The Cayley-Hamilton Theorem

We prove:

THEOREM (Cayley-Hamilton Theorem). Let R be a commu-
tative ring, and A € M, x,(R). Then A satisfies its characteristic
polynomial.

1. Preliminary definitions

DEFINITION 1.1. My, (R) is the ring of n-by-n matrices with
entries in R.

DEFINITION 1.2. Let I € M,,»x,(R) be the identity matrix. Then
xl — A € Myyn(R[x]).
The determinant
det(zI — A) =: pa(z) € R[z]

is the characteristic polynomial of A.

DEerINITION 1.3. Fix a polynomial

f(x) =apz" + ...+ a1z + ap € R[z].
We say that a matrix A satisfies f if
f(A)=a, A"+ ...+ a1A+ a9 =0 € Myxn(R).

REMARK 1.4. Recall that given a matrix M and a scalar a € R,
the product aM is the matrix obtained by scaling every entry of M
by a. Also, in the above equation, ag is the diagonal matrix whose
diagonal entries are all equal the scalar ag.
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2. The main homomorphism, €4

The main tool we use is a map called € 4. It takes a matrix with
polynomial entries and produces a matrix with R entries.

First, let M be a matrix whose entries are elements of R[z]. By
decomposing M by degree of x, we can write M as a sum

(1) M=MO + MVgz + .. M@g?

where each M(® is an n x n-matrix with entries in R. Moreover,
given another matrix N = 3", N® 2 one can verify

MN = Z Z M@ON® 3,
i>0 a+b=i

Here, M(®N®) is the usual matrix multiplication of the matrix M(®
with the matrix N(®).
Fixing an element A € M, «,(R), we have the following group
homomorphism:
€4 s Musn(R[t]) = Mpsn(R), Y M@z Y MO A"
i>0 i>0

You can check that €4 respects addition. However, note that €4 is
not a ring homomorphism; indeed,

M(a)N(b)Aa+b ?é M(a)AaN(b)Ab
unless N(® commutes with A% for all @ and b.

REMARK 2.1. Note that M(® is simply the ath matrix in some
sequence, while A% is the ath power of the matrix A. Also, M(®) A®
is the product of the matrices M(® and A®.

3. The three main facts

To prove the theorem, we use three lemmas:

LEMMA 3.1. Let N = 3", N®zb If for each b, N® is a matrix
which commutes with A, then

eA(MN) = e4(M)ea(N).

LEMMA 3.2. Let D be a diagonal matrix all of whose entries is
equal to f(x) € R[z]. Then
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For the last lemma, recall that Cof(A);; is the matrix obtained
by deleting the jth row and ith column of A.

LEMMA 3.3. Let S be any commutative ring. Fix A € M,,x,(5),
and define a matrix C' € M,,x,(S) by:

Cij = (—I)H_j det(COf(A)jﬂ').

Then
CA = det(A)Lxn.

That is, the product C A is a diagonal matrix, and all of the diagonal
entries are equal to det(A) € S.
4. Proof of Theorem

Proor or CAYLEY-HAMILTON ASSUMING THE LEMMAS. Let A
be the matrix I — A. Let C be the matrix where

(Cij = (—I)H—j det(COf(A)j,i).
Using Lemma 3.3 and setting S = R[t], we know

where D is diagonal and the diagonal entries are given by the char-
acteristic polynomial of A:

det(A) = det(z] — A) = pa(x).
By Lemma 3.2, we conclude
€A(CA) = €ea(D) = pa(A).
On the other hand, note that
AO =4 AW =7

both of which commute with A (and hence any power of A). By
Lemma 3.1, we conclude

€A(CA) = €4(Cles(A).
Moreover,
€A(A) =ea(xl — A) =ea(xl) —ea(A) =A—-—A=0.

Thus
0=2e€4(C)-0=1¢€4(Cesa(A) = €4(CA) =pa(A).
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5. Proof of Lemmas

The third lemma was proven in a previous class, so we just prove
the first two.

Proor orF LEMMA 3.1. We use the hypothesis in the second line
below:

ea(MN) =) " M@N®) go+0
a,b

= Z M@ 4aN(©®) gb
a,b

(ger) )

= ea(M)e4(N).
O

PROOF OF LEMMA 3.2. Since D is diagonal, each D@ is diago-
nal in the decomposition
D=> Dz

a>0
Let f(z) = 3,50 7ax® be the polynomial of the hypothesis, so that
D@ = r,I. Then

eaD) = ea(d_DWa) =" es(D V)

a>0 a>0

= Z rol A®

a>0

= Z rqA°

a>0

= f(A).

6. Some big picture remarks

REMARK 6.1. The decomposition (1) of M realizes a ring isomor-
phism
My sen (R[x]) &= Mpxn (R)[z].
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On the righthand side is the polynomial ring with coefficients in a
non-commutative ring My, (R).

REMARK 6.2. The map €4 may seem mysterious—it is “almost”
a ring homomorphism, in that multiplication is respected only by
certain elements N, and only when these certain elements act from
the right.

In fact, what Lemma 3.1 says is that €4 is actually a map of right
modules over a particular ring Q4.

Let Q4 be the ring of matrices N € My, (R[x]) such that, writ-
ing N=>",-, N® 2t each N commutes with A. One can check
that this is a subring of M, xn(R[z]).

We have an obvious action

Mosn(R[z]) X Q4 — Mpsn(R2]),  (M,N) — MN

making M, (R[z]) into a right module over Q 4.
Moreover, we have another right module action

Mysn(R) X Q4 = Myxn(R), (B,N) > ZBN(b)Ab.
b>0

And Lemma 3.1 says €4 is a map of right Q) 4.-modules.

7. Some clarifying examples

ExAMPLE 7.1. Consider the matrix
a b
().

pa(A) = 2 — trace(A)z + det(A).

Then

ExXAMPLE 7.2. Consider the matrix
ax’+br+c d e

M= f g ha?
i 7 kx
Then
c d e
MO — f g 0
1 5 0
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b 0 0
MO =00 0
00 k

a 0 0
MB =0 0 n
0 0 0

8. Some applications

EXAMPLE 8.1. Suppose A is a 2-by-2 matrix with trace(A) = 0.
Then the characteristic polynomial is pa(x) = 22 + det(A). By the
Cayley-Hamilton theorem, we conclude

A? = —det(A)I.
Hence to compute A9 we observe
A1000 _ (A2)500 = (— det A)5OOI.

So, rather than tediously computing the matrix multiplication of A
with itself 1000 times, we need only compute the 500th power of a
scalar (called the determinant of A).

By the way, a quick way to compute the Nth power of something
is to break down NN in base 2:

N =e,2%4e,12" 1+ ... +e12+ ¢
where each e; is 0 or 1. Then you only need to compute a — 1 squares
A% (A% (AYT)?

then multiply the a matrices appropriately to compute A%,

ExAMPLE 8.2. Let’s say you want to know whether there is an
element of order k in GL,(R). Well, an element of order k£ must
satisfy the polynomial

zF — 1.
In any ring, this polynomial factors as
1= -1+ 2+ 1),

So if A is an element of order k, then we know that A satisfies both
its characteristic polynomial p4(x) and the polynomial 2*¥ — 1. Thus,
a question about A is reduced to questions about the polynomials
pa(x) and ¥ — 1. For example, if R is a field, then for A to sat-
isfy both these polynomials, these polynomials must have a common
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factor—some polynomial h(x) which mutually divides them both.
One can often rule out the existence of such an h(z) based on knowl-
edge of R, hence one can often rule out the existence of elements of
order k in GL,(R).



