Lecture 16: Monoidal categories and monoidal
functors.

Most of the algebraic objects you're familiar with probably have
some associativity and unitality involved.

EXAMPLE 16.1. In C = Sets, fix X € Ob(C. Then a unital monoid
is the data of

(1) A function X x X — X, and
(2) A function * — X picking out the unit.

These satisfy the usual unit and associativity conditions. (Often, the
existence of a unit is phrased as a property of the multiplication oper-
ation.)

ExAMPLE 16.2. In C = Vecty, fix V € Ob(C. Then a unital associa-
tive algebra is the data of

(1) A function V®V — V| and
(2) A function k — V picking out the unit.

These also have to satisfy a unit and associativity condition, where
again the unit’s existence is often cited as a property rather than ad-
ditional data.

ExXAMPLE 16.3. One might also think about “algebras in cate-

gories;” that is, if C = Cat is the category of categories, you could
fix X € C and ask for
(1) A functor X x X — X, and

(2) A functor x — X from the trivial category, picking out an
object of X.

My claim is that to systematically understand the first two exam-
ples, we should understand the last—in fact, note that the first two ex-
amples involve knowing the construction of new objects called X x X, or
V ® V. This isn’t god-given with just the data of the category C = Set
or C = Vect; one has to specify this data.
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But the data of a way to give two objects and produce a third looks
a lot like the data of a functor

CxC—=C

which brings us to the last example of “algebras in categories.”

16.7. Monoidal categories. A monoidal category is like an “as-
sociative algebra” in categories. Normally, to articulate associativity,
we would demand an equation like

UeV)eW=Ux (VeW)
or
(zy)z = z(yz).
But the point I want to make in this lecture is that, even in our most

natural examples, equalities above should be replaced with isomor-
phisms.

EXAMPLE 16.4. Let C = Set. Then there seems like there’s a good
operation for taking two objects and producing a third:

CxC—C,  (X,Y)—XxY.

Indeed, this “direct product” does define a functor Set x Set — Set.
A pair of morphisms f: X — X' and g:Y — Y'issent to f x g :
X xY = X' xY', where (f x g)(z,y) = (f(z),9(y))-

However, this is definitely not associative on the nose:

(X xY)xZ#Xx (Y xZ).

Why is this? These are different sets! The lefthand side is the set of
ordered pairs
((z,y),2)

while the righthand side is the set of ordered pairs
(z,(y,2))-
But there is an obvious bijection
((2,9),2) = (z,(y,2))
and this defines a natural isomorphism.

The following definition takes this into account, along with the ob-
vious analogue for ensuring unitality:
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DEFINITION 16.5. A monoidal category C® is the data of a category
C, together with the data of:

(1) A functor ® : C x C — C,

(2) A functor 1: % — C,

(3) Three natural isomorphisms between the indicated functors:
(a) (associativity up to isomorphism)

-®(—®-)

R

(—&-)o-

(b) (left unit up to isomorphism)

axC X eove® o
= T ide
c

(c) (right unit up to isomorphism)

ide x1

C x * CxCcZscC

- T ide

(4) These data must satisfy the pentagon axiom and the triangle
axiom: The diagram

(A9 (B®C)®@D —A® ((B®C)® D)

(A B)®(C)® D ida ®(nB,c,0)

m

(A® B)® (C® D) —= A® (B (C ® D))

must commute, and
(5) The diagram

NA1,B

(A1)® B A®(1® B)

A®B
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must commute.

REMARK 16.6. What’s with these pentagon and triangle axioms?

Well, when you have associativity on the nose as we do classi-
cally, we can say things like: “The notation x™ is ambiguous, because
(...2)(x...7) = 2% = 2°7" doesn’t depend on how you parenthe-
size the expression. However, when you have a natural isomorphism
that you specify each time you invoke a statement like U @ (U @ U) =
(UxU)®U, you have to be careful that each time you try to “simplify”
or get rid of a tensor product, your isomorphisms are all compatible

with each other. This is what the above axioms are trying to convey.

Thankfully, the four-term natural isomorphisms are the only things
we need to check: See “MacLane coherence theorem” online.

In class, we also drew some pictures of C'ob]" to reduce the proof
that “any monoidal functor from Cob{" to Vect determines a finite-
dimensional vector space” to an exercise from homework one.



