Σn)

] × 100%

By construction:

Sample covariance matrix has PRIALMV
n

(
Sn

)
= 0%

Finite-sample optimal estimator has PRIALMV
n

(
S∗n

)
= 100%

Note:

Negative PRIAL values are possible
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Baseline Scenario

We use a scenario introduced by Bai and Silverstein (1998, AoP):

Dimension p = 200

Sample size n = 600

Concentration ratio ĉn = 1/3

20% of the τn,i are equal to 1, 40% equal to 3, and 40% equal to 10

Condition number θ = 10

Variates are normally distributed
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Baseline Scenario

We use a scenario introduced by Bai and Silverstein (1998, AoP):

Dimension p = 200

Sample size n = 600

Concentration ratio ĉn = 1/3

20% of the τn,i are equal to 1, 40% equal to 3, and 40% equal to 10

Condition number θ = 10

Variates are normally distributed

Each feature will be varied in subsequent scenarios.
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Results for Baseline Scenario

Estimator Sample Linear Direct QuEST NERCOME FSOPT

∅ Loss 2.71 2.10 1.52 1.50 1.58 1.48
PRIAL 0% 50% 97% 98% 92% 100%

Time (ms) 1 3 4 2, 233 2, 990 3

Note:

Computational times in milliseconds come from a 64-bit,
quad-core 4.00GHz Windows PC running Matlab R2016a
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Large-Dimensional Asymptotics

Let p and n go to infinity together with p/n ≡ 1/3:
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Large-Dimensional Asymptotics

Let p and n go to infinity together with p/n ≡ 1/3:
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Speed

Let p and n go to infinity together with p/n ≡ 1/3:
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Speed

Let p and n go to infinity together with p/n ≡ 1/3:
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Ultra-High Dimension

Repeat baseline scenario but multiply both p and n by 50:

p = 10, 000

n = 30, 000

QuEST and NERCOME are no longer computationally feasible.
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Ultra-High Dimension

Repeat baseline scenario but multiply both p and n by 50:

p = 10, 000

n = 30, 000

QuEST and NERCOME are no longer computationally feasible.

Estimator Sample Linear Direct FSOPT

∅ Loss 2.679 2.086 1.488 1.487
PRIAL 0% 49.74% 99.92% 100%

Time (s) 21 43 113 108
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Concentration Ratio

Vary p/n from 0.1 to 0.9 while keeping p × n = 120, 000:
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Concentration Ratio

Vary p/n from 0.1 to 0.9 while keeping p × n = 120, 000:
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Condition Number

Vary θ from 3 to 30, by linearly squeezing/stretching the τn,i:
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Condition Number

Vary θ from 3 to 30, by linearly squeezing/stretching the τn,i:
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Non-Normality

Vary the distribution of the variates:
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Non-Normality

Vary the distribution of the variates:

Distribution Linear Direct QuEST NERCOME

Normal 50% 97% 98% 92%
Bernoulli 51% 98% 98% 92%
Laplace 50% 97% 98% 92%

‘Student’ t5 49% 97% 98% 92%
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Shape of the Distribution of Population Eigenvalues

Use a shifted and stretched Beta distribution with support [1,10]:
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Shape of the Distribution of Population Eigenvalues

Use a shifted and stretched Beta distribution with support [1,10]:

Beta Parameters Linear Direct QuEST NERCOME

(1, 1) 83% 98% 99% 96%
(1, 2) 95% 99% 99% 98%
(2, 1) 94% 99% 99% 99%

(1.5, 1.5) 92% 99% 99% 98%
(0.5, 0.5) 50% 98% 98% 94%

(5, 5) 98% 100% 100% 99%
(5, 2) 97% 100% 100% 98%
(2, 5) 99% 99% 99% 99%
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Shape

Selected (shifted and stretched) beta densities used:
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Fixed-Dimensional Asymptotics

Let n grow from 250 to 20,000 while keeping p ≡ 200:
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Fixed-Dimensional Asymptotics

Let n grow from 250 to 20,000 while keeping p ≡ 200:
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Arrow Model

Let τn,p
..= 1 + 0.5(p − 1) and remaining bulk from s&s Beta(5,2):



The Problem Finite Samples Large-Dimensional Asymptotics Kernel Estimation Monte Carlo Study Conclusion

Arrow Model

Let τn,p
..= 1 + 0.5(p − 1) and remaining bulk from s&s Beta(5,2):
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Conclusion

Nonlinear shrinkage estimation of covariance matrices is a complex,
but powerful structure-free approach in large dimensions.

Existing methods are difficult to implement, computationally
expensive, or even both.

We have suggested a direct method based on kernel estimation that
(i) performs as well as existing methods and (ii) is computationally
as cheap as linear shrinkage.
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Conclusion

Nonlinear shrinkage estimation of covariance matrices is a complex,
but powerful structure-free approach in large dimensions.

Existing methods are difficult to implement, computationally
expensive, or even both.

We have suggested a direct method based on kernel estimation that
(i) performs as well as existing methods and (ii) is computationally
as cheap as linear shrinkage.

This direct method also can handle dimensions of +1 magnitude,
which is a big + in the age of Big Data.
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