Lecture 15: Fun example: Cobordisms.

Most of what we covered is in the TeXed notes for Lecture 14.
However, I did cover one new topic: Cobordism categories.
So far, all the categories we've studied look like "sets" underlie them. In particular, in $\mathcal{C}=$ groups, rings, vector spaces, sets, all the morphisms $f: X \rightarrow Y$ are always functions satisfying some property.

Well, here is an example where the category's morphisms are not of that flavor.

Definition 15.1. Let Cob $_{1}^{o r}$ be the category of oriented, 1-dimensional cobordisms.
(1) An object X is given by a finite subset of \mathbb{R}^{∞}, each element given a sign of plus or minus. One should think of this as a collection of points floating in space, each point with an orientation.
(2) A morphism from X_{0} to X_{1} is the data of an subset $\Gamma \subset$ $\mathbb{R}^{\infty} \times[0,1]$, with the data of an orientation, satisfying the following conditions:
(a) Γ is a disjoint union of smooth curves, possibly with boundary. We demand that the boundary of Γ is precisely the intersection of Γ with $\mathbb{R}^{\infty} \times\{0\} \cup \mathbb{R}^{\infty} \times\{1\}$.
(b) We demand that the boundary of Γ at 0 is precisely X_{0}, and the boundary of Γ at 1 is precisely X_{1}. These must be compatible with the orientations.
(c) We declare two Γ to be equal if one can be smoothly transformed (isotoped) into the other while respecting boundaries.
(3) Composition: If $\Gamma: X_{0} \rightarrow X_{1}$ and $\Gamma^{\prime}: X_{1} \rightarrow X_{2}$, the composition is given by gluing Γ and Γ^{\prime} along X_{1}. Note that this naturally lives over the interval [0,2], but we can reparametrize this interval. This is compatible with the isotopy equivalence relation above.

Some examples of objects: The empty subset, a singleton subset with positive orientation, a singleton subset with negative orientation, and disjoint unions of these.

Some examples of morphisms: Γ could be
(1) A circle, which has no boundary; this is a morphism from \emptyset to \emptyset.
(2) A horseshoe, with boundary only on $\mathbb{R}^{\infty} \times\{0\}$. Necessarily, the boundary will consist of $\mathrm{a}+$ point and $\mathrm{a}-$ point.
(3) A co-horseshoe, with boundary only on $\mathbb{R}^{\infty} \times\{1\}$. Necessarily, the boundary will consist of $\mathrm{a}+$ point and $\mathrm{a}-$ point.
(4) A single line interval with one boundary point on $\mathbb{R}^{\infty} \times\{0\}$ and the other on $\mathbb{R}^{\infty} \times\{1\}$. Necessarily, these two boundary points have the same orientation; this is the identity morphism from the boundary point to itself.

Theorem 15.2. Let $Z:$ Cob $_{1}^{o r} \rightarrow$ Vect $_{k}$ be a functor taking \coprod to \otimes_{k}. Then $Z\left(*_{+}\right):=V_{+}$is finite dimensional, and one can identify $Z\left(*_{-}\right)$with its dual.

We'll articulate this more accurately next lecture.

