
Lecture 13: Tensor products as fiber products.

We continue our dictionary to motivate new definitions.

Definition 13.1. Fix three spaces X, Y, Z and functions f : X !
Z, g : Y ! Z. The fiber product is defined as

X ⇥Z Y := {(x, y) such that f(x) = g(y)}.

Example 13.2. If X is a point and g is the inclusion of z
0

2 Z,
then X ⇥Z Y ⇠= g�1(z

0

).
If X, Y are subsets of Z and f, g are the inclusion maps, then X⇥Z

Y ⇠= X \ Y .

Remark 13.3. In the above remark, I use the bijection notation ⇠=
rather than the equality notation =. This is because, literally, these
sets are not equal. For example, X ⇥Z Y is always a subset of X ⇥ Y ,
while X \ Y is a subset of Z in the last example.

Remark 13.4. Also, note that the maps f and g are omitted from
the notation X ⇥Z Y ; they are to be understood implicitly.

The fiber product satisfies a universal property. First, fix the pro-
jection map

pX : X ⇥Z Y ! X, pX(x, y) = x

and likewise for pY .

Theorem 13.5. The data (X ⇥Z Y, pX , pY ) satisfy the following
universal property:

1
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Given any space/set W together with functions hX : W ! X, hY :
W ! Y making the diagram

W
hY

((
hX

⇠⇠

Y

g
✏✏

X
f
// Z

commute, then there exists a unique function j : W ! X⇥Z Y making
the following commute:

W
hY

))
hX

��

9!

$$
X ⇥Z Y //

✏✏

Y

g
✏✏

X
f

// Z

Fiber products are important to generalize because they capture
things like intersections and pre-images (as the examples above show).
Now let’s use our geometry/algebra dictionary again: Remember that
a function f : X ! Y has its arrow direction reversed: f ⇤ : OY ! OX ,
where O• is the ring of functions of •.

Theorem 13.6. Let S,R
1

, R
2

be rings, and fix ring homomorphisms
S ! R

1

, S ! R
2

. Then there exists a ring R
1

⌦S R
2

, together with
ring maps

R
1

! R
1

⌦S R
2

, R
2

! R
1

⌦S R
2

,

such that the following universal property is satisfied:
For any ring W equipped with maps R

1

! W,R
2

! W making the
following diagram commute:

S //

✏✏

R
1

⇠⇠

R
2

((
W
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there exists a unique ring map j : R
1

⌦S R2

! W making the following
diagram commute:

S //

✏✏

R
1

��

✏✏
R

2

**

// R
1

⌦S R
2

%%
W

Remark 13.7. These diagrams are obtained by simply reversing
the arrows in the previous diagrams about sets/spaces.

We will exhibit this ring in two steps. First, let’s understand what
it is as a module over S. We’ll exhibit the multiplication later.

Theorem 13.8. Let S be a ring and M
1

,M
2

two S-modules. Then
there exists a module M

1

⌦SM2

, together with an S-bilinear map M
1

⇥
M

2

! M
1

⌦SM2

, such that the following universal property is satisfied:
LetN be any module equipped with a S-bilinear map � : M

1

⇥M
2

!
N . Then there exists a unique S-linear map M

1

⌦S M
2

! N making
the following diagram commute:

M
1

⇥M
2

�
//

✏✏

N

M
1

⌦S M
2

9!
66 .

Proof. This will be quick given that we’ve seen this for vector
spaces before. The construction is the same; it proceeds in two steps.

Step One: Let ShM
1

⇥M
2

i be the free S-module on the setM
1

⇥M
2

.
It has a set of generators in bijection with the set M

1

⇥ M
2

, and we
label a generator by a pair: em

1

,m
2

.
Step Two: Consider the S-submodule B ⇢ ShM

1

⇥M
2

i generated
by the following elements:

(1) sem
1

,m
2

� esm
1

,m
2

(2) sem
1

,m
2

� em
1

,sm
2

(3) em
1

+m0
1

,m
2

� em
1

,m
2

� em0
1

,m
2

(4) em
1

,m
2

+m0
2

� em
1

,m
2

� em
1

,m0
2

.

We let M
1

⌦S M
2

be the quotient by B.
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Now we have the following maps:

M
1

⇥M
2

✏✏

�
// N

ShM
1

⇥M
2

i

✏✏

˜�

66

M
1

⌦S M
2

9!

==

The first downward map is a function; it includes the basis vectors.
Then � determines a linear map �̃ uniquely by extending S-linearly.

Finally, since � is bilinear, every element of B is sent to 0 2 N by
�̃. It follows that there is a unique linear map from the quotient to N
making the diagram commute. ⇤

Example 13.9. Z/3Z⌦Z Z/5Z = 0.
Why? Note that any bilinear map out of Z/3Z ⇥ Z/5Z has to be

zero: This is because �(1, a) = �(5 · 2, a) = 5�(2, a) = �(2, 5a) =
�(2, 0) = 0. Likewise, �(x, 1) = 0 for any x. In particular, the identity
morphism from the tensor product to itself must be zero.

Remark 13.10. More generally, example 13.9 generalizes to show
that Z/pZ and Z/qZ tensor to the zero ring. There’s a geometric
interpretation: Inside SpecZ, the points (p) and (q) are disjoint, so
they have empty intersection. (The zero ring is the ring of functions of
the empty set.)

13.5. The language of S-algebras. Oftentimes we have a base
ring in mind. For example, C[x

1

, . . . , xn] seems to take C as a starting
point; likewise for the group ring CG.

Proposition 13.11. Fix two rings S and R. The following are
equivalent:

(1) The data of a ring map S ! R.
(2) The data of an S-module structure on R, and the S-bilinearity

of the ring multiplication R⇥R ! S.

Definition 13.12. A ring R equipped with either (hence both) of
(1) or (2) is called an S-algebra.
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Proof. (1) =) (2). Let � : R ! S be the ring map. Consider
the composition

S ⇥R ! R⇥R ! R, (s, r) 7! (�(s), r) 7! �(s) · r.
This is an S-module structure on R. The multiplication map m :
R ⇥ R ! R is obviously additive in each factor; by associativity and
commutativity, we also have:

m(�(s)r, r0) = �(s)rr0 = r�(s)r0 = m(r,�(s)r0)

so it’s S-bilinear.
(2) =) (1). Consider the S-module structure µ : S ⇥ R ! R.

Then the map � := µ(�, 1R) : S ! R is a ring map by bilinearity of
the multiplication map:

�(s+ s0) = µ(s+ s0, 1R) = µ(s, 1R) + µ(s0, 1R) = �(s) + �(s0)

and

�(1S) = µ(1S, 1R) = 1R,

and

�(s)�(s0) = m(s · 1R, s0 · 1R) = ss0 ·m(1R, 1R) = �(ss0).

⇤

Proposition 13.13. Fix S and two S-algebras R
1

, R
2

. TFAE:

(1) A ring map f : R
1

! R
2

such that the diagram

S

  ~~
R

1

// R
2

commutes.
(2) A ring map f : R

1

! R
2

which is a map of S-modules.

Definition 13.14. A ring map R
1

! R
2

satisfying either (hence
both) of the above conditions is called a map of S-algebras.

Proof. (1) =) (2). The S-module structure is given by the
composition

S ⇥R ! R⇥R ! R
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where the first map is the product �⇥ idR. Behold the commutativity
of the following diagram:

S ⇥R
1

idS ⇥f
//

�
1

⇥idR
1

✏✏

S ⇥R
2

�
2

⇥idR
2

✏✏
R

1

⇥R
1

f⇥f
//

✏✏

R
2

⇥R
2

✏✏
R

1

f
// R

2

where the top rectangle commutes because the triangle in (1) does, and
the bottom rectangle commutes by definition of ring map. This implies
the big rectangle commutes, which is the definition of f being a module
map.

(2) =) (1). Consider the following commutative rectangles:

S ⇥ {1R
1

}

✏✏

idS // S ⇥ {1R
2

}

✏✏
S ⇥R

1

idS ⇥f
//

µ

✏✏

S ⇥R
2

µ

✏✏
R

1

f
// R

2

The top rectangle commutes because ring maps send 1 to 1, and the
bottom commutes by definition of module map. This means the outer
rectangle commutes, but the vertical compositions are precisely the
definition of the ring maps �i : S ! Ri in our first proposition. The
commutativity of this outer rectangle is precisely the commutativity of
the triangle in (1). ⇤

Using this language, we can rephrase the Theorem 13.6 as follows:

Theorem 13.15. Let R
1

, R
2

be S-algebras. Then there exists an
S-algebra R

1

⌦S R
2

, together with S-algebra maps

R
1

! R
1

⌦S R
2

, R
2

! R
1

⌦S R
2

,

such that the following universal property is satisfied:
For any S-algebraW equipped with S-algebra maps R

1

! W,R
2

!
W , there exists a unique S-algebra map map j : R

1

⌦SR2

! W making
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the following diagram commute:

R
1

��

✏✏
R

2

**

// R
1

⌦S R
2

%%
W

Remark 13.16. Note that the diagram above is the exact same
shape as the universal property diagram for direct sum:

V
1

⇢⇢

✏✏
V
2

))

// V
1

� V
2

$$
W

where the Vi are vector spaces over some fixed field k and W is, too.
This is to say: Direct sum is the coproduct in the category of k-vector
spaces, while ⌦S is the coproduct in the category of S-algebras.

Proof of Theorem 13.6 and Theorem 13.15 (they’re the same thing).

We know a unique S-module map exists by definition of the tensor
product. We just need to show it is also a ring map.

What is the ring structure on R
1

⌦S R
2

? We define it as follows:

(
X

i,j

ri ⌦ rj)(
X

a,b

ra ⌦ rb) :=
X

i,j,a,b

rira ⌦ rjrb.

To see this is well-defined, just use the universal property of tensor
product ⌦S to see that the function arises from a map linear in each of
the variables R

1

⇥R
2

⇥R
1

⇥R
2

. It is easily checked, then, that given
the ring maps hi : Ri ! W , the assignment

r
1

⌦ r
2

7! h
1

(r
1

)h
2

(r
2

)

is a ring map. ⇤


