Lecture 9: Noetherian rings and modules

Today we begin with some commutative algebra.
I'm geometrically minded, so a lot of motivation will be from geometry.
The idea of algebraic geometry is to turn geometric questions into algebraic ones, and vice versa. To do this, we want a dictionary. The dictionary goes like this, but the following is very rough, and literally incorrect. We'll see details later.

Algebra	Geometry	A pathway
A ring R	A space $X=\operatorname{Spec} R$	Space $X \mapsto$ Functions on X.
\mathbb{C}	$X=$ one point.	
$\mathbb{C}[x]$	The space \mathbb{C}	
$\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$	The space \mathbb{C}	
$R[x]$	(The space associated to $R) \times \mathbb{C}$	
Ideal $I \subset R$	A subspace $V(I) \subset \operatorname{Spec} R$	$V(I)=$ points on which all $f \in I$ evaluate to 0.
R / I	Functions on $V(I)$	
Ring map $R \rightarrow S$	Maps $\operatorname{Spec} S \rightarrow \operatorname{Spec} R$	Functions on R pull back to functions on S
$R \rightarrow R / I$	Inclusion $V(I) \rightarrow \operatorname{Spec} R$	
R is Noetherian	Spec R is "finite-dimensional."	

Being "Noetherian" is like being finite-dimensional.
Remark 9.1. The zero ring corresponds to the empty set.
Remark 9.2. Choosing a "base ring" determined what you think of as a point. Above, we chose \mathbb{C} as a base ring, so \mathbb{C} is functions on a point.

From now on, every ring R is commutative and has unit.
Proposition 9.3. Let R be a ring, and M a module. The following are equivalent:
(1) Every submodule of M is finitely generated.
(2) Any strictly ascending sequence of submodules in M

$$
M_{0} \subset M_{1} \subset \ldots
$$

must terminate (after a finite number of steps).

Proof. (1) $\Longrightarrow(2)$. If every submodule of M is finitely generated, so is the union $\cup_{i} M_{i}$. Letting x_{1}, \ldots, x_{k} be a set of generators, by definition of union, there exists a finite l so that each x_{i} is contained in M_{l}. This means $\cup_{i} M_{i}=M_{l}$, so the sequence terminates with a module equal to M_{l}.
$(2) \Longrightarrow(1)$. If M^{\prime} is any submodule of M, make a sequence of submodules of M^{\prime} as follows: Choose $x_{0} \in M^{\prime}$. Then if the R-module generated by x_{0}, written $\left(x_{0}\right)$, does not equal M^{\prime}, choose x_{1} not in $\left(x_{0}\right)$. Inductively, if $\left(x_{0}, \ldots, x_{i}\right) \neq M^{\prime}$, choose x_{i+1} to be an element in $M^{\prime} \backslash\left(x_{0}, \ldots, x_{i}\right)$. This creates a sequence of submodules

$$
\left(x_{0}\right) \subset\left(x_{0}, x_{1}\right) \subset \ldots
$$

which must terminate. Hence at some finite l, we have that

$$
\left(x_{0}, \ldots, x_{l}\right)=M^{\prime}
$$

and M^{\prime} is finitely generated.
Definition 9.4. Let R be a ring. An ideal $I \subset R$ is a submodule of R. Concretely, this means
(1) I is an abelian subgroup (under addition), and
(2) For any $x \in I, r \in R$, we have that $r x \in I$.

This implies that any finite linear combination

$$
\sum r_{i} x_{i}
$$

is also in I.
Definition 9.5. A ring R is called Noetherian if it satisfies either of the conditions in the proposition.

An R-module M (regardless of whether R is Noetherian) is called Noetherian if M satisfies either of the conditions in the proposition.

Corollary 9.6. If R is Noetherian, so is the image of any ring homomorphism out of R.

Proof. If $\phi: R \rightarrow S$ is a surjection, then $S \cong R / \operatorname{ker}(I)$. Since ideals of S are in bijection with ideals of R containing $\operatorname{ker}(I)$, the ascending chain condition holds.

Example 9.7. \mathbb{Z} is Noetherian because all its ideals are finitely generated (in fact, all its ideals are of the form (n) for some $n \in \mathbb{Z}$; hence generated by a single element).

Any field k is Noetherian because a field only has two ideals: 0 and k.
For any field $k, k[t]$ is Noetherian-by the Euclidean algorithm, any ideal is generated by a single element.

The following is called the Hilbert basis theorem. It jives with the following intuition: If X is a finite-dimensional space, it's still finite-dimensional if you take its direct product with a one-dimensional line. In algebra, if you have a ring R, then the way to attach one free dimension to R is to attach a free variable to construct the polynomial ring R.

Theorem 9.8 (Hilbert basis theorem). Let R be Noetherian. Then $R[x]$ is Noetherian.

Proof. All we have is that polynomials have degree. We use the notion of degree to show any ideal is finitely generated.

Let $I \subset R[x]$ be an ideal. We construct a sequence of subideals as follows:
Choose $f_{0} \in I$ to be a minimal degree polynomial in I. (It may not be unique; two f_{0} may even generate a different subideal.)

Inductively: If $\left(f_{0}, \ldots, f_{i}\right) \neq i$, choose an element f_{i+1} of minimal degree that is in the complement $I \backslash\left(f_{0}, \ldots, f_{i}\right)$.

Let a_{i} be the leading coefficient of f_{i} (i.e., the highest degree coefficient). Then $\left(a_{0}, a_{1}, \ldots\right)$ is an ideal of R. By hypothesis, this ideal is finitely generated, so there is some finite collection $\left(a_{0}, \ldots, a_{m}\right)$ which generates it.

Here comes a contradiction about the existence of f_{m+1} : By the choice of a_{0}, \ldots, a_{m}, we know that the leading coefficient a_{m+1} can be generated as an R-linear combination of a_{0}, \ldots, a_{m} :

$$
a_{m+1}=\sum_{i=0}^{m} u_{i} a_{i} .
$$

So if $\operatorname{deg} f_{m+1}=N$, consider the linear combination

$$
g=\sum_{i=0}^{m} u_{I} x^{N-\operatorname{deg} f_{i}} f_{i} .
$$

This is a new polynomial whose leading coefficient is a_{m+1}, and has degree equal to the degree of f_{m+1}. Note that it is in the ideal generated by $\left(f_{0}, \ldots, f_{m}\right)$, so the difference

$$
f_{m+1}-g
$$

better not be in the ideal $\left(f_{0}, \ldots, f_{m}\right)$. This contradicts the existence of f_{m+1}, because this difference is a lower-degree polynomial than f_{m+1}.

