Lecture 9: Noetherian rings and modules

Today we begin with some commutative algebra.

I'm geometrically minded, so a lot of motivation will be from geometry.

The idea of algebraic geometry is to turn geometric questions into algebraic ones,
and vice versa. To do this, we want a dictionary. The dictionary goes like this, but
the following is very rough, and literally incorrect. We’'ll see details later.

Algebra Geometry A pathway
A ring R A space X = Spec R Space X — Functions on X.
C X = one point.
Clx] The space C
Clxy, ..., ) The space C"
R|x] (The space associated to R)xC
Ideal I C R A subspace V(I) C Spec R | V(I)=points on which all f € I evaluate to 0.
R/I Functions on V(1)
Ring map R — S Maps Spec S — Spec R Functions on R pull back to functions on S
R— R/I Inclusion V(I) — Spec R
R is Noetherian | Spec R is “finite-dimensional.”

Being “Noetherian” is like being finite-dimensional.
REMARK 9.1. The zero ring corresponds to the empty set.

REMARK 9.2. Choosing a “base ring” determined what you think of as a point.
Above, we chose C as a base ring, so C is functions on a point.

From now on, every ring R is commutative and has unit.

PRrROPOSITION 9.3. Let R be a ring, and M a module. The following are equiva-
lent:

(1) Every submodule of M is finitely generated.
(2) Any strictly ascending sequence of submodules in M

MyC M, C...
must terminate (after a finite number of steps).

1



2 LECTURE 9: NOETHERIAN RINGS AND MODULES

PRrROOF. (1) = (2). If every submodule of M is finitely generated, so is the
union U;M;. Letting x1,...,xz; be a set of generators, by definition of union, there
exists a finite [ so that each x; is contained in M;. This means U;M; = M, so the
sequence terminates with a module equal to M;.

(2) = (1). If M’ is any submodule of M, make a sequence of submodules of
M’ as follows: Choose xy € M’. Then if the R-module generated by ¢, written (),
does not equal M’, choose x; not in (x). Inductively, if (zo,...,z;) # M', choose
Zi+1 to be an element in M’ \ (zo, ..., ;). This creates a sequence of submodules

(x0) C (xg, 1) C ...
which must terminate. Hence at some finite [, we have that
(2o, ..., x) =M’
and M’ is finitely generated. O
DEFINITION 9.4. Let R be a ring. An ideal I C R is a submodule of R. Con-

cretely, this means

(1) I is an abelian subgroup (under addition), and
(2) For any = € I,r € R, we have that rz € I.

This implies that any finite linear combination

g ri&;
is also in 1.

DEFINITION 9.5. A ring R is called Noetherian if it satisfies either of the condi-
tions in the proposition.

An R-module M (regardless of whether R is Noetherian) is called Noetherian if
M satisfies either of the conditions in the proposition.

COROLLARY 9.6. If R is Noetherian, so is the image of any ring homomorphism
out of R.

ProOOF. If ¢ : R — S is a surjection, then S = R/ ker(/). Since ideals of S are in
bijection with ideals of R containing ker(7), the ascending chain condition holds. [

EXAMPLE 9.7. Z is Noetherian because all its ideals are finitely generated (in
fact, all its ideals are of the form (n) for some n € Z; hence generated by a single
element).

Any field k is Noetherian because a field only has two ideals: 0 and k.

For any field k, k[t] is Noetherian—by the Euclidean algorithm, any ideal is
generated by a single element.
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The following is called the Hilbert basis theorem. It jives with the following
intuition: If X is a finite-dimensional space, it’s still finite-dimensional if you take
its direct product with a one-dimensional line. In algebra, if you have a ring R, then
the way to attach one free dimension to R is to attach a free variable to construct
the polynomial ring R.

THEOREM 9.8 (Hilbert basis theorem). Let R be Noetherian. Then Rlx] is
Noetherian.

Proor. All we have is that polynomials have degree. We use the notion of degree
to show any ideal is finitely generated.

Let I C R[z] be an ideal. We construct a sequence of subideals as follows:

Choose fy € I to be a minimal degree polynomial in /. (It may not be unique;
two fp may even generate a different subideal.)

Inductively: If (fo,..., fi) # i, choose an element f;,; of minimal degree that is
in the complement I\ (fo,..., fi).

Let a; be the leading coefficient of f; (i.e., the highest degree coefficient). Then
(ag,ai,...) is an ideal of R. By hypothesis, this ideal is finitely generated, so there
is some finite collection (aq, ..., a,) which generates it.

Here comes a contradiction about the existence of f,,,1: By the choice of aq, ..., a,,
we know that the leading coefficient a,,,; can be generated as an R-linear combina-

tion of aq, ..., Gm:
m
am+1 = E Ui Qg -
i=0

So if deg f,,41 = NV, consider the linear combination
m

g = Z upzN Bl f,,
=0

This is a new polynomial whose leading coefficient is a,, 1, and has degree equal to
the degree of f,, 1. Note that it is in the ideal generated by (fo,..., fim), so the
difference

f m+1l — ¢
better not be in the ideal (fy, ..., fin). This contradicts the existence of fi, 11, because
this difference is a lower-degree polynomial than f,,,1. U



