The Cayley-Hamilton Theorem

We prove:
THEOREM (Cayley-Hamilton Theorem). Let R be a commutative ring, and $A \in M_{n \times n}(R)$. Then A satisfies its characteristic polynomial.

1. Preliminary definitions

DEFINITION 1.1. $M_{n \times n}(R)$ is the ring of n-by- n matrices with entries in R.

Definition 1.2. Let $I \in M_{n \times n}(R)$ be the identity matrix. Then

$$
x I-A \in M_{n \times n}(R[x])
$$

The determinant

$$
\operatorname{det}(x I-A)=: p_{A}(x) \in R[x]
$$

is the characteristic polynomial of A.
Definition 1.3. Fix a polynomial

$$
f(x)=a_{n} x^{n}+\ldots+a_{1} x+a_{0} \in R[x]
$$

We say that a matrix A satisfies f if

$$
f(A)=a_{n} A^{n}+\ldots+a_{1} A+a_{0}=0 \in M_{n \times n}(R)
$$

REmARK 1.4. Recall that given a matrix M and a scalar $a \in R$, the product $a M$ is the matrix obtained by scaling every entry of M by a. Also, in the above equation, a_{0} is the diagonal matrix whose diagonal entries are all equal the scalar a_{0}.

2. The main homomorphism, ϵ_{A}

The main tool we use is a map called ϵ_{A}. It takes a matrix with polynomial entries and produces a matrix with R entries.

First, let \mathbb{M} be a matrix whose entries are elements of $R[x]$. By decomposing \mathbb{M} by degree of x, we can write \mathbb{M} as a sum

$$
\begin{equation*}
\mathbb{M}=\mathbb{M}^{(0)}+\mathbb{M}^{(1)} x+\ldots \mathbb{M}^{(d)} x^{d} \tag{1}
\end{equation*}
$$

where each $\mathbb{M}^{(a)}$ is an $n \times n$-matrix with entries in R. Moreover, given another matrix $\mathbb{N}=\sum_{b \geq 0} \mathbb{N}^{(b)} x^{b}$, one can verify

$$
\mathbb{M} \mathbb{N}=\sum_{i \geq 0} \sum_{a+b=i} \mathbb{M}^{(a)} \mathbb{N}^{(b)} x^{i}
$$

Here, $\mathbb{M}^{(a)} \mathbb{N}^{(b)}$ is the usual matrix multiplication of the matrix $\mathbb{M}^{(a)}$ with the matrix $\mathbb{N}^{(b)}$.

Fixing an element $A \in M_{n \times n}(R)$, we have the following group homomorphism:

$$
\epsilon_{A}: M_{n \times n}(R[t]) \rightarrow M_{n \times n}(R), \quad \sum_{i \geq 0} \mathbb{M}^{(i)} x^{i} \mapsto \sum_{i \geq 0} \mathbb{M}^{(i)} A^{i}
$$

You can check that ϵ_{A} respects addition. However, note that ϵ_{A} is not a ring homomorphism; indeed,

$$
\mathbb{M}^{(a)} \mathbb{N}^{(b)} A^{a+b} \neq \mathbb{M}^{(a)} A^{a} \mathbb{N}^{(b)} A^{b}
$$

unless $\mathbb{N}^{(b)}$ commutes with A^{a} for all a and b.
REMARK 2.1. Note that $\mathbb{M}^{(a)}$ is simply the a th matrix in some sequence, while A^{a} is the a th power of the matrix A. Also, $\mathbb{M}^{(a)} A^{a}$ is the product of the matrices $\mathbb{M}^{(a)}$ and A^{a}.

3. The three main facts

To prove the theorem, we use three lemmas:
Lemma 3.1. Let $\mathbb{N}=\sum_{b \geq 0} \mathbb{N}^{(b)} x^{b}$. If for each $b, \mathbb{N}^{(b)}$ is a matrix which commutes with A, then

$$
\epsilon_{A}(\mathbb{M} \mathbb{N})=\epsilon_{A}(\mathbb{M}) \epsilon_{A}(\mathbb{N})
$$

Lemma 3.2. Let \mathbb{D} be a diagonal matrix all of whose entries is equal to $f(x) \in R[x]$. Then

$$
\epsilon_{A}(\mathbb{D})=f(A)
$$

For the last lemma, recall that $\operatorname{Cof}(A)_{j, i}$ is the matrix obtained by deleting the j th row and i th column of A.

Lemma 3.3. Let S be any commutative ring. Fix $A \in M_{n \times n}(S)$, and define a matrix $C \in M_{n \times n}(S)$ by:

$$
C_{i j}:=(-1)^{i+j} \operatorname{det}\left(\operatorname{Cof}(A)_{j, i}\right)
$$

Then

$$
C A=\operatorname{det}(A) I_{n \times n} .
$$

That is, the product $C A$ is a diagonal matrix, and all of the diagonal entries are equal to $\operatorname{det}(A) \in S$.

4. Proof of Theorem

Proof of Cayley-Hamilton assuming the lemmas. Let \mathbb{A} be the matrix $x I-A$. Let \mathbb{C} be the matrix where

$$
\mathbb{C}_{i j}:=(-1)^{i+j} \operatorname{det}\left(\operatorname{Cof}(\mathbb{A})_{j, i}\right) .
$$

Using Lemma 3.3 and setting $S=R[t]$, we know

$$
\mathbb{C} \mathbb{A}=\mathbb{D} \in M_{n \times n}(R[t])
$$

where \mathbb{D} is diagonal and the diagonal entries are given by the characteristic polynomial of A :

$$
\operatorname{det}(\mathbb{A})=\operatorname{det}(x I-A)=p_{A}(x)
$$

By Lemma 3.2, we conclude

$$
\epsilon_{A}(\mathbb{C} \mathbb{A})=\epsilon_{A}(\mathbb{D})=p_{A}(A) .
$$

On the other hand, note that

$$
\mathbb{A}^{(0)}=-A, \quad \mathbb{A}^{(1)}=I
$$

both of which commute with A (and hence any power of A). By Lemma 3.1, we conclude

$$
\epsilon_{A}(\mathbb{C A})=\epsilon_{A}(\mathbb{C}) \epsilon_{A}(\mathbb{A})
$$

Moreover,

$$
\epsilon_{A}(\mathbb{A})=\epsilon_{A}(x I-A)=\epsilon_{A}(x I)-\epsilon_{A}(A)=A-A=0 .
$$

Thus

$$
0=\epsilon_{A}(\mathbb{C}) \cdot 0=\epsilon_{A}(\mathbb{C}) \epsilon_{A}(\mathbb{A})=\epsilon_{A}(\mathbb{C} \mathbb{A})=p_{A}(A)
$$

5. Proof of Lemmas

The third lemma was proven in a previous class, so we just prove the first two.

Proof of Lemma 3.1. We use the hypothesis in the second line below:

$$
\begin{aligned}
\epsilon_{A}(\mathbb{M} \mathbb{N}) & =\sum_{a, b} \mathbb{M}^{(a)} \mathbb{N}^{(b)} A^{a+b} \\
& =\sum_{a, b} \mathbb{M}^{(a)} A^{a} \mathbb{N}^{(b)} A^{b} \\
& =\left(\sum_{a} \mathbb{M}^{(a)} A^{a}\right)\left(\sum_{b} \mathbb{N}^{(b)} A^{b}\right) \\
& =\epsilon_{A}(\mathbb{M}) \epsilon_{A}(\mathbb{N})
\end{aligned}
$$

Proof of Lemma 3.2. Since \mathbb{D} is diagonal, each $\mathbb{D}^{(i)}$ is diagonal in the decomposition

$$
\mathbb{D}=\sum_{a \geq 0} \mathbb{D}^{(a)} x^{a}
$$

Let $f(x)=\sum_{a \geq 0} r_{a} x^{a}$ be the polynomial of the hypothesis, so that $\mathbb{D}^{(a)}=r_{a} I$. Then

$$
\begin{aligned}
\epsilon_{A}(\mathbb{D})=\epsilon_{A}\left(\sum_{a \geq 0} \mathbb{D}^{(a)} x^{a}\right) & =\sum_{a \geq 0} \epsilon_{A}\left(\mathbb{D}^{(a)} x^{a}\right) \\
& =\sum_{a \geq 0} r_{a} I A^{a} \\
& =\sum_{a \geq 0} r_{a} A^{a} \\
& =f(A)
\end{aligned}
$$

6. Some big picture remarks

REMARK 6.1. The decomposition (1) of \mathbb{M} realizes a ring isomorphism

$$
M_{n \times n}(R[x]) \cong M_{n \times n}(R)[x]
$$

On the righthand side is the polynomial ring with coefficients in a non-commutative ring $M_{n \times n}(R)$.

Remark 6.2. The map ϵ_{A} may seem mysterious-it is "almost" a ring homomorphism, in that multiplication is respected only by certain elements \mathbb{N}, and only when these certain elements act from the right.

In fact, what Lemma 3.1 says is that ϵ_{A} is actually a map of right modules over a particular ring Q_{A}.

Let Q_{A} be the ring of matrices $\mathbb{N} \in M_{n \times n}(R[x])$ such that, writing $\mathbb{N}=\sum_{b \geq 0} \mathbb{N}^{(b)} x^{b}$, each $\mathbb{N}^{(b)}$ commutes with A. One can check that this is a subring of $M_{n \times n}(R[x])$.

We have an obvious action

$$
M_{n \times n}(R[x]) \times Q_{A} \rightarrow M_{n \times n}(R[x]), \quad(\mathbb{M}, \mathbb{N}) \mapsto \mathbb{M} \mathbb{N}
$$

making $M_{n \times n}(R[x])$ into a right module over Q_{A}.
Moreover, we have another right module action

$$
M_{n \times n}(R) \times Q_{A} \rightarrow M_{n \times n}(R), \quad(B, \mathbb{N}) \mapsto \sum_{b \geq 0} B \mathbb{N}^{(b)} A^{b} .
$$

And Lemma 3.1 says ϵ_{A} is a map of right Q_{A}-modules.

7. Some clarifying examples

Example 7.1. Consider the matrix

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) .
$$

Then

$$
p_{A}(A)=x^{2}-\operatorname{trace}(A) x+\operatorname{det}(A) .
$$

Example 7.2. Consider the matrix

$$
\mathbb{M}=\left(\begin{array}{ccc}
a x^{2}+b x+c & d & e \\
f & g & h x^{2} \\
i & j & k x
\end{array}\right)
$$

Then

$$
\mathbb{M}^{(0)}=\left(\begin{array}{lll}
c & d & e \\
f & g & 0 \\
i & j & 0
\end{array}\right)
$$

$$
\begin{aligned}
\mathbb{M}^{(1)} & =\left(\begin{array}{lll}
b & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & k
\end{array}\right) \\
\mathbb{M}^{(2)} & =\left(\begin{array}{lll}
a & 0 & 0 \\
0 & 0 & h \\
0 & 0 & 0
\end{array}\right) .
\end{aligned}
$$

8. Some applications

Example 8.1. Suppose A is a 2 -by- 2 matrix with $\operatorname{trace}(A)=0$. Then the characteristic polynomial is $p_{A}(x)=x^{2}+\operatorname{det}(A)$. By the Cayley-Hamilton theorem, we conclude

$$
A^{2}=-\operatorname{det}(A) I .
$$

Hence to compute A^{1000}, we observe

$$
A^{1000}=\left(A^{2}\right)^{500}=(-\operatorname{det} A)^{500} I .
$$

So, rather than tediously computing the matrix multiplication of A with itself 1000 times, we need only compute the 500 th power of a scalar (called the determinant of A).

By the way, a quick way to compute the N th power of something is to break down N in base 2:

$$
N=e_{a} 2^{a}+e_{a-1} 2^{a-1}+\ldots+e_{1} 2+e_{0}
$$

where each e_{i} is 0 or 1 . Then you only need to compute $a-1$ squares

$$
A^{2},\left(A^{2}\right)^{2}, \ldots,\left(A^{2^{a-1}}\right)^{2}
$$

then multiply the a matrices appropriately to compute A^{N}.
Example 8.2. Let's say you want to know whether there is an element of order k in $G L_{n}(R)$. Well, an element of order k must satisfy the polynomial

$$
x^{k}-1 .
$$

In any ring, this polynomial factors as

$$
x^{k}-1=(x-1)\left(x^{k-1}+\ldots+x^{2}+x+1\right) .
$$

So if A is an element of order k, then we know that A satisfies both its characteristic polynomial $p_{A}(x)$ and the polynomial $x^{k}-1$. Thus, a question about A is reduced to questions about the polynomials $p_{A}(x)$ and $x^{k}-1$. For example, if R is a field, then for A to satisfy both these polynomials, these polynomials must have a common
factor-some polynomial $h(x)$ which mutually divides them both. One can often rule out the existence of such an $h(x)$ based on knowledge of R, hence one can often rule out the existence of elements of order k in $G L_{n}(R)$.

