
Lecture 12: Zariski topologies.

Exercise 12.1. (1) Show that if I is maximal, it is prime.
(2) Exhibit an ideal of Z which is prime but not maximal.
(3) Show that if p ⇢ S is prime, then for any ring homomorphism

f : R ! S, the pre-image f

�1(p) is prime.

Proof. (1) If I is maximal, R/I is a field, hence has no zero
divisors.

(2) The ideal (0) is prime but not maximal.
(3) Consider the composition R ! S ! S/p. This is a ring ho-

momorphism with kernel f�1(P). By the first isomorphism
theorem, R/(f�1(p)) is isomorphic (as a ring) to its image in
S/p, but the latter has no zero divisors, so neither does this
image.

⇤
12.4. The Zariski Topologies.

Definition 12.2. Let R be a ring. Then Spec(R) is the set of
prime ideals of R.

Given a subset E ⇢ R, let V (E) ⇢ Spec(R) denote the set of all
prime ideals which contain E.

Theorem 12.3 (Homework). The sets of the form V (E) form a
collection of closed subsets for a topology on Spec(R).

Definition 12.4. This is called the Zariski topology of Spec(R).

Example 12.5. Spec(Z) is in bijection with {0}[{primes}. Every
prime number defines a prime ideal pZ, and because pZ = V ({p}),
these points are also closed subsets. Likewise, something like V (2, 3) =
{(2), (3)} is a closed subset—it is the union of two closed points.

Surprisingly, the point (0) 2 Spec(Z) is not closed. Its closure is
the entire space Spec(Z). This (0) is an example of a generic point of
Spec(Z).
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Finally, V (Z) is the empty set.

Definition 12.6. Let MaxSpec(R) ⇢ Spec(R) denote the collec-
tion of maximal ideals. We endow it with the subspace topology.

Remark 12.7. The subspace topology for a subset Y ⇢ X is defined
as follows: A subset KY ⇢ Y is closed i↵ KY = K \Y for some K ⇢ X

closed in X.

The following works for any algebraic subset of Cn, but we define
it only for Cn. Take the subspace topology if you like, and this defines
the Zariski topology for any algebraic subset.

Definition 12.8 (Another Zariski topology). Fix an ideal I ⇢
C[x1, . . . , xn]. We let V (I) ⇢ Cn denote the set of those (z1, . . . , zn)
such that every element of I vanishes on (z1, . . . , zn).

Call a subset Y ⇢ Cn
closed if and only if there exists an ideal

I ⇢ C[x1, . . . , xn] such that Y = V (I). (I.e., if Y is an algebraic
subset.)

Claim: This defines a topology on Cn. We won’t give a proof yet;
it’s analogous to your homework.

Remark 12.9. This is a far smaller topology than the usual one on
Cn; for instance, the only closed balls in this topology are either empty,
radius-zero, or radius-infinity.

Theorem 12.10 (Nullstellensatz, second consequence). The func-
tion

Cn ! MaxSpec(C[x1, . . . , xn]), (z1, . . . , zn) 7! (x1�z1, . . . , zn�zn)

is a homeomorphism.

So while Spec(C[x1, . . . , xn)) may still be interesting, the two Zariski
topologies on Cn ⇠= MaxSpec(C[x1, . . . , xn]) agree.

So this lecture was another motivation for the Nullstellensatz, what-
ever it is.


