
Lecture 16: Monoidal categories and monoidal
functors.

Most of the algebraic objects you’re familiar with probably have
some associativity and unitality involved.

Example 16.1. In C = Sets, fix X 2 Ob C. Then a unital monoid
is the data of

(1) A function X ⇥X ! X, and
(2) A function ⇤ ! X picking out the unit.

These satisfy the usual unit and associativity conditions. (Often, the
existence of a unit is phrased as a property of the multiplication oper-
ation.)

Example 16.2. In C = Vect

k

, fix V 2 Ob C. Then a unital associa-
tive algebra is the data of

(1) A function V ⌦ V ! V , and
(2) A function k ! V picking out the unit.

These also have to satisfy a unit and associativity condition, where
again the unit’s existence is often cited as a property rather than ad-
ditional data.

Example 16.3. One might also think about “algebras in cate-
gories;” that is, if C = Cat is the category of categories, you could
fix X 2 C and ask for

(1) A functor X ⇥X ! X, and
(2) A functor ⇤ ! X from the trivial category, picking out an

object of X.

My claim is that to systematically understand the first two exam-
ples, we should understand the last—in fact, note that the first two ex-
amples involve knowing the construction of new objects calledX⇥X, or
V ⌦ V . This isn’t god-given with just the data of the category C = Set

or C = Vect; one has to specify this data.
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But the data of a way to give two objects and produce a third looks
a lot like the data of a functor

C ⇥ C ! C
which brings us to the last example of “algebras in categories.”

16.7. Monoidal categories. A monoidal category is like an “as-
sociative algebra” in categories. Normally, to articulate associativity,
we would demand an equation like

(U ⌦ V )⌦W = U ⌦ (V ⌦W )

or
(xy)z = x(yz).

But the point I want to make in this lecture is that, even in our most
natural examples, equalities above should be replaced with isomor-

phisms.

Example 16.4. Let C = Set. Then there seems like there’s a good
operation for taking two objects and producing a third:

C ⇥ C ! C, (X, Y ) 7! X ⇥ Y.

Indeed, this “direct product” does define a functor Set ⇥ Set ! Set.
A pair of morphisms f : X ! X 0 and g : Y ! Y 0 is sent to f ⇥ g :
X ⇥ Y ! X 0 ⇥ Y 0, where (f ⇥ g)(x, y) = (f(x), g(y)).

However, this is definitely not associative on the nose:

(X ⇥ Y )⇥ Z 6= X ⇥ (Y ⇥ Z).

Why is this? These are di↵erent sets! The lefthand side is the set of
ordered pairs

((x, y), z)

while the righthand side is the set of ordered pairs

(x, (y, z)).

But there is an obvious bijection

((x, y), z) 7! (x, (y, z))

and this defines a natural isomorphism.

The following definition takes this into account, along with the ob-
vious analogue for ensuring unitality:
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Definition 16.5. A monoidal category C⌦ is the data of a category
C, together with the data of:

(1) A functor ⌦ : C ⇥ C ! C,
(2) A functor 1 : ⇤ ! C,
(3) Three natural isomorphisms between the indicated functors:

(a) (associativity up to isomorphism)

C ⇥ C ⇥ C
�⌦(�⌦�)

++

(�⌦�)⌦�
33 C

(b) (left unit up to isomorphism)

⇤ ⇥ C 1⇥idC // C ⇥ C ⌦ // C

C
⇠
=

OO

idC

55

(c) (right unit up to isomorphism)

C ⇥ ⇤ idC ⇥1// C ⇥ C ⌦ // C

C
⇠
=

OO

idC

55

(4) These data must satisfy the pentagon axiom and the triangle
axiom: The diagram

(A⌦ (B ⌦ C))⌦D // A⌦ ((B ⌦ C)⌦D)

idA ⌦(⌘B,C,D)

✏✏

((A⌦ B)⌦ C)⌦D

⌘A,B,C⌦idD
44

⌘A⌦B,C,D **
(A⌦ B)⌦ (C ⌦D) // A⌦ (B ⌦ (C ⌦D))

must commute, and
(5) The diagram

(A⌦ 1)⌦ B
⌘A,1,B //

idA ⌦⌘

''

A⌦ (1⌦ B)
⌘⌦idB

ww
A⌦ B
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must commute.

Remark 16.6. What’s with these pentagon and triangle axioms?
Well, when you have associativity on the nose as we do classi-

cally, we can say things like: “The notation xn is ambiguous, because
(x . . . x)(x . . . x) = xaxb = xa+b doesn’t depend on how you parenthe-
size the expression. However, when you have a natural isomorphism

that you specify each time you invoke a statement like U ⌦ (U ⌦ U) ⇠=
(U⌦U)⌦U , you have to be careful that each time you try to “simplify”
or get rid of a tensor product, your isomorphisms are all compatible
with each other. This is what the above axioms are trying to convey.

Thankfully, the four-term natural isomorphisms are the only things
we need to check: See “MacLane coherence theorem” online.

In class, we also drew some pictures of Cobor
1

to reduce the proof
that “any monoidal functor from Cobor

1

to V ect determines a finite-
dimensional vector space” to an exercise from homework one.


