
Lecture 9: Noetherian rings and modules

Today we begin with some commutative algebra.
I’m geometrically minded, so a lot of motivation will be from geometry.
The idea of algebraic geometry is to turn geometric questions into algebraic ones,

and vice versa. To do this, we want a dictionary. The dictionary goes like this, but
the following is very rough, and literally incorrect. We’ll see details later.

Algebra Geometry A pathway
A ring R A space X = SpecR Space X 7! Functions on X.

C X = one point.
C[x] The space C

C[x1, . . . , xn] The space Cn

R[x] (The space associated to R)⇥C
Ideal I ⇢ R A subspace V (I) ⇢ SpecR V (I)=points on which all f 2 I evaluate to 0.

R/I Functions on V (I)
Ring map R ! S Maps SpecS ! SpecR Functions on R pull back to functions on S

R ! R/I Inclusion V (I) ! SpecR
R is Noetherian SpecR is “finite-dimensional.”

Being “Noetherian” is like being finite-dimensional.

Remark 9.1. The zero ring corresponds to the empty set.

Remark 9.2. Choosing a “base ring” determined what you think of as a point.
Above, we chose C as a base ring, so C is functions on a point.

From now on, every ring R is commutative and has unit.

Proposition 9.3. Let R be a ring, and M a module. The following are equiva-
lent:

(1) Every submodule of M is finitely generated.
(2) Any strictly ascending sequence of submodules in M

M0 ⇢ M1 ⇢ . . .

must terminate (after a finite number of steps).
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Proof. (1) =) (2). If every submodule of M is finitely generated, so is the
union [iMi. Letting x1, . . . , xk be a set of generators, by definition of union, there
exists a finite l so that each xi is contained in Ml. This means [iMi = Ml, so the
sequence terminates with a module equal to Ml.

(2) =) (1). If M 0 is any submodule of M , make a sequence of submodules of
M

0 as follows: Choose x0 2 M

0. Then if the R-module generated by x0, written (x0),
does not equal M 0, choose x1 not in (x0). Inductively, if (x0, . . . , xi) 6= M

0, choose
xi+1 to be an element in M

0 \ (x0, . . . , xi). This creates a sequence of submodules

(x0) ⇢ (x0, x1) ⇢ . . .

which must terminate. Hence at some finite l, we have that

(x0, . . . , xl) = M

0

and M

0 is finitely generated. ⇤
Definition 9.4. Let R be a ring. An ideal I ⇢ R is a submodule of R. Con-

cretely, this means

(1) I is an abelian subgroup (under addition), and
(2) For any x 2 I, r 2 R, we have that rx 2 I.

This implies that any finite linear combination
X

rixi

is also in I.

Definition 9.5. A ring R is called Noetherian if it satisfies either of the condi-
tions in the proposition.

An R-module M (regardless of whether R is Noetherian) is called Noetherian if
M satisfies either of the conditions in the proposition.

Corollary 9.6. If R is Noetherian, so is the image of any ring homomorphism
out of R.

Proof. If � : R ! S is a surjection, then S

⇠= R/ ker(I). Since ideals of S are in
bijection with ideals of R containing ker(I), the ascending chain condition holds. ⇤

Example 9.7. Z is Noetherian because all its ideals are finitely generated (in
fact, all its ideals are of the form (n) for some n 2 Z; hence generated by a single
element).

Any field k is Noetherian because a field only has two ideals: 0 and k.
For any field k, k[t] is Noetherian—by the Euclidean algorithm, any ideal is

generated by a single element.
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The following is called the Hilbert basis theorem. It jives with the following
intuition: If X is a finite-dimensional space, it’s still finite-dimensional if you take
its direct product with a one-dimensional line. In algebra, if you have a ring R, then
the way to attach one free dimension to R is to attach a free variable to construct
the polynomial ring R.

Theorem 9.8 (Hilbert basis theorem). Let R be Noetherian. Then R[x] is
Noetherian.

Proof. All we have is that polynomials have degree. We use the notion of degree
to show any ideal is finitely generated.

Let I ⇢ R[x] be an ideal. We construct a sequence of subideals as follows:
Choose f0 2 I to be a minimal degree polynomial in I. (It may not be unique;

two f0 may even generate a di↵erent subideal.)
Inductively: If (f0, . . . , fi) 6= i, choose an element fi+1 of minimal degree that is

in the complement I \ (f0, . . . , fi).
Let ai be the leading coe�cient of fi (i.e., the highest degree coe�cient). Then

(a0, a1, . . .) is an ideal of R. By hypothesis, this ideal is finitely generated, so there
is some finite collection (a0, . . . , am) which generates it.

Here comes a contradiction about the existence of fm+1: By the choice of a0, . . . , am,
we know that the leading coe�cient am+1 can be generated as an R-linear combina-
tion of a0, . . . , am:

am+1 =
mX

i=0

uiai.

So if deg fm+1 = N , consider the linear combination

g =
mX

i=0

uIx
N�deg fi

fi.

This is a new polynomial whose leading coe�cient is am+1, and has degree equal to
the degree of fm+1. Note that it is in the ideal generated by (f0, . . . , fm), so the
di↵erence

fm+1 � g

better not be in the ideal (f0, . . . , fm). This contradicts the existence of fm+1, because
this di↵erence is a lower-degree polynomial than fm+1. ⇤


