III: Commutative ring theory and algebraic geometry

lattices, it is natural to ask in specific cases if these lattices satisfy any chain
conditions or are distributive. We can then formulate possible decomposition
theorems. In this and the next section we do this for an important class of
rings occurring in algebraic geometry.

Definition 3.1. Let R be a ring and suppose the associated p.o. set (£, <)
satisfies the a.c.c.—that is, each strictly ascending chain of ideals of R,
a; & a, & ..., terminates after finitely many steps. Then by abuse of
language, we say that R satisfies the a.c.c. Similarly, R satisfies the d.c.c.
if (£, <) does.

We now turn our attention to proving that the a.c.c. holds for polynomial
rings over a field. We begin by giving an equivalent formulation of the a.c.c.
on R (Lemma 3.3).

Definition 3.2. A basis (or base) for an ideal a in R is any collection {a,}
of elements a, € a (y in some indexing set I') such that

a={r,a, +...+r,a,lr,eRandyel}.

1" Yk Tk

We write a=({a,}), or a=(a;,a,,...) if T is countable, and
a=(ay,...,a, if I' is finite. If we can write a = (a,, ..., a,), we say a
has a finite basis.

Lemma 3.3. R satisfies the a.c.c. iff every ideal of R has a finite basis.

PRrROOF. =: Suppose some ideal a did not have a finite basis. Then one could
find a sequence of elements a,, a,, .. . (a; € a) such that

(a) S (a.a,) % ...,

and R would not satisfy the a.c.c.
<: Suppose R did not satisfy the a.c.c.; let a; & a, & ... be an infinite
strict sequence. Then a = | ); a; is an ideal. The ideal a cannot have a finite

basis ay, ..., a,, since surely a, € a;, for some j,, a, € a;, for some j,, ...,
and so on. This would mean | J{_; a3 = a, so the ideals a; could strictly
increase at most up to qa;, . O

This explains the commonly-used alternate

Definition 3.4. A ring satisfying the a.c.c. is said to satisfy the finite basis
condition; such a ring is further called Noetherian. (This term is named
after the German mathematician Emmy Noether (1882-1935), the
daughter of Max Noether (1844-1921). M. Noether was the “father of
algebraic geometry.” E. Noether was a central figure in the development
of modern ideal theory.)
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3: The Hilbert basis theorem

If R is any ring, then R[ X ] as usual denotes the ring of all polynomials
in X with coefficients in R.

Our main result of this section is
Theorem 3.5 (Hilbert basis theorem). If R is Noetherian, so is R[X].
Before proving it, let us note

Corollary 3.6. If k is a field, then k[ X 4, ..., X,] is Noetherian.

ProOEF. Certainly & satisfies the a.c.c. since it has only two ideals. Then by
repeated application of Theorem 3.5, k[ X ], kK[ X J[X,] = k[ X, X1, ...,
k(X X,o11[X,] = k[X4, ..., X,] must all be Noetherian. O

Remark 3.7. In the next section we apply the Hilbert basis theorem to get
at once decomposition into irreducibles in .#, and unique decomposition

in # and in ¥,
Remark 3.8. The Basis Theorem does not have a dual—that is, no poly-
nomial ring R[ Xy, ..., X,] where n = 1 ever satisfies the d.c.c.; one strictly

descending sequence is always

=A@z, ...

Note on the Hilbert basis theorem

The basis theorem lies at the very foundations of algebraic geometry; it
shows there are “fundamental building blocks,” in the sense that each
variety is uniquely the finite union of irreducible varieties (Theorem 4.4).
This is very much akin to the fundamental theorem of arithmetic, which lies
at the foundations of number theory; it says that every integer is a product
of primes (the “building blocks”), and that this representation is unique (up
to order and units.) The essential idea of the basis theorem, though couched
in older language, led at once to a solution of one of the outstanding unsolved
problems of mathematics in the period 1868-1888, known as “Gordan’s
problem” (in honor of Paul Gordan).

Gordan’s computational abilities were recognized as a youth, and he
became the world’s leading expert in unbelievably extended algorithms in
a field of mathematics called invariant theory. In 1868 he found a long,
computational proof of the basis theorem for two variables which showed,
in essence, how to construct a specific base for a given ideal. Proving the
generalization to n variables defied the attempts of some of the world’s
most distinguished mathematicians. All their attempts were along the same
basic path that Gordan followed and, one by one, they became trapped in a
dense jungle of complicated algebraic computations.
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Now it was Hilbert’s belief that the trick in doing mathematics is to start
at the right end, and there can hardly be a more beautiful example of this than
Hilbert’s own solution to Gordan’s problem. He looked at it as an exisience
problem rather than as a construction problem (wherein a basis is actually
produced). In a short notice submitted in 1888 in the Nachrichten he showed
in the n-variable case the existence of a finite basis for any ideal. Many in
the mathematical community reacted by doubting that this was even mathe-
matics; the philosophy of their day was that if you want fo prove that
something exists, you must explicitly find it. Thus Gordan saw the proof as
akin to those of theologians for the existence of God, and his comment
has become forever famous: “Das ist nicht Mathematik. Das ist Theologie.”
However, later Hilbert was able to build upon his existence proof, and he
actually found a general constructive proof. This served as a monumental
vindication of Hilbert’s outlook and began a revolution in mathematical
thinking. Even Gordan had to admit that theology had its merits. Hilbert’s
philosophy, so simple, yet so important, may perhaps be looked at this way:
If we see a fly in an airtight room and then it hides from us, we still know
there is a fly in the room even though we cannot specify its coordinates.
Acceptance of this broader viewpoint has made possible some of the most
elegant and important contributions to mathematics, and mathematicians of
today would find themselves hopelessly straitjacketed by a reversion to the
attitude that you must find it to show it exists. (For an absorbing account of
Hilbert’s life and times, see [Reid].)

The following proof is essentially Hilbert’s—his language was a bit
different, and he took R to be the integers, but the basic ideas are all the same.

PROOF OF THE Basis THEOREM. We show that if R satisfies the finite basis
condition, then so does R[X]. First, if ro X" + ... + 1, (rp # 0) is any
nonzero polynomial of R[X], we call r, the leading coefficient of the poly-
nomial. Now let 2 be any ideal of R[X]. Then 2 induces an ideal a in R,
as well as smaller ideals a, in R, as follows:

Let a consist of O together with all leading coefficients of all polynomials
in 2. (We show that this is an ideal in a moment.) Since R is Noetherian, for
some N, a = (a,,...,ay), where g; € R. Let p{X)e U have g; as leading co-
efficient and let m* = max (deg p,, ..., deg py). Then for each k < m*, let
a, consist of 0 together with all leading coefficients of all polynomials in 2
whose degree is equal to or less than k.

We now show a is an ideal. (The proof for a, is similar.) First, a is closed
under subtraction, for a, b € a implies that there are polynomials p(X) =
aX™ + 37, X" " and q(X)=bX"+ Y7 ;X" in W Then m=n
implies that p(X) — (X" "g(X)) € A; if a = b, then a — b =0e€aq, and if
a#b, then a —bea since a — b is then the leading coefficient of
p(X) — (X" "g(X)).

Second, a has the absorption property, for if » € R, then r # 0 implies
that the leading coefficient of rp(X)is ra € a, and » = O implies thatra = O e a.
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Now write a, = (ayq, - .., i) and let g, (X), ..., gp(X) be polynomials
of A whose leading coefficients are the basis elements a;; of the ideals
Ay, ..., 0, ;. We claim that

Q‘[:(pls"‘apN’qb--'aQM)' (5)

Let us denote (py,....Pn> 41 ---»>qn) by UT; we show A = A, Since all
polynomials p; and ¢; were chosen from 2, obviously AT = A. We show
A = A by assuming A" & A and deriving a contradiction. Thus if AT & A,
let p be any polynomial of lowest degree which is in 2 but not in ', We may
write p’s leading coefficient as a = » ', r;a;. Now surely either deg p = m*
or deg p < m*. Suppose first that deg p = m™*. This would imply there are
monomials m(X) € R[X] such that Y ; m;p; has the same leading term as p.
(Specifically, if we take m; to be r{X 987~ P) then

3, rix s dewng, (©)

has leading term aX % 7. The effect of X9 ?~ 9 2 jg to “jack up” the degree
of each p; so that all the N summands in (6) have the same degree. This is
possible since deg p — degp; = Oforeachi = 1,..., N.) We thus get

deg((}. m;p)) — p) < deg p.

But p is a polynomial of lowest degree which is in 2 and not in A’ Thus
(> m;p;) — pe U'. But surely also ) m;p; € ', so pe ', a contradiction.

Now suppose deg p < m*. Now we may use the g;! For some monomials
v{(X) € R[X], we have

dEg((Z v;q;) — p) < deg p,

so as before, p e A"
Thus p cannot exist, (5) holds, and the basis theorem is proved. ]

EXERCISES

3.1 Follow through the proof of the basis theorem for the ideal A = Z[ X7, where 2 is
generated by the set {2nX + 3m|n and m positive integers} to arrive at A = (2X, 3).

3.2 Let the ideal A = C[X] be generated by {n + X"|ne Z*}. Use the proof of the
basis theorem to find a single generator of 2.

4 Some basic decomposition theorems
on ideals and varieties

Now that we have proved the Hilbert basis theorem we may apply it,
together with the basic decomposition theorems of lattice theory, to reap
some of the important decomposition results of algebraic geometry.
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