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The Importance of Good Forecasts

Good forecasts of time-varying objects can make the difference
between life and death.

Here is a weather-related example from the movie Sharknado 2:

The remainder of the talk will address finance-related examples.
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Problem & Aim of the Paper

Problem:

Multivariate GARCH models are popular tools for risk
management and portfolio selection

However, the number of assets in the investment universe
generally poses a challenge to such models

In other words, many multivariate GARCH models suffer
from the curse of dimensionality

Aim of the paper:

Robustify the DCC model of Engle (2002, JBES) against
large dimensions

Comparison to all kinds of other multivariate GARCH models
is left to future research
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Notation

Subscripts:

i = 1, . . . ,N indexes assets

t = 1, . . . ,T indexes time

Ingredients:

ri,t: observed return, stacked into rt
..= (r1,t, . . . , rN,t)

′

d2
i,t

..= Var(ri,t|Ft−1): conditional variance

Dt: diagonal matrix with generic entry di,t

Ht
..= Cov(rt|Ft−1): conditional covariance matrix; Diag(Ht) = D2

t

si,t
..= ri,t/di,t: devolatilized return, stacked into st

..= (s1,t, . . . , sN,t)
′

Rt
..= Corr(rt|Ft−1) = Cov(st|Ft−1): conditional correlation matrix

σ2
i

..= E(d2
i,t

) = Var(ri,t): unconditional variance

C ..= Corr(rt) = Cov(st): unconditional correlation matrix
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Model Definition

Univariate volatilities governed by a GARCH(1,1) process:

d2
i,t = ωi + air

2
i,t−1 + bid

2
i,t−1

DCC model of Engle (2002, JBES) with correlation targeting:

Qt = (1 − α − β) C + α st−1s′t−1 + βQt−1 (1)

where Qt is a pseudo conditional correlation matrix.

Conditional correlation and covariance matrices then:

Rt = Diag(Qt)
−1/2 Qt Diag(Qt)

−1/2

Ht = DtRtDt

Data-generating process:

rt|Ft−1 ∼ N(0,Ht)
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Making Estimation Feasible

Estimating the model with a large number of assets is challenging.

Major difficulty:

Inverting the conditional covariance matrix Ht for the likelihood

Solution by Pakel et al. (2017, WP):

Instead of using the full conditional covariance matrix,
use a selection of two-by-two blocks

The composite likelihood is obtained by combining
the likelihoods of (contiguous) pairs of assets

Three-stage estimation scheme:

1 Fit a GARCH(1,1) model to each asset

2 Estimate the unconditional correlation matrix C
of the devolatilized returns for correlation targeting

3 Maximize the composite likelihood to estimate (α, β)
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Nonlinear Shrinkage to Counter Large Dimensions

Main contribution:

Improved estimation of the unconditional correlation matrix C,
which serves as the correlation target in equation (1)

Naı̈ve approach:

Use the sample correlation matrix of the devolatilized returns ŝt

Corresponds to the original proposal of Engle (2002, JBES)

This approach does not work well in large dimensions,
and cannot even be used when N > T

Superior approach:

Apply nonlinear shrinkage to the devolatilized returns ŝt

This approach works well in large dimensions, even when N > T
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Nonlinear Shrinkage: Starting Point

Generic setting:

I.i.d. data yt ∈ R
N with covariance matrix Σ

Stacked into T ×N matrix Y

The sample covariance matrix S admits a spectral decomposition

S = UΛU′

Here:

U is an orthogonal matrix whose columns are
the sample eigenvectors (u1, . . . ,uN)

Λ is a diagonal matrix whose diagonal entries are
the sample eigenvalues (λ1, . . . , λN)



Introduction The Model Estimation in Large Dimensions Nonlinear Shrinkage Empirical Study Conclusion

Nonlinear Shrinkage: Class of Estimators

Rotation Equivariance

Observed T ×N data matrix: Y

W is an N-dimensional orthogonal / rotation matrix

Σ̂ ..= Σ̂(Y) is a generic estimator of Σ

It is rotation-equivariant if Σ̂(YW) =W′Σ̂(Y)W
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Nonlinear Shrinkage: Class of Estimators

Rotation Equivariance

Observed T ×N data matrix: Y

W is an N-dimensional orthogonal / rotation matrix

Σ̂ ..= Σ̂(Y) is a generic estimator of Σ

It is rotation-equivariant if Σ̂(YW) =W′Σ̂(Y)W

Without specific knowledge about Σ, rotation equivariance
is a desirable property of an estimator.

We use the following class of rotation-equivariant estimators
going back to Stein (1975, 1986):

Σ̂ ..= UDU′ where D ..= Diag(d1, . . . , dN) is diagonal
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Approach of Ledoit and Wolf (2012, AOS; 2015, JMVA):
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Nonlinear Shrinkage in Action

Generic estimator in the class Σ̂ ..= UDU′.

Keep the sample eigenvectors.

Shrink the sample eigenvalues:

D ..= Diag(d(λ1), . . . , d(λN))

Based on nonlinear shrinkage function d : R→ R

Approach of Ledoit and Wolf (2012, AOS; 2015, JMVA):

Use large-dimensional asymptotics where N/T→ c > 0

Consistently estimate optimal limiting shrinkage function d∗

Feasible estimator: Σ̃ ..= U × Diag(̃d(λ1), . . . , d̃(λN)) ×U′

Further Details on Nonlinear Shrinkage
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Proposed Estimation of the DCC Model

Estimation of the correlation target C:

Apply nonlinear shrinkage to the devolatilized returns ŝt

The resulting estimator is not a proper correlation matrix

Post-processing the estimator takes care of this problem,
that is, convert covariance matrix into a correlation matrix
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Proposed Estimation of the DCC Model

Estimation of the correlation target C:

Apply nonlinear shrinkage to the devolatilized returns ŝt

The resulting estimator is not a proper correlation matrix

Post-processing the estimator takes care of this problem,
that is, convert covariance matrix into a correlation matrix

Three-stage estimation scheme:

1 Fit a GARCH(1,1) model to each asset

2 Use nonlinear shrinkage to estimate C

3 Maximize the composite likelihood to estimate (α, β)

Simpler alternative:

Use linear shrinkage of Ledoit and Wolf (2004, JMVA) in step 2.
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Linear Shrinkage

Easiest way to think about it:

Convex linear combination of the sample covariance matrix
and (a multiple of) the identity matrix:

Σ̂ = δ(s
2
I) + (1 − δ)S

s
2

is the average of the N sample variances s2
i

δ ∈ [0, 1] is the shrinkage intensity
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Linear Shrinkage

Easiest way to think about it:

Convex linear combination of the sample covariance matrix
and (a multiple of) the identity matrix:

Σ̂ = δ(s
2
I) + (1 − δ)S

s
2

is the average of the N sample variances s2
i

δ ∈ [0, 1] is the shrinkage intensity

Alternative way to think about it:

This estimator is also of the form UDU′,
but d is restricted to be a certain linear function:

d(λi) ..= δλ + (1 − δ)λi

λ is the average of the N sample eigenvalues λi
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Big Picture

Goal:

Examine out-of-sample properties of Markowitz portfolios
via backtest exercises

Two applications:

Global minimum variance (GMV) portfolio

Full Markowitz portfolio with a signal

(Out-of-sample) Performance measures:

Standard deviation

Information ratio
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Data & Portfolio Rules

Data:

Download daily return data from CRSP

Period: 01/01/1980–12/31/2015

Updating:

21 consecutive trading days constitute one ‘month’

Update portfolios on ‘monthly’ basis

Out-of-sample period:

Start investing on 01/08/1986

This results in 7560 daily returns (over 360 ‘months’)
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Data & Portfolio Rules

Portfolio sizes:

We consider N ∈ {100, 500, 1000}

Portfolio constituents:

Select new constituents at beginning of each ‘month’

Find the N largest stocks that have

(i) a complete 1250-day return history
(ii) a complete 21-day return future

Covariance matrix estimation:

Use previous T = 1250 days to estimate the covariance matrix
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Global Minimum Variance Portfolio

Problem Formulation

min
w

w′Htw

subject to w′1 = 1

(where 1 is a conformable vector of ones)

Analytical Solution

w∗ =
H−1

t 1

1′H−1
t 1

Feasible Solution

ŵ ..=
Ĥ−1

t 1

1′Ĥ−1
t 1
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DCC-S: based on the sample correlation matrix

DCC-L: based on linear shrinkage

DCC-NL: based on nonlinear shrinkage

RM-2006: RiskMetrics 2006
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Global Mininum Variance Portfolio

Competing portfolios:

1/N: as a simple benchmark

DCC-S: based on the sample correlation matrix

DCC-L: based on linear shrinkage

DCC-NL: based on nonlinear shrinkage

RM-2006: RiskMetrics 2006

Performance measures:

Standard deviation (primary)

Information ratio (secondary)

Assessing statistical significance:

Test for significant difference between DCC-S and DCC-NL
uses Ledoit and Wolf (2011, WM)
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Global Mininum Variance Portfolio

Annualized standard deviations:

N 1/N DCC-S DCC-L DCC-NL RM-2006
100 21.56 13.36 13.33 13.17∗∗∗ 14.69
500 19.53 10.57 10.40 9.64∗∗∗ 12.60

1000 19.04 10.59 9.14 8.02∗∗∗ 14.86

Remarks:

In each row, the best number appears in blue

Stars indicate significant outperformance (DCC-NL vs. DCC-S)
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Global Mininum Variance Portfolio

Annualized information ratios:

N 1/N DCC-S DCC-L DCC-NL RM-2006
100 0.56 0.74 0.74 0.76 0.57
500 0.69 1.32 1.33 1.39 0.89
1000 0.75 1.11 1.33 1.52 0.77

Remarks:

In each row, the best number appears in blue
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w′Htw

subject to w′mt = b and

w′1 = 1

(where mt is a signal and b is a target expected return)
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Markowitz Portfolio with Signal

Problem Formulation

min
w

w′Htw

subject to w′mt = b and

w′1 = 1

(where mt is a signal and b is a target expected return)

Analytical Solution

w∗ = c1H−1
t 1 + c2H−1

t m

where c1
..=

C − bB

AC − B2
and c2

..=
bA − B

AC − B2

with A ..= 1′H−1
t 1 B ..= 1′H−1

t b and C ..= m′H−1
t m
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Markowitz Portfolio with Signal

Problem Formulation

min
w

w′Htw

subject to w′mt = b and

w′1 = 1

(where mt is a signal and b is a target expected return)

Analytical Solution

w∗ = c1H−1
t 1 + c2H−1

t m

where c1
..=

C − bB

AC − B2
and c2

..=
bA − B

AC − B2

with A ..= 1′H−1
t 1 B ..= 1′H−1

t b and C ..= m′H−1
t m

Feasible Solution ŵ replaces Ht with an estimator Ĥt.
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Markowitz Portfolio with Momentum Signal

For simplicity and reproducibility, we use momentum as the signal.

Competing portfolios:

EW-TQ: equal-weighted portfolio of top-quintiles stocks
=⇒ yields target expected return b for other portfolios

DCC-S: based on the sample correlation matrix

DCC-L: based on linear shrinkage

DCC-NL: based on nonlinear shrinkage

RM-2006: RiskMetrics 2006

Performance measure:

Standard deviation (secondary)

Information ratio (primary)

Assessing statistical significance:

Test for significant difference between DCC-S and DCC-NL
uses Ledoit and Wolf (2008, JEF)
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Markowitz Portfolio with Momentum Signal

Annualized standard deviations:

N EW-TQ DCC-S DCC-L DCC-NL RM-2006
100 28.43 17.05 17.03 16.90∗∗∗ 18.87
500 24.42 12.36 12.16 11.31∗∗∗ 16.14

1000 22.89 13.07 10.76 9.20∗∗∗ 29.29

Remarks:

In each row, the best number appears in blue

Stars indicate significant outperformance (DCC-NL vs. DCC-S)
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Markowitz Portfolio with Momentum Signal

Annualized information ratios:

N EW-TQ DCC-S DCC-L DCC-NL RM-2006
100 0.60 0.93 0.93 0.93 0.85
500 0.70 1.34 1.37 1.48∗∗∗ 1.02

1000 0.76 0.98 1.30 1.62∗∗∗ 0.53

Remarks:

In each row, the best number appears in blue

Stars indicate significant outperformance (DCC-NL vs. DCC-S)
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Conclusion

Multivariate GARCH models are popular tools for risk management
and portfolio selection, but are often challenged in large dimensions.

Two keys for making DCC model robust against large dimensions:

1 Composite likelihood makes estimation feasible

2 Nonlinear shrinkage estimation of the correlation targeting
matrix ensures good performance

Resulting DCC-NL model:

Outperforms the basic DCC-S model by a wide margin

Should become the new DCC standard

Remark:

Nonlinear shrinkage can also help in robustifying other
multivariate GARCH models against large dimensions

A short description for the scalar BEKK model is in the paper
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Asymptotic Framework

Let N ..= N(T) and assume N/T→ c > 0, as T→∞.

The following set of assumptions is maintained throughout.

A1 The population covariance matrix ΣT is a nonrandom N-dimensional
positive definite matrix.

A2 Let XT be an T ×N matrix of real i.i.d. random variables with zero mean,
unit variance, and finite twelfth moment. One observes YT

..= XTΣ
1/2
T

.

A3 Let ((τT,1, . . . , τT,N); (vT,1, . . . , vT,N)) denote the eigenvalues
and eigenvectors of ΣT. The e.d.f. of the population eigenvalues,
denoted by HT, converges weakly to some limiting e.d.f. H.

A4 Supp(H), the support of H, is the union of a finite number of closed
intervals, bounded away from zero and infinity. Furthermore, there
exists a compact interval in (0,+∞) that contains Supp(HT) for all T
large enough.



Ukranian Foundation

The Stieltjes transform of a nondecreasing function G is:

∀z ∈ C+ mG(z) ..=

∫ +∞

−∞

1

λ − z
dG(λ)

(It has an explicit inversion formula too.)

Denote the e.d.f. of the sample eigenvalues by FT.

Marčenko and Pastur (1967) showed that FT converges a.s.
to some nonrandom limit F at all points of continuity of F.

They also discovered how mF relates to H and c:

∀z ∈ C+ mF(z) =

∫ +∞

−∞

1

τ
[
1 − c − c z mF(z)

]
− z

dH(τ) (2)

This is the celebrated Marčenko-Pastur (MP) equation.



Transatlantic Additions

Moral: knowing H and c, one can ‘solve’ for F.

The particular expression (2) of the MP equation is due to Silverstein (1995).

Silverstein and Choi (1995) showed that

∀λ ∈ R lim
z∈C+→λ

mF(z) =.. m̆F(λ) exists

The quantity m̆F(λ) will be of crucial importance.



Illustration

H is a point mass at one (as for identity covariance matrix).

Plot density of F for various values of c:
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Optimization Problem
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Optimization Problem

(Standardized) Frobenius norm:

||A|| ..=
√

Tr(AA′)/r for any matrix A of dimension r ×m

Loss function:

L(UTDTUT,ΣT) ..= ||UTDTUT − ΣT ||
2

Line of attack:

It turns out that there is nonstochastic limit of the loss function,
which involves the shrinkage function d

We minimize the limiting expression with respect to d
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A feasible estimator is obtained by:

Replacing c with N/T

Consistently estimating m̆F, which is achieved by consistently
estimating H and plugging it into the MP equation together with N/T

Resulting estimator: Σ̃T
..= UT × Diag(̃dT(λT,1), . . . , d̃T(λT,N)) ×U′

T
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A feasible estimator is obtained by:

Replacing c with N/T

Consistently estimating m̆F, which is achieved by consistently
estimating H and plugging it into the MP equation together with N/T

Resulting estimator: Σ̃T
..= UT × Diag(̃dT(λT,1), . . . , d̃T(λT,N)) ×U′
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The methodology can be extended to the case c > 1.
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