
The Cayley-Hamilton Theorem

We prove:
THEOREM (Cayley-Hamilton Theorem). Let R be a commu-

tative ring, and A 2 Mn⇥n(R). Then A satisfies its characteristic
polynomial.

1. Preliminary definitions

Definition 1.1. Mn⇥n(R) is the ring of n-by-n matrices with
entries in R.

Definition 1.2. Let I 2 Mn⇥n(R) be the identity matrix. Then

xI �A 2 Mn⇥n(R[x]).

The determinant

det(xI �A) =: pA(x) 2 R[x]

is the characteristic polynomial of A.

Definition 1.3. Fix a polynomial

f(x) = anx
n + . . .+ a1x+ a0 2 R[x].

We say that a matrix A satisfies f if

f(A) = anA
n + . . .+ a1A+ a0 = 0 2 Mn⇥n(R).

Remark 1.4. Recall that given a matrix M and a scalar a 2 R,
the product aM is the matrix obtained by scaling every entry of M
by a. Also, in the above equation, a0 is the diagonal matrix whose
diagonal entries are all equal the scalar a0.
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2. The main homomorphism, ✏A

The main tool we use is a map called ✏A. It takes a matrix with
polynomial entries and produces a matrix with R entries.

First, let M be a matrix whose entries are elements of R[x]. By
decomposing M by degree of x, we can write M as a sum

(1) M = M(0) +M(1)x+ . . .M(d)xd

where each M(a) is an n ⇥ n-matrix with entries in R. Moreover,
given another matrix N =

P
b�0N(b)xb, one can verify

MN =
X

i�0

X

a+b=i

M(a)N(b)xi.

Here, M(a)N(b) is the usual matrix multiplication of the matrix M(a)

with the matrix N(b).
Fixing an element A 2 Mn⇥n(R), we have the following group

homomorphism:

✏A : Mn⇥n(R[t]) ! Mn⇥n(R),
X

i�0

M(i)xi 7!
X

i�0

M(i)Ai.

You can check that ✏A respects addition. However, note that ✏A is
not a ring homomorphism; indeed,

M(a)N(b)Aa+b 6= M(a)AaN(b)Ab

unless N(b) commutes with Aa for all a and b.

Remark 2.1. Note that M(a) is simply the ath matrix in some
sequence, while Aa is the ath power of the matrix A. Also, M(a)Aa

is the product of the matrices M(a) and Aa.

3. The three main facts

To prove the theorem, we use three lemmas:

Lemma 3.1. Let N =
P

b�0N(b)xb. If for each b, N(b) is a matrix
which commutes with A, then

✏A(MN) = ✏A(M)✏A(N).

Lemma 3.2. Let D be a diagonal matrix all of whose entries is
equal to f(x) 2 R[x]. Then

✏A(D) = f(A).
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For the last lemma, recall that Cof(A)j,i is the matrix obtained
by deleting the jth row and ith column of A.

Lemma 3.3. Let S be any commutative ring. Fix A 2 Mn⇥n(S),
and define a matrix C 2 Mn⇥n(S) by:

Cij := (�1)i+j det(Cof(A)j,i).

Then
CA = det(A)In⇥n.

That is, the product CA is a diagonal matrix, and all of the diagonal
entries are equal to det(A) 2 S.

4. Proof of Theorem

Proof of Cayley-Hamilton assuming the lemmas. Let A
be the matrix xI �A. Let C be the matrix where

Cij := (�1)i+j det(Cof(A)j,i).
Using Lemma 3.3 and setting S = R[t], we know

CA = D 2 Mn⇥n(R[t])

where D is diagonal and the diagonal entries are given by the char-
acteristic polynomial of A:

det(A) = det(xI �A) = pA(x).

By Lemma 3.2, we conclude

✏A(CA) = ✏A(D) = pA(A).

On the other hand, note that

A(0) = �A, A(1) = I

both of which commute with A (and hence any power of A). By
Lemma 3.1, we conclude

✏A(CA) = ✏A(C)✏A(A).
Moreover,

✏A(A) = ✏A(xI �A) = ✏A(xI)� ✏A(A) = A�A = 0.

Thus
0 = ✏A(C) · 0 = ✏A(C)✏A(A) = ✏A(CA) = pA(A).

⇤
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5. Proof of Lemmas

The third lemma was proven in a previous class, so we just prove
the first two.

Proof of Lemma 3.1. We use the hypothesis in the second line
below:

✏A(MN) =
X

a,b

M(a)N(b)Aa+b

=
X

a,b

M(a)AaN(b)Ab

=

 
X

a

M(a)Aa

! 
X

b

N(b)Ab

!

= ✏A(M)✏A(N).
⇤

Proof of Lemma 3.2. Since D is diagonal, each D(i) is diago-
nal in the decomposition

D =
X

a�0

D(a)xa.

Let f(x) =
P

a�0 rax
a be the polynomial of the hypothesis, so that

D(a) = raI. Then

✏A(D) = ✏A(
X

a�0

D(a)xa) =
X

a�0

✏A(D(a)xa)

=
X

a�0

raIA
a

=
X

a�0

raA
a

= f(A).

⇤

6. Some big picture remarks

Remark 6.1. The decomposition (1) of M realizes a ring isomor-
phism

Mn⇥n(R[x]) ⇠= Mn⇥n(R)[x].
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On the righthand side is the polynomial ring with coe�cients in a
non-commutative ring Mn⇥n(R).

Remark 6.2. The map ✏A may seem mysterious—it is “almost”
a ring homomorphism, in that multiplication is respected only by
certain elements N, and only when these certain elements act from
the right.

In fact, what Lemma 3.1 says is that ✏A is actually a map of right
modules over a particular ring QA.

Let QA be the ring of matrices N 2 Mn⇥n(R[x]) such that, writ-
ing N =

P
b�0N(b)xb, each N(b) commutes with A. One can check

that this is a subring of Mn⇥n(R[x]).
We have an obvious action

Mn⇥n(R[x])⇥QA ! Mn⇥n(R[x]), (M,N) 7! MN

making Mn⇥n(R[x]) into a right module over QA.
Moreover, we have another right module action

Mn⇥n(R)⇥QA ! Mn⇥n(R), (B,N) 7!
X

b�0

BN(b)Ab.

And Lemma 3.1 says ✏A is a map of right QA-modules.

7. Some clarifying examples

Example 7.1. Consider the matrix

A =

✓
a b
c d

◆
.

Then

pA(A) = x2 � trace(A)x+ det(A).

Example 7.2. Consider the matrix

M =

0

@
ax2 + bx+ c d e

f g hx2

i j kx

1

A .

Then

M(0) =

0

@
c d e
f g 0
i j 0

1

A
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M(1) =

0

@
b 0 0
0 0 0
0 0 k

1

A

M(2) =

0

@
a 0 0
0 0 h
0 0 0

1

A .

8. Some applications

Example 8.1. Suppose A is a 2-by-2 matrix with trace(A) = 0.
Then the characteristic polynomial is pA(x) = x2 + det(A). By the
Cayley-Hamilton theorem, we conclude

A2 = � det(A)I.

Hence to compute A1000, we observe

A1000 = (A2)500 = (� detA)500I.

So, rather than tediously computing the matrix multiplication of A
with itself 1000 times, we need only compute the 500th power of a
scalar (called the determinant of A).

By the way, a quick way to compute the Nth power of something
is to break down N in base 2:

N = ea2
a + ea�12

a�1 + . . .+ e12 + e0

where each ei is 0 or 1. Then you only need to compute a�1 squares

A2, (A2)2, . . . , (A2a�1
)2

then multiply the a matrices appropriately to compute AN .

Example 8.2. Let’s say you want to know whether there is an
element of order k in GLn(R). Well, an element of order k must
satisfy the polynomial

xk � 1.

In any ring, this polynomial factors as

xk � 1 = (x� 1)(xk�1 + . . .+ x2 + x+ 1).

So if A is an element of order k, then we know that A satisfies both
its characteristic polynomial pA(x) and the polynomial xk�1. Thus,
a question about A is reduced to questions about the polynomials
pA(x) and xk � 1. For example, if R is a field, then for A to sat-
isfy both these polynomials, these polynomials must have a common
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factor—some polynomial h(x) which mutually divides them both.
One can often rule out the existence of such an h(x) based on knowl-
edge of R, hence one can often rule out the existence of elements of
order k in GLn(R).
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