
Lecture 14: Categories and Functors

We review some basic category theory.

14.1. Categories. Category theory was invented to be able to re-
late di↵erent languages of math together. Vaguely, here’s a table:

Table 1. default

The objects we care about The functions we care about

Sets Functions
Groups Group homomorphisms
Rings Ring homomorphisms

Topological spaces Continuous functions
Smooth manifolds Smooth maps

So we have objects, and ways to compare objects; i.e., homomor-
phisms.

Definition 14.1. A category C is the data of:

(1) A collection Ob C; we call an element X 2 Ob C an object of C.
In the category of groups, every group is an object.1

(2) For every pair of objects X, Y 2 Ob C, a set hom(X, Y ), called
the set of morphisms from X to Y . In the category of groups,
hom(X, Y ) is the set of group homomorphisms from X to Y .

(3) For every triple of objects X, Y, Z 2 Ob C, a function

� : hom(Y, Z)⇥hom(X, Y ) ! hom(X,Z), (fY Z , fXY ) 7! fY Z �fXY

called composition. In the category of groups, this is usual
composition of homomorphisms.

These data must satisfy the following conditions:

1

I am using the word “collection” to avoid set-theoretic issues; for instance,

there is no set of sets. We ignore such issues altogether.

1
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(4) For every object X 2 Ob C, an element idX 2 hom(X,X)
called the identity of X; it must satisfy the property that for
all Y 2 Ob C and all fXY 2 hom(X, Y ), fY X 2 hom(Y,X), we
have

idX �fY X = fY X , fXY � idX = fXY .

In the category of groups, idX is the identity automorphism
from X to itself.

(5) Associativity: For every quadruple of objects W,X, Y, Z, and
for every triple of morphisms fab 2 hom(a, b), an equality

(fY Z � fXY ) � fWXfY Z � (fXY � fWX).

Composition of group homomorphisms is associative.

Example 14.2. The blue above shows that there’s a category of
groups with objects and morphisms as you’d expect from the table.
Likewise there is a category of rings, of topological spaces, of smooth
manifolds, of sets.

Example 14.3. Another example is as follows: Fix a category C
with only one object, so Ob C = {⇤}. Then there is a single morphism
set A := hom(⇤, ⇤) to specify, along with a composition map A⇥A ! A.

These data must admit a unit 1 2 A, and the composition A⇥A !
A must be associative. That is, a category with only one object is the
same data as that of an associative monoid (i.e., a group that may not
admit inverses).

More generally, for any category C, any object X 2 Ob C determines
an associative monoid called hom(X,X).

The term “isomorphism” has a meaning in this general context:

Definition 14.4. Let C be a category and choose a morphism f 2
homC(X, Y ). We say that f is an isomorphism if there exists g 2
homC(Y,X) such that

fg = idY , gf = idX .

14.2. Functors. Even better, if we now decide that we care about
categories (at the very least, we have interesting examples), we should
ask about what the “functions” or “relations” we care about are:

I’ve appended the table: The notion of a “morphism of categories”
is a functor. It’s a key new word.
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Table 2. default

The objects we care about The functions we care about

Sets Functions
Groups Group homomorphisms
Rings Ring homomorphisms

Topological spaces Continuous functions
Smooth manifolds Smooth maps

Categories Functors

Definition 14.5. Let C and D be two categories. Then a functor

F : C ! D is the data of2

(1) A function F : Ob C ! D For example, if C is the category
of groups and D is the category of associative rings, we could
have a function that sends any group G to the ring CG.

(2) For every pair of objects X, Y 2 Ob C, a function

F : homC(X, Y ) ! homD(FX,FY ).

For example, for any group homomorphism G ! H, we assign
the obvious ring homomorphism CG ! CH..

And this data must satisfy the following:
(3) F respects units, so for any X, F (idX) = idFX ,
(4) F respects compositions, so

F (fY Z � fXY ) = F (fY Z) � F (fXY ).

Example 14.6. The blue example above shows that the assignment
G 7! CG, along with the obvious assignment on homomorphisms, is a
functor from Groups to Rings.

Example 14.7. Another example: If C and D each has only one
object, then a functor is just a map of associative monoids.

14.3. More examples of categories.

Example 14.8. The category of categories, denoted Cat. ObCat
consists of all categories (ignoring set-theoretical issues; this is actu-
ally delicate). Given two categories C and D, we let homCat(C,D) =
Fun(C,D) denote the set of functors from C to D.

2

Confusingly, both the functor F and the functions in (1) and (2) are denoted

F . This is fairly common.
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Example 14.9 (Sets). Let S be a set. Then one can define a cate-
gory C where Ob C = S, hom(x, x) = ⇤ is a point for every x 2 S, and
hom(x, y) = ; for any x 6= y.

In this way, one can think of a set as a category where there are no
morphisms between any objects except the identity morphism from an
object to itself.

Notationally, if S is a set, we will also let S denote the category
described above. Believe it or not, it will be meaningful to think about
functors from S to an arbitrary category D when we later discuss limits
and colimits.

Example 14.10 (Posets). Recall that a partially ordered set (P,)
is a set P together with a partial order relation . This is a relation
which satisfies:

(1) x  x for all x 2 P .
(2) If x  y and y  x, then x = y.
(3) If x  y and y  z, then x  z. (Transitivity.)

Then any poset P defines a category C as follows: Ob C = P , and
hom(x, y) is empty unless x  y. If x  y, then hom(x, y) = ⇤ is a
singleton.

Believe it or not, the example of the posets

(Z�0

,) and (Z0

,)

will both be important when we consider limits and colimits later.
Notationally, we will write (P,) or even just P for the category

given by a poset.

Example 14.11 (Opposites). Given a category C, one can construct
another category Cop. We define it by Ob Cop = Ob C, and for x, y 2 Cop,
we set

homCop(x, y) := homC(y, x).

The composition maps are the obvious ones:

homCop(y, z)⇥ homCop(x, y) = homC(z, y)⇥ homC(y, x)
⇠= homC(y, x)⇥ homC(z, y)

! homC(z, x)

= homCop(x, z).

You should check this is associative.
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Example 14.12 (Products). Given two categories C and D, their
product category C⇥D is defined as follows: Ob(C⇥D) = Ob C⇥ObD,
and

homC⇥D((x, x
0), (y, y0)) := homC(x, y)⇥ homD(x

0, y0)

with the obvious composition maps.

Example 14.13 (S-algebras). Fix a ring S. We can form a category
SAlg whose objects are S-algebras (i.e., a ring R with a ring map S !
R) and whose morphisms are maps of S-algebras (i.e., ring maps R !
R0 which are a map of S-modules).

14.4. More examples of functors.

Example 14.14. We already gave the example of a functor Groups !
Rings which sends a group G to its group ring CG, and which sends
a group homomorphism to its induced ring map. Note there is such a
functor for any choice of base ring k (i.e., k need not equal C).

Example 14.15. Here is another example: Given a ring S, we have
its category of S-modules. Moreover, given a ring map S ! T , we can
turn any S-module M into an R-module by taking T ⌦S M . This also
turns any S-module map f : M ! N into a T -module map idT ⌦f ,
and defines a functor

Rings ! Cat

from the category of rings to the category of categories.

Example 14.16 (Forget). Given any group, one can forget its group
structure and consider it just as set. Since any group homomorphism
is in particular a function, we have a functor

Groups ! Sets.

Likewise, we have “forgetful” functors

Rings ! Sets, Spaces ! Sets,

et cetera.

Example 14.17 (Free). Given a set, we can consider the free group
generated by that set. And any function X ! Y induces a group
homomorphism Free(X) ! Free(Y ). So we also have a functor

Sets ! Groups.
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14.5. Natural Transformations and equivalences of cate-
gories. Here is an astounding lesson in life: Isomorphisms are not
always the correct notion of equivalence.

Perhaps the better lesson to be learned is: Assignments should be
allowed to be inverses “up to” a reasonable ambiguity.

Definition 14.18. Let F and G be functors from C to D. A natural

transformation from F to G is a choice ⌘X 2 homD(FX,GX) for every
X 2 Ob C such that, for any morphism f : X ! X 0 in C, the following
diagram commutes:

F (X)
F (f)

//

⌘X
✏✏

F (X 0)

⌘X0

✏✏

G(X)
G(f)

// G(X 0)

A natural transformation is called a natural isomorphism if every ⌘X is
an isomorphism.

Here’s the idea behind the following definition: When should two
categories C and D be considered “the same?” Well, certainly there
should be a correspondence between Ob C and ObD, and whatever
this correspondence is, it should also include some bijection between
the appropriate morphism spaces (i.e., between the hom sets). This
looks like one wants the notion of an “isomorphism” for functors; a
functor F : C ! D which is a bijection on Ob C ⇠= ObD and a bijection
hom(X, Y ) ⇠= homD(FX,FY ).

But here’s another insight: Let’s say we have a functor which
doesn’t hit every object of D, but all objects of D are hit up to isomor-

phism. In math, we only case about individual objects of C or D up to
isomorphism, so shouldn’t this be “enough” to consider F as some sort
of equivalence? After all, all the algebraic information is already being
captured.

Definition 14.19. A functor F : C ! D is called an isomorphism

if the maps Ob C ! ObD and hom(X, Y ) ! hom(FX,FY ) are all
bijections.

A functor C ! D is called an equivalence of categories if

(1) for any D 2 Ob cD, there exists an object C 2 C such that
F (C) is isomorphic to D, (i.e., F is essentially surjective) and

(2) For any X, Y 2 Ob C, the map hom(X, Y ) ! homD(FX,FY )
is a bijection (i.e., F is fully faithful).
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Remark 14.20. For more “combinatorial” applications of category
theory, the notion of isomorphism of categories can be very useful and
important.

For more “algebraic” or “structural” applications of category theory,
the notion of equivalence is far more useful.

Exercise 14.21. Let F : C ! D be an equivalence of categories.
Show that there is a full subcategory C 0 ⇢ C such that if F 0 is the
restriction of F to C 0, F 0 is an isomorphism onto F (C).

Exercise 14.22. Let F : C ! D be an equivalence of categories.
Show that there exists a functor G : D ! F and natural isomorphisms
F �G ! idD, G � F ! idC.

Prove the converse. This proves the sense in which F is like an
“isomorphism of categories up to natural isomorphism”.

14.6. More examples.

Example 14.23. Let C be a category. Then for any object Y 2
Ob C, there is a functor

YY : Cop ! Sets

which sends an object X to the set hom(X, Y ).
Exercise: Prove this is a functor.

Example 14.24 (Yoneda embedding). In fact, since the above as-
signment works for any object of C, one might expect it to form a
functor as follows:

Y : C ! Fun(Cop, Sets), Y 7! YY .

Indeed one can; a map Y ! Y 0 induces a natural transformation YY !
YY 0 .

Exercise: Prove this is a fully faithful functor (that is, the map on
morphism sets is a bijection).

Example 14.25. Let C be a category with one object, which we
identify with a monoid M . What are the natural transformations of
the identity functor?

Answer: The center of M .


