
Math 223a : Algebraic Number Theory notes

Alison Miller

1 August 31: Global class field theory

Today we’ll discuss global class field theory for the base field Q, from the historical
perspective.

1.1 Class fields

Let L/Q be a finite Galois extension, with ring of integers OL. Let p be any integer
prime. We’ll look at the question of how pOL factors into prime ideals in OL, and how
this depends on p. We know that we have a factorization pOL = pe11 · · · p

er
r .

We now invoke some facts from a first course in number fields (see Neukirch ANT
I.8-9 for proofs.) The group Gal(L/Q) acts transitively on the set {p1, . . . pr}, and that all
exponents e1 = · · · = en = e are the same. If e = 1 we say p is unramified in L; this is the
case for all but finitely many p. We assume now that p is unramified. In this case we’ll
say that the “splitting data” of p is the number r of primes that p splits into. (This is a
somewhat crude definition, but we’ll refine it later.)

A useful theorem for determining splitting data, is the following :

Proposition 1.1. Assume that OL = Z[α]. If α has minimal polynomial f(x) ∈ Z[x], the prime
factors p1, . . . , pn of pOL are in bijection with the factors of the mod p reduction f(x) ∈ Fp[x] of
the polynomial f. (This bijection can be made explicit.)

Example. L = Q[
√
n]; if n is squarefree and not 1 mod 4, then : OL = Z[

√
n]. If p is

relatively prime to 2n, then p is unramified in L, and we have two possiblities for an
integer prime p: either pOL = p or pOL = p1p2. We can distinguish between the two
using the proposition above. (Alternatively, in class, we did this by checking when pOL
is prime, by checking whether OL/(p) is an integral domain.) We find that the first case
holds precisely when

(
n
p

)
= −1 and the second when

(
n
p

)
= 1. (This also holds when n

is 1 mod 4.)

Definition. A finite Galois extension L on Q is a class field if for any (unramified) prime p,
the splitting data of pOL depends only on the congruence class of p mod some modulus
N.
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Example. The field L = Q[
√
n] is a class field because a calculation with quadratic reci-

procity quadratic residue symbol
(
n
p

)
depends only on the value of p modulo 4n.

Example. For any n, the cyclotomic field Q[ζn] is a class field. One can prove this directly
from Proposition 1.1, but we’ll see an easier way below.

Theorem 1.2 (Classical Main Theorem of Class Field Theory /Q.). For L/Q a finite Galois
extension, the following are equivalent

• L is a class field.

• L/Q is abelian

• L ⊂ Q[ζn] for some n.

Example. when q ≡ 1 (mod 4), Q[
√
q] is contained in Q[ζq], q ≡ 1 (mod 4).

Today we’re going to take these two assertions as givens, and deduce the modern
statement of class field theory over Q. This will motivate something called the “global
Artin map”, which we’ll then break down into “local pieces”, motivating local class field
theory.

1.2 Frobenius elements; working towards the Artin map

More facts from a first course in algebraic number theory. Same situation as before, p
unramified in a finite extension L/Q. Choose one of the prime factors p of pOL.

Definition. The decomposition group Dp ⊂ Gal(L/Q) is the stabilizer of p, that is

Dp = {g ∈ Gal(L/K) | gp = p}.

Note that the orbit stabilizer-formula on the prime factors of pOL lets you compute
the splitting data from Dp, as r = [L : Q]/|Dp|.

There’s a natural homomomorphism φ : Dp → Gal(`/Fp). where ` = OL/p. In
the general case, φ is surjective: because of our assumption that p is unramified, we in
fact know that φ is an isomorphism. Because Gal(`/Fp) is generated by the Frobenius
automorphism x 7→ xp, we have the following consequence

Proposition 1.3. In the situation above (in particular, assuming p unramified) there exists a
unique Frobp ∈ Dp ⊂ Gal(L/Q) such that Frobp(a) ≡ ap (mod p) for all a ∈ OL. Further-
more Frobp generates Dp.

You can check that Frobgp = gFrobp g
−1. So if L/Q is abelian, Frobp depends only on

the prime p of Z, not the choice of p lying above p, and we may write it as Frobp.
(Note, this all can still be done with Q replaced by any global field K.)
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Hence for any abelian extension L/Q we have the information of the finite group
Gal(L/Q) along with a map

{primes of Z}→ Gal(L/Q)

sending p to Frobp. From this information we can determine the splitting data of all
primes as explained above. You should think of this information as the “signature” of
the extension L/Q; the information uniquely determine L, and also can be used to build
the L-function of L.
Example. Cyclotomic fields: L = Q[ζn]. Have map Gal(L/Q) → (Z/nZ)×, sends g to
unique p such that gζn = ζkn, injective because L generated by ζ, surjective because
cyclotomic polynomial Φn is irreducible over Q. (This is a special fact about Q, and
doesn’t work for other base fields!)

The unramified primes p are those relatively prime to n. We know that there is a
unique element Frobp with Frobp(a) ≡ ap (mod p) for all a ∈ OL = Z[ζn]. Setting
a = ζn we see that we must have Frobp(ζ) = ζ

p
n. Hence Frobp ∈ Gal(L/Q) correspondes

to the element p ∈ (Z/nZ)×.
From this it is clear that Q[ζn] is indeed a class field.

1.3 Gal(Qab/Q) and projective limits

Now we will give a way of packaging together all finite abelian extensions of Q. Define
Qab to be the maximal abelian extension of Q (check that this definition makes sense;
that is, the compositum of two abelian extensions is abelian). By Kronecker-Weber we
know that Qab = Q(ζ∞) = ⋃

n Q(ζn).
We can define a Galois group Gal(Qab/Q) as usual as the group of automorphisms

of Q(ζ∞) fixing Qab.
We have homomorphisms Gal(Qab/Q) → Gal(Q(ζn)/Q) ∼= (Z/nZ)× for each posi-

tive integer n. Taking the product of all these gives a map

Gal(Qab/Q)→∏
n

Gal(Q(ζn)/Q) ∼=
∏
n

(Z/nZ)×

. The image here is precisely the set of {an} such if n | n ′, then the reduction mod n of
an ′ is equal to an.

The construction here is the special case of what’s known as an inverse limit:

Definition. (See also the beginning of Chapter V of Cassels-Frohlich or V.2 of Neukirch
ANT) A directed system I is a partially ordered set in which for any i, j ∈ I there exists
k with i ≤ k, j ≤ k.

If you have a collection {Xi}i∈I of sets, indexed by a directed system I, and maps
πij : Xj → Xi whenever i ≤ j, the inverse limit lim← Xi is equal to the subset of

{{xi} ∈
∏
i∈I
Xi | πij(xj) = xi whenever i ≤ j}

3



If the Xi are all groups, rings, etc and the πij are morphisms, the inverse limit lim← Xi
picks up the same structure. (This can also be defined categorically as the limit of a
diagram.)

With this notation,

Gal(Qab/Q) ∼= lim← Gal(Q[ζn]/Q) ∼= lim← (Z/nZ)×.

(where the directed system here is the positive integers and divisibility, and all πij are
natural restriction maps).

This group lim←(Z/nZ)× is equal to the group of units Ẑ× in the ring Ẑ = lim←(Z/nZ).
Just as each ring Z/nZ can be factored via CRT into a product of rings Z/(pe11 )Z×

· · · ×Z/(pekk Z), the same is true of

Ẑ ∼=
∏
p

Zp.

where each factor Zp is lim←(Z/peZ)×.
Hence we can factorize our Galois group into a product of local factors:

Gal(Qab/Q) ∼= Ẑ× ∼=
∏
p

Z×p .

This statement turns out to not generalize correctly when one replaces Q by number
fields without unique factorization, so we’ll state things a little differently.

Definition. Define

A×
Q,fin = {{ap} ∈

∏
p

Qp | ap ∈ Zp for all but finitely many p}

and
A×

Q
= A×

Q,fin ×R.

Then (exercise!)

A×
Q

/(Q× ×R>0) ∼=
∏
p

Z×p .

(I stated this incorrectly in class as AQ,fin/Q× ∼=
∏
p Z×p , which is not quite right.)

The map
AQ →AQ/(Q× ×R>0) ∼= Gal(Qab/Q)

is known as the Artin map and is at the heart of global class field theory.
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2 September 5

2.1 Adeles over a general number field

Last time we defined the Artin map

θQ : A×
Q
→A×

Q
/(Q× ×R>0) ∼= Gal(Qab/Q)

for the base field Q. We now give the generalization for number fields.
For any number field K one can define

A×K,fin = {{xp} ∈
∏
p

K×p | xp ∈ O×p for all but finitely many p}

(we will formally define the completions at the end of this lecture), and

A×K,∞ =
∏

embeddingsK↪→R

R× ×
∏

embeddings K ↪→C

C×

where in the second factor we use only the embeddings K ↪→ C that don’t factor through
R, and consider complex conjugate embeddings to be the same. Then define

A×K = A×K,fin ×A×K,∞.

We note here that A×K,fin, A×K,∞ and A×K can be made into topological groups. For
A×K,fin the neighborhood basis at the identity consists of open sets of the form∏

p∈S
Up ×

∏
p/∈S
O×p

where S ranges over finite sets of primes and for each p ∈ S, Up is an open subset of Kp.
The topology on A×K,∞ is just the product of the usual topologies on the individual

factors R× and C×. Then we give A×K = A×K,fin ×A×K,∞ the product topology.
One can check that A×K,fin is totally disconnected, and that the connected component

of the identity in A×K is given by

(A×K )0 =
∏

embeddings K ↪→R

R× ×
∏

embeddings K ↪→C

C×.

2.2 The Artin Map and class field theory over a general number field

As over Q, there exists an Artin map

θK : A×K → Gal(Kab/K).
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This map must contain (A×K )0 in its kernel for purely topological reasons; Gal(Kab/K)
is totally disconnected. What is substantially harder to show is Artin reciprocity: that
K× ⊂ ker θK. This means that the Artin map factors through the adelic class group CK =

AK/K×. More specifically, it gives isomorphisms

CK/(CK)0 ∼= A×K/K×(AK)0 ∼= Gal(Qab/Q).

There’s also a version of the Artin map for finite extensions: if L/K is a finite ex-
tension, then θL/K : CK/N(CL) → Gal(L/K) is an isomorphism. There is a one-to-one
correspondence between finite extensions of K and to open subgroups of finite index in
CK, given by sending an extension L/K to N(CL).

The main results of global class field theory then break into three parts:

• Construction of the Artin map θ : AK → Gal(Kab/K)

• Artin reciprocity K× ⊂ ker θ

• Existence: every finite index open subgroup of CK is of the form N(CL) for some L.
This implies surjectivity of the Artin map.

The last two parts will be done next semester, but by the end of the semester we’ll be
able to do the first one, constructing the Artin map via local factors. Also, the proofs we
do next semester will use the same machinery as this semester’s proofs.

2.3 Local class field theory, the results:

Now let K be a local field, e.g. K = Qp. Then there is a local Artin map

θK : K× → Gal(Kab/K).

This map is not quite surjective, but it does have dense image, and induces a bijec-
tion between (finite index open subgroups of K×) and (finite index open subgroups of
Gal(Kab/K)).

Again, we have a version of the Artin map for finite extensions: if L/K is a finite
abelian extension have θL/K : K×/NL× → Gal(L/K). (So we have an existence theorem:
every open finite index subgroup of K× is of the form NL× for some finite abelian
extension L/K.)

If L/K is unramified, then we can describe the Artin map very explicitly; θL/K(x) =

Frobv(x)
L/K (Frobenius elements defined in a matter similar to the global clase). Related

to this, the fixed field of the subgroup θK(O×K ) ⊂ Gal(Kab/K) is the maximal abelian
unramified extension of K.
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2.4 Local-global compatibility:

Now back to K is a global field. We can create a completion Kp at any prime p.
Then for any abelian extension L/K, and any prime p ′ of L above p, we get an ex-

tension of completions Lp ′/Kp. We have map Gal(Lp ′/Kp) → Gal(L/K) via restriction.
One can show that this is injective with image equal to decomposition group Dp ′ : for
the inverse map, take the automorphism of L and extend continuously to get an auto-
morphism of Lp ′ . (to go in other direction extend continuously in p-adic topology.

Hence every abelian extension of K embeds in an abelian extension of K, and so we
have an inclusion Kab ⊂ Kab

p . (This inclusion requires making some choices, but its image
is well-defined as the maximal abelian extension of K contained in Kab

p .)
The local and global maps are compatible in the sense that the diagram

K×p Gal(Kab
p /Kp)

A×K Gal(Kab/K)

θKp

θK

commutes. Since A×K is generated topologically by the K×p and by the copies of R×

and C×, knowing all the local Artin maps will be enough to consturct the global Artin
map.

2.5 Agenda for this course

This concludes our brief overview of the results of class field theory. In the rest of the
course we will go through

• Theory of local fields

• Ramification

• Galois cohomology

• Lubin-Tate theory (explicit construction of abelian extensions of local fields)

• (time permitting?) Brauer groups

• (time permitting?) applications of global class field theory.

2.6 Valuations

Motivation for defining local fields is to generalize Qp, Fp((t)). In the end it turns out
that the only local fields are finite extensions of those two, but we’ll have a nice theory
that treats them all in a uniform manner.
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Definition. A valuation on a field K is a map v : K→ Z∪∞ satisfying

a) v(0) =∞
b) v : K× → Z is a surjective group homomorphism (I forgot surjectivity in class)

c) v(x+ y) ≥ min(v(x), v(y)) for all x,y ∈ K.

Example. For K = Q, we define the p-adic valuation vp(x) as the exponent of p in the
prime factorization of x.

Example. More generally, if O is a Dedekind domain, K = Frac(O), and p a prime ideal
of O, we define vp(x) to be the exponent of p in the prime factorization of the ideal (x).

A related definition

Definition. An absolute value on a field is a map | · | : K→ R≥0 satisfying

a) |0|= 0

b) | · | : K× → R>0 is a group homomorphism

c) |a+ b| ≤ |a|+ |b|

If the absolute value satisfies c’): |a+ b| ≤ max(|a|, |b|) then it is said to be em non-
archimedean, otherwise archimedean.

Two absolute values | · |1, | · |2 are said to be equivalent if there exits a ∈ R>0 such that
| · |1 = | · |2.

Note that if v is a valuation and c < 1 is a positive constant, then |x|v = cv(x) is a
valuation whose equivalence class does not depend on v.

Also, embeddings K ↪→ R or K ↪→ C also give absolute values by pulling back the
standard absolute value on R or C.

Definition. A place v of a field K is an equivalence class of absolute values on K.

Note that every valuation on K gives a place (hence using the same notation for
them); places that come from valuations are called finite (or non-archimedean. Places that
come from embeddings into R or C are called infinite (or archimedean. As you can guess
from this terminology, these two categories cover all places of global fields.

In the case of Q this follows from

Theorem 2.1 (Ostrowski). Every absolute value on Q is equivalent to some | · |p or to the
absolute value | · |R coming from the embedding Q ↪→ R.
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A similar theorem is true for K = Fp(t). Let O equal Fp[t]; then we have valuations
coming from the prime ideals of O, and also a valuation given by v(x) = −deg(x) (which
you can also think of as coming from the ideal (1/t) in the ring Fp[1/t]). One can show
that every place Fp(t) comes from one of these valuations.

Next time we’ll show that these theorems imply their analogues for finite extensions
of Q and Fp(t).

One more bit of algebraic definition, which we recall from commutative algebra.

Definition. A discrete valuation ring (DVR) is a local PID that is not a field.

Exercise: if v is a valuation on a field K then Ov = {x ∈ K | v(x) ≥ 0} is a DVR
(justifying the name) with principal ideal pv = {x ∈ K | v(x) ≥ 1} generated by any π
with v(π) = 1. Conversely if O is a DVR with maximal ideal p and fraction field K, then
O is Dedekind, so we have a valuation vp on K (and Ovp = O).

Completion: If K is a field with absolute value | · |, then the metric space completion K̂
of K with respect to the norm | · | is a topological field, and the absolute value | · | extends
to K̂. If | · | comes from a valuation or a place, this completion is also written as Kv.

As a final comment: the terminology of places allows us to define the adeles in a way
that puts the finite and infinite factors on a more equal footing.

Indeed,
A×K = {{av} ∈

∏
v

K×v | |av|v = 1 for almost all v}.

3 September 7

3.1 Properties of complete fields and completions

First we dispose of the theory of fields complete with respect to an archimedean valua-
tion.

Theorem 3.1 (Ostrowski). The only fields that are complete with respect to an archimedean
absolute value are C and R.

Now let K be a complete field with respect to discrete absolute value. Since K is not
R or C, this absolute value must be be non-archimedean and come from exponentiating
a valuation: |x| = c−v(a) (c > 1).

The subring
O = {a ∈ K | |a| ≤ 1}

is closed (and also open!) inside K, as is the prime ideal p = (π) = {a ∈ K | |a| ≤ c−1}.
The subring OK is a complete DVR.

If O is a complete DVR: then O = lim←O/pn = limO/(π)n. The argument for
this is that any element of limO/(π)n gives a sequence of nested balls in O with radii
shrinking down to 0; completeness means that this must contain a unique point.
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if O is a ring with prime p and completion K̂, then : the closure of O in K̂ is the
valuation ring (elements of valuation ≥ 0). p̂ is the maximal ideal. O/pi ∼= Ô/p̂i for all
i ≥ 0.

Lemma 3.2 (Hensel). Let O be a complete DVR with prime p = (π) and k = O/p. Suppose
f ∈ O[x] is such that the reduction f factors as f = gh and gcd(g,h) = 1 in k[x]. Then f factors
as gh with g,h ∈ O[x] and g,h reduce to g,h mod p and degg = degg.

Proof. Enough to prove that we can factor f ≡ gnhn mod πn for all n compatibly, for
polynomials gn,hn ∈ O/πn with deggn = dg = degg, deghn = dh = deg f− degh

We do this by induction: the base case n = 1 is already given to us, take g1 = g and
h1 = h.

Now suppose we have gn,hn ∈ (O/πn)[x] with gnhn = f mod pn. Take arbitrary
lifts g ′n+1,h

′
n+1 ∈ (O/πn+1)[x].

Now write gn+1 = g ′n+1 + π
na, hn+1 = h ′n+1 + π

nb for a,b ∈ k[x]to be determined.
We need

πnahn + π
nbgn = f− g ′n+1h

′
n+1 mod πn+1.

Dividing out by πn, we find that we need to find a,b ∈ k[x] satisfying

ah+ bg = c (1)

for c = 1
πn

(
f− g ′n+1h

′
n+1

)
. Let Pn denote the k-vector space of polynomials of deg ≤ n

in k[x]. Then the map

(a,b) 7→ ah+ bg : Pdg × Pdh → Pdg+dh

has kernel spanned by (−g,h), so is surjective by dimension court.
Hence (1) has a solution as desired.

(This factorization is unique up to multiplication by elements of O×).

Corollary 3.3. If, for f ∈ O[x], there exists a ∈ k such that f((a)) = 0 but f ′((a)) 6= 0, then a
lifts to a unique root a ∈ O of f.

Example. xp − 1 splits into distinct linear factors in Fp[x], so also in Zp[x]; therefore Zp

contains all the pth roots of unity, and they are distinct mod p.

Example. x ∈ Z×p is a square iff it is a square mod p, x ∈ Q×p is a square iff x = p2ru with
u ∈ Z×p a square.

Corollary 3.4. If K is a field complete with respect to a discrete valuation v and f = anx
n +

· · ·+ a0x0 ∈ K[x] is irreducible, then

min
0≤i≤n

v(ai) = min(v(an), v(a0)).
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Proof. WLOG min0≤i≤n v(ai) = 0 Assume by way of contradiction, let m be maximal
with v(am) = 0. Then f ∈ O[x] and f ∈ k[x] has degree m with 0 < m < n. Apply
Hensel’s lemma g = f, h = 1 to get that f has a factor of degree m.

(Comment: there’s a generalization known as Newton polygons].)

3.2 Extensions of fields

Proposition 3.5. Let K be a field complete with respect to a discrete absolute value | · |K, L/K
a finite extension of deg n. Then there exists a unique extension of | · |K to L given by |a|L =
n
√

|NL/Ka|K, and L is complete with respect to the discrete absolute | · |L.

Remark. The norm map NL/K can be defined in a few different ways. We’ll define it by

NL/K(a) = detma

where ma : L→ L is the map of K-vector spaces given by multiplication by a.
If f(x) = xm + · · ·+ c0 ∈ K[x] is the monic minimal polynomial of a, then the char-

acteristic polynomial χ of ma is given by χ(x) = f(x)n/m, where n = [L : K]. Hence
NL/Ka = cn/m

0 . This is the definition we’ll use here.

Proof. Only hard part is to check that |a|L+ |b|l ≤ max(|a|L, |b|L). For this wlog a = 1 and
|b|L ≤ |a|L = 1. Let f(x) = xn + cn−1x

n−1 · · ·+ c0 be the minimal polynomial of x. Now,
|c0|K = |a|mL ≤ 1. By the lemma we then have that maxi(|ci|K) ≥ max(|1|K, |c0|K) = 1 , so
the minimal polynomial f(x) of b lies in OK[x]. Then the minimal poly of b+ 1 will also
have coefficents in O[x], giving |NL/K(b+ 1)| ∈ OK and |b|L =

n
√

|NL/Kb|K as desired.
To show uniqueness: analytic reasons: for any complete field K, any two norms on

a finite-dimensional K-vector space induce the same topology. Then, two abs.vals. on
a field L that give the same topology are equivalent. (to do this, note that |a| < 1 iff
{ak}→ 0; exercise to complete the argument).

This also gives completeness, since L ∼= Kn as vector spaces and Kn is complete in the
max norm.

4 September 12

4.1 More on extensions of valuations and ramification

Let L/K be a finite extension, with K complete wrt a discrete abs value | · |; by last time,
we know there is a unique extension of | · | to L, which we will also denote by | · |. Let
OK be the valuation ring of K, with maximal ideal pK = (πK). Likewise let OL be the
valuation ring of L, with maximal ideal pL = (πL).
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Then the ideal πKOL must equal (πLOL)e for some positive integer e = eL/K. This e
is also equal to the index

[(im | · | : K→ R>0) : (im | · | : L→ R>0)],

since the former is generated by |πL| and the latter by |πK| = |πL|
e. The positive integer

e = eL/K is known as the ramification index of L/K.
Additionally, define the inertia degree f = fL/K of L/K as the degree of the extension

of residue fields [` : k] = [OL/(πL) : OK/(πK)].

Example. K = Qp, p odd. L = Qp[
√
u] for u ∈ Z×p not a square mod p. Then k = Fp,

` = Fp[
√
u] so f = 2. However pOL is prime in OL, so πL = p = πK, and e = 1.

Example. K = Qp, L = Qp[
√
p]. In this case pOL = (

√
pOL)2, and

√
pOL is prime with

quotient OL/
√
pOL ∼= Fp, so e = 2 f = 1.

Theorem 4.1. In the setting above, ef = n = [L : K]

Proof. We compute dimk(OL/πKOL) in two different ways.
First of all, OL is a free OK-module of rank n, so OL/πKOL is a free k-module of rank

n.
Secondly, πK = πeL, so dimk(OL/πKOL) = e(dimk(OL/πLOL)) = e.
Equating the two gives ef = n as desired.

Next, we back off on the assumption that K and L are complete, and ask

Question 1. Let K be a (possibly not complete) field with a discrete non-arch absolute value | · |.
If L/K a finite separable extension, can we extend | · | to L? Can we classify all such extensions?

One approach: if K = FracOK, OK Dedekind and our absolute value is of the form
| · | = | · |p for some prime ideal p in L. Let OL be the integral closure of OK in L, and
choose a prime factor p ′ of pOL. Let e be the exponent of p ′ in the factorization of pOL.
Then for any a ∈ K we have vp ′(a) = evp(a). Hence, after suitable renormalization, the
valuation | · |p ′ extends | · |p.

Theorem 4.2. In the setting above, any absolute value ‖ · ‖ ′ on L extending ‖cdot‖p is equiva-
lent to | · |p ′ for some prime factor p ′ of p.

Proof. First we show that any absolute value ‖ · ‖ ′ extending ‖ · ‖p is non-archimedean
and discrete. We do this by looking at completions: the completion L̂ of L with respect
to ‖ · ‖ ′ will be a finite extension of the competion K̂ of K with respect to ‖ · ‖p. By what
we did last time, the absolute value on L̂ extending the absolute value of K̂ must be
non-archimedean and discrete, so the same is true for ‖ · ‖ ′ on L.

Suppose that ‖ · ‖ ′ extends ‖ · ‖p.
Then consider OL,v ′ = {a ∈ OL | ‖a‖ ′ ≤ 1}; this is an integrally closed ring that

contains OK, so contains OL. Let p ′ = pL,v ′ ∩ OL; this is a nonzero prime ideal of OL.
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Then the localization (OL)p ′ is contained in OL,v ′ : since both are DVRs they must be
equal.

Corollary 4.3. If K is a number field, then any absolute value | · | on K must either come from an
embedding K ↪→ R or C, or be of the form | · |p for some prime ideal p of OK.

Proof. If | · | is archimedean, then the completion K̂ of K with respect to | · | is a complete
archimedean field, so it must be either R or C.

Else | · | is non-archimedean. Then the restriction of | · | to Q must equal | · |p for some
p by Ostrowski’s theorem. By the previous theorem, | · | must equal | · |p for some prime
p ′ of OK dividing pOK.

Another approach: this time, drop all assumptions, let K and L be fields with L/K
finite separable, let | · |vbe an absolute value on K, and let | · | ′v be an absolute value on
L extending | · |v. (You should think of v and v ′ as (possibly archimedean) places of K
and L respectively; this argument works just fine if | · |v, | · |v ′ are archimedean absolue
values).

Now let Kv be the completion of K with respect to | · |v and Lv ′ be the completion of
L with respect to | · |v ′ . Then the compositum KvL ⊂ Lv ′ is a complete subspace of Lv ′
containing L, so we have KvL = Lv ′ .

Conversely, if L ′ is a field with inclusions

K L

Kv L ′.

(2)

33 such that L ′ = LKv, then L is a finite extension of Kv, so the absolute value | · |v on
Kv extends uniquely to an absolute value on ‖cdot|L ′ L ′. The restriction of this absolute
value | · |L ′ to L gives an absolute value on L that extends the absolute value | · |v on K.

By this means we get a bijection

{absolute values on L extending | · |v}↔ {equvalence classes of compositum fields L ′ = LKv}

where on the right hand side, the equivalence class is up to isomorphism that commute
with the maps in the diagram (2).

Proposition 4.4. In the setting above,

Kv ⊗K L =
∏

v ′ extends v

Lv ′

Proof. This will follow from the previous discussion, plus the following fact of commu-
tative algebra:

13



Proposition 4.5. If L/K is a finite separable extension and K ′/K is an arbitrary extension, then

K ′ ⊗K L =
∏
L ′=LK ′

L ′

where the right hand side is the product of all fields L ′ which are composita L ′ = LK ′, up to
isomorphism in the sense defined above.

Proof. By the theorem of the primitive element write L = K(a) = K[x]/(f(x)). Then

K ′ ⊗K L = K ′[x]/(f(x)) =
∏
i

K ′[x]/(fi(x))

where f1, . . . , fr are the irreducible factors of f in K ′[x].
Hence, if we write L ′i = K

′[x]/fi(x) for each we have that K ′⊗K L =
∏
i L
′
i is a product

of fields. Furthermore we have field homomorphisms

K ′,L→ K ′ ⊗K L→ L ′i

which let us write each L ′i as a compositum LK ′. And if we have any other compositum
L ′ = LK ′, then the multiplication map L × K → L ′ gives a nonzero homomorphism
L⊗ K→ L ′ which must map some factor L ′i isomorphically to L ′.

Finally, the factors L ′i are non-isomorphic (as composita; that is, equipped with the
maps K ′,L→ L ′i) because the factors fi(x) are distinct.

One explicit takeaway from the proof above is that, if L = K(a) with a having minimal
polynomial f, then Kv ⊗K L =

∏
fi|f
Kv[x]/(fi(x)), and the fields Kv[x]/(fi(x)) are the

completion of L at the absolute values extending v.
corollary about norms and traces.

Example. K = Q, v = v3, L = Q[
√
7]. In Q3 the minimal polynomial x2 − 7 factors as

(x− a)(x+ a) for a square root a of 7 in Q3 (exists because Hensel’s lemma). Then

Q3 ⊗Q Q[
√
7] ∼= Q3[x]/(x− a)⊕Q3[x]/(x+ a) ∼= Q3 ⊕Q3.

That is, there are two different valuations of Q[
√
7] extending v3, and both give comple-

tion Q3.
Example. K = Q, v = v3, L = Q[

√
3]. The polynomial x2 − 3 is irreducible in Q3, so

Q3 ⊗Q Q[
√
3] ∼= Q3[x]/(x2 − 3)

is a field. Hence there is a unique extension of v3 to Q[
√
3], and the completion is the

ramified quadratic extension Q3[x]/(x2 − 3) of Q3.
Example. K = Q, v = v3, L = Q[ 3

√
17].

On HW will show Q3 ⊗Q Q[ 3
√
17] ∼= Q3 ⊕ K so there are two different extensions of

absolute value, one unramified and the other ramified.

14



4.2 Local fields

A local field is a complete field K with absolute value | · | that is locally compact.
Archimedean local fields are the same as complete archimedean fields: they are pre-
cisely R or C.

Now let K be a non-archimedean local field, with valuation ring OK.

Proposition 4.6. a) OK is compact

b) | · | is discrete

c) OK/πOK is finite (where π is a generator of pK, which we know is principal by b))

Proof. a) Take some a ∈ K with |a| < 1. By local compactness, anOK must be compact
for sufficiently large n. Then OK is homeomorphic to anOK by rescaling.

b) The compact set OK has a nested open cover by the sets {a | |a| < c} for every c > 1.
By compactness, there must be a finite subcover, so there must be some c > 1 such
that there is no a ∈ K with |a| ∈ (1, c)..

c) OK/πOK is a compact topological space with discrete topology.

Conversely, if | · | is discrete and OK/πOK is finite, then OK = lim←OK/πnOK is
an inverse limit of finite groups, hence compact. (It’s a closed subset of the product∏
nOK/πnOK.)
If K is a local field with discrete valuation v : K→ Z, then we can define a normalized

absolute value | · |K on K by
|a|K = |OK/(π)|−v(a).

(This has a measure-theoretic interpretation: if µ is the Haar measure on the topologi-
cal group K+, then for any a ∈ K and any measurable X ⊂ K+, we have µ(aX) = |a|Kµ(X).
This point of view will be more important when we get to the adeles.)

5 September 14

5.1 Local Fields and Global Fields

Last time: a complete field K is a local field if it is locally compact.
If K is nonarchimedean, it is a local field if and only the absolute value is discrete and

has finite residue field.
Hence Qp, Fp((t)) are of local fields. Finite extensions of local fields are also local

fields. In fact, we won’t prove it, but:
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Theorem 5.1. Every local field is a finite extension of Qp or of Fp((t)).

Another definition:

Definition. K is a global field if and only if every completion of K is a local field.

Q is then a global field by Ostrowski’s theorem, likewise Fp(t). Finite extensions of
global fields are global fields.

Again, we won’t prove it, but:

Theorem 5.2. Every global field is a finite extension of Q or of Fp(t).

One comment about global fields:

Proposition 5.3 (Product formula). If K is a global field then
∏
v |a|v = 1 for all a ∈ K using

normalized valuations.

Proof. For K = Q, this is equivalent to |a|R =
∏
p p

vp(a). Likewise one can check this for
Fp((t)).

To deduce it for any global field, use
Claim: L/K an extension, ∏

v ′ extends v

|a|v ′ = |NL/Ka|v.

Prof of this is exercise. Sketch: use the decomposition L⊗K Kv =
∏
v ′ extends v Lv ′ . For

a ∈ L, look at the determinant of the multiplication-by-a map on each side, and take
absolute values.

Using the claim, we see that if K satisfies the product formula, the same is true of any
finite extension L/K. Since all global fields are extensions of L and Fp((t))

5.2 Multiplicative structure of K×:

Let K be a local field.
We have an exact sequence

1→ O× → K→v Z→ 1.

This splits, non-canonically. We can make a splitting by choosing a uniformizer π ∈ K
with v(π) = 1, and taking the map Z→ K given by n→ πn.

The group O× has a filtration on it

Un = {a ∈ O× | a ≡ 1 (mod πn)}.

16



Then U0 = O×, U0/U1 ∼= k× canonically, and for n ≥ 1, Un/Un+1 ∼= k+ non-
canonically, with the isomorphism k+ → Un/Un+1 given by

a 7→ [1+ aπn].

The exact sequence
1→ U1 → O× → k× → 1

splits because by Hensel’s lemma for any a ∈ k× there is a unique a ∈ µq−1(O×) that
reduces to a.

Observations:

Proposition 5.4. a) Upn ⊂ Un+1 for n ≥ 1.

b) If (m,p) = 1 then a 7→ am : Un → Un is bijective.

Proof. a): this is because Un/Un+1 ∼= k+ has exponent p.
b): For injectivity, suppose a ∈ Un and a 6= 1. Choose N maximal with a ∈ UN, so

[a] 6= 1 in UN/UN+1. Since UN/UN+1
∼= k+ has exponent p prime to m, we conclude

[am] 6= 1 in UN/UN+1, so am 6= 1.
For surjectivity, apply Hensel’s lemma to the polynomial xm − a.

A corollary is that the only roots of unity in U×1 can be of order a power of p.

5.3 p-adic logarithm and exponential

Suppose K is a local field of characteristic 0 and residue characteristic p. Let OK be the
ring of integers of K, and let π be a uniformizer. Let e be the ramification degree of
K/Qp, aso with pOK = (πe). We define a power series

expp(x) =
∑
n≥0

xn

n!
∈ K[[x]].

Exercise: this power series converges provided v(x) > e/(p− 1). (The key fact here
is that vp(n!) =

n−s(n)
p−1 , where sn is the sum of the base p digits of n.)

Can also define

logp(1+ z) =
∑
n≥1

(−1)n+1zn

n
.

Exercise: this converges for 1+ z ∈ U1.

Proposition 5.5. for any n > e/(p− 1) have expp : (π)
n → Un and logp : Un → (π)n inverse

homomorphisms.
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Sketch. We know these are inverses as power series, so it is enough to check that expp
maps πn to Un and vice versa. This can be done by bounding the p-adic valuation of
each term.

Corollary 5.6. Z×p = µp ×U1 ∼= (Z/(p− 1)Z)+ ×Z+
p as abelian groups for p odd.

Z×2 = µ2 ×U2 ∼= (Z/2Z)+ ×Z+
p

Proof. For the first part: e/(p− 1) < 1, so the corollary tells us that U1 ∼= pZp
∼= Z+

p as
abelian groups. We’ve already shown the rest.

For the second, easy to check that Z×2 /µ2×U2, and e/(p− 1) = 1 < 2 so U2 ∼= 4Z2
∼=

Z+
2 .

General local fields have 0 → Un → U1 → U1/Un → 0, where the first term is
isomorphic to O+

K
∼= Zn

p as a topological group, and the last one is a finite p-group; but
this sequence in general doesn’t split.

5.4 Unramified extensions

Let L/K be a finite extension of complete fields.

Definition. The extension L/K is unramified if and only if eL/K = 1 and the residue field
extension `/k is separable, equivalently if [L : K] = fL/K = `/k and `/k is separable.

(If L and K are local fields, then `/k is automatically separable.)

Lemma 5.7. Suppose L = K[a], and there exists f(x) ∈ K[x] such that f(a) = 0 and f ∈ k[x] is
separable. Then L/K is unramified and OL = OK[a].

Proof. Without loss of generality, f(x) is the minimal polynomial of a. Then we claim
f(x) is also irreducible: otherwise Hensel’s lemma would lift any factorization to a fac-
torization of f(x).

Then a ∈ ` is a root of f(x), so

[` : k] ≥ [k(a)/k] = deg(f(x)) = deg(f(x)) = [L : K]

hence the two are equal and L is unramified.
To show equality, use Nakayama’s lemma. First, by the chain of equalities we have

k(a) = `. Hence OL = OK[a] + πLOL = OK[a] + πKOL since L/K is unramified. Addi-
tionally, OL is finitely generated as an OK-module, because it is the integral closure of
OK in the finite extension L/K (exercise). Hence we may apply Nakayama’s lemma to
the OK-submodule OK[a] of OL to get OL = OK[a] as desired.

To give a converse to the lemma: if L/K is unramified, and choose any primitive
element a of `/k with min poly f(x). Lift f(x) ∈ OK(x) and lift a be a root of f(x) lifting
a. Then a satisfies the conditions of the lemma.

18



Example. L = K(ζm) for (m,p) = 1. Note specifically that if k = Fq, then K(ζ(qn−1)) is an
unramified extension of degree = n.

At the start of next time we’ll show that this is the only unramified extension of K of
degree n.

6 September 19

6.1 Unramified extensions, continued

Proposition 6.1. There is a unique unramified extension of K of degree n for each positive integer
n.

Proof. Already have existence (L = K(ζqn−1)): need uniqueness.
Given L and L ′ we will show that L = L ′. For this, recall that we have L ′ = K(a)

with a such that the minimal polynomial f(x) of a has the property that the reduction
f(x) ∈ k[x] has no repeated roots. In fact, f(x) must be irreducible, since a factorization of
f(x) in k[x] would lift to one of f(x) by Hensel’s lemma. Then, using the fact that the finite
field k has a unique extension of degree n, f(x) must have a root in the residue field ` of
L. Applying Hensel’s lemma we have that f has a root in L. Hence L ′ = K(a) = K[x]/f(x)
injects into L: since [L ′ : K] = [L : K] = n they must be equal.

By a similar argument, one can prove a bit more:

Proposition 6.2. If L,L ′ are ramified extension of K with residue fields `, ` ′ respectively, any
k-algebra homomorphism `→ ` ′ lifts to a unique K-algebra homomorphism L→ L ′.

(Note that homomorphisms of fields are injections.)
(A special case of this is that Gal(L/K) is canonically isomorphic to Gal(`/k).)
In fact, there is an equivalence of categories between (finite unramified extensions of

K) and (finite extension of k). In one direction the map takes an extension L to the residue
field `. The map in the other direction is harder to construct canonically; however it can
be done using a construction known as Witt vectors.

Corollary 6.3. Every unramified extension of K is contained in K(ζm) for some m. All un-
ramified extensions are Galois and abelian. The compositum of two unramified extensions is
unramified. The maximal unramified extension Kunr of K is

⋃
(m,p)=1 K(ζm).

(One can also prove the fact about compositums directly: e.g. see Proposition 7.2 and
Corollary 7.3 in Chapter II of Neukirch ANT.)
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6.2 The Artin map for unramified extensions

We’ve previously asserted:
If L/K is a finite abelian extension, then there is an isomorphism

Gal(L/K) ∼= K×/NL×.

We’ll verify this when L/K is unramified of degree n.
We know already that Gal(L/K) ∼= Gal(`/k) ∼= (Z/nZ)+, where we can give an

explicit isomorphism by sending the Frobenius element to [1] ∈ Z/nZ.
Let v : K× → Z be the discrete valuation: since L/K is unramified, this extends to a

valuation v : L× → Z. If a ∈ L, then

v(Na) =
∑

g∈Gal(L/K)

v(ga) = nv(a).

As a result we have the exact sequence

1→ O×K /N(O×L )→ K×/NL× →v (Z/nZ)+ → 1.

If we can show that N : O×L → O×K is surjective, we’ll have that K×/NL× ∼= (Z/nZ)+

as needed.
Let π be a uniformizer of K; that is, v(π) = 1. Note that π is also a uniformizer of L

because L/K is unramified.
Recall that the unit groups O×K and O×L have filtrations

UK,i = {a ∈ O×K | a ≡ 1 (mod πiOK)}
and

UL,i = {a ∈ O×L | a ≡ 1 (mod πiOL)}
for n ≥ 0.

Lemma 6.4. For every non-negative integer i, the map N : UL,i/UL,i+1 → UK,i/UK,i+1 is
surjective.

Proof. Case 1: i = 0 Then we have UL,0/UL,1
∼= `×, UK,0/UK,1

∼= k×. The result then
follows from the HW problem saying that N : `× → k× is surjective.

Case 2: i ≥ 1 Then we have UL,i/UL,i+1
∼= `+, UK,i/UK,i+1

∼= k×. The result then
follows from the HW problem saying that tr : `+ → k+ is surjective.

Now we put the pieces together to show that

Proposition 6.5. N : O×L → O×K is surjective.

Proof. Let a ∈ O×K be bitrary.
By induction and the previous proposition, can find a sequence {bn} of elements of

O×L such that Nbn ≡ a (mod πn), and bn+1 ≡ bn (mod pnL ). Then b = limn→∞ bn
satisfies Nb = a.
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6.3 Decomposition and inertia groups:

Now let L/K be a Galois extension of arbitrary fields. Let v be a place of K, and v ′ a
place of L extending v.

Definition. The decomposition group Dv ′ = Dv ′(L/K) is {g ∈ Gal(L/K) | |ga|v ′ = |a|v ′}

for all a ∈ L.

If we are in the following setting: K is the field of fractions of a Dedekind domain
OK, OL is the integral closure of OK in L, and we have v = vp and v ′ = vp ′ for some
prime p of OK and some prime p ′ of OL above p, then Dv ′ is equal to the decomposition
group Dp ′ = {g ∈ Gal(L/K) | gp = p}. However this definition also makes sense for v
archimedean).

Note that if K is complete, v ′ is the unique place of L extending v, so Dv ′(L/K) =

Gal(L/K). Also, if Kv and Lv ′ are the completions of L and K respectively, thenDv ′(L/K) =
Dv ′(Lv ′/Kv) = Gal(Lv ′/Kv).

In this setting, we define the decomposition field Z = Z(v ′) as the subfield of L fixed
by Dv ′ ⊂ Gal(L/K). Let vZ be the restriction of v to Z.

Proposition 6.6. The place v ′ is the only place of L extending vZ.

Proof. The key fact we use here is that Gal(L/Z) acts transitively on the set of places on L
extending vZ. In class I justified this in the non-archimedean case where vZ = vpZ by
invoking the result about Gal(L/Z) acting transitively on primes above pZ. However,
one can also give a direct proof that deals with the archimedean and non-archimedean
places simultaneously:

By homework, we have

[L : Z] =
∑

vL extends vZ

[LvL : ZvZ ]. (3)

Now, if vL is in the same Galois orbit as v ′, then [LvL : ZvZ ] = |Dv ′ |. Futhermore, there
are |Gal(L/Z)|/|Dv ′ | places in this Galois orbit. Hence the total contribution to (3) from
the Galois orbit of v ′ is |Gal(L/Z)| = [L : Z] and there can be no other Galois orbits.

For a different direct proof, see Neukirch ANT II.9.1
Using this key fact, we are done since Gal(L/z) = Dv ′ fixes v ′, so v ′ must be the only

place of L extending vZ

Note that the equality Gal(Lv ′/Kv) ∼= Dv ′(L/K) = Gal(L/Z), implies Z = Kv ∩ L
(intersection inside Lv ′). Then also: ZvZ = Kv If v is non-archimedean, it follows that the
residue field of Z is the same as K, and that the extension Z/K is unramified when you
go from v to vZ. (I didn’t mention this last sentence in class.)
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6.4 The inertia group

Definition. If L/K is a Galois extension with discrete valuations v ∈ K, v ′ ∈ L, and
DVRs Ov Ov ′ with uniformizers πK,πL and residue fields k, `. then we define the inertia
subgroup of Gal(L/K) by

Iv ′ = Iv ′(L/K) = {g ∈ Gal(L/K) | v ′(ga− a) > 0 for all x ∈ Ov ′ .

This is not the most enlightening way of stating the definition, though it generalizes
better to give higher inertia groups. We’ll give a couple of equivalent definitions.

First of all, g ∈ Iv ′ if ga ≡ a (mod πLO ′v) for all a ∈ O ′v. Secondly, the subgroup Iv ′
is the kernel of the map Dv ′ → Gal(`/k).

In fact,

Proposition 6.7. Iv ′ fits into an exact sequence 1→ Iv ′ → Dv ′ → Gal(`/k)→ 1.

Proof. The only thing to check here is that Dv ′ → Gal(`/k) is surjective. I’ve referenced
this fact before (eg in discussions of Frob) but will prove it here for completeness.

Pick a a generator of the extension `/k, and lift to an element a ∈ L. It will be enough
to show that for any a ′ in the Galois orbit of a, there is some g ∈ Gal(L/K) such that the
reduction ga of ga mod πL is equal to a ′.

The element a ∈ O ′v satisfies the polynomial h(x) =
∏
g(x−ga) ∈ Ov[x], so a satisfies

h(x) =
∏
g(x− ga) ∈ k[x]. The same is true of the Galois conjugate a ′, so a ′ must equal

ga for some g ∈ Gal(L/K).

As a corollary, we have that for L/K an extension of complete disc valued fields,
|Iv ′ | = |Gal(L/K)|/fL/K = eL/K.)

Let the inertia field T(v ′) be the fixed field of Iv ′ .

Proposition 6.8. Let L/K be a finite Galois extension of local fields. Then T(v ′) is the maximal
subextension of L that is unramified at v ′.

Proof. We’ll show that T/K is unramified, and that L/T is totally ramified (fL/T = 1).
Let t be the residue field of T . Then we have Gal(L/T) mapping surjectively to

Gal(`/t) by the previous proposition. On the Gal(L/T) = Iv ′ acts as the identity on
`. Hence ` = t, giving fL/T = 1 and eL/T = [L : T ] = |Iv ′ | = eL/K. Because e, f are
multiplicative in towers have then fT/K = fL/K and eL/T = 1.

7 September 21

Recall from last time than any finite Galois extension L/K of local fields has an interme-
diate field T such that L/T is totally ramified and T/K unramified. Last time, we
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7.1 Totally ramified extensions

Suppose that L/K is a totally ramified extension of local fields with DVRs OL and OK
respectively. We won’t assume L/K Galois. Let the exension be [L : K] = n, .

Proposition 7.1. L = K(πL) and OL = OK(πL).

Proof. Note that
vL(
∑
0≤i<n

aiπ
i
L) = min

0≤i<n
(i+nvK(ai)) (4)

for ai ∈ L, and in particular is finite. Hence the 1,πL, . . . ,πn−1L are linearly independent
over K, so form a basis giving L = K(πL).

For the second part, write b ∈ L as
∑
0≤i<n aiπ

i
L. Then b ∈ OL if and only if all

vK(ai) ≥ 0.

The minimal polynomial f(x) of πL in K[x] is an Eisenstein polynomial, that is, one
that satisfies the conditions of the classical Eisenstein’s irreducibility criterion.: f = xn +
cn−1x

n−1 + · · ·+ c0 has the property that vK(ci) > 0 for i = 0, . . . n, but vK(c0) = 1.
Conversely, if f ∈ K[x] is Eisenstein, then L = K(a) = K[x]/f(x) is totally ramified,

with uniformizer a, since, if | · |K is an absolute value coming from vK and | · |L is the
unique extension to L, we have |a|L = |c0|

1/n
K .

Example. Let K be an arbitrary local field. Then the extension L = K[ m
√
πK] is totally

ramified, with uniformizer, πL = m
√
πK satisfying the Eisenstein polynomial xm−πL = 0.

Example. Let K = Qp, and L = Qp[ζpr ]. Then πL = ζpr − 1. Exercise; the minimal
polynomial of πL is Eisenstein of degree pr − pr−1.

7.2 Ramification groups

Let L/K be an extension of fields with valuations v, v ′ and valuation rings Ov, Ov ′ . Then
define

Definition. The ith ramification group Gi,v ′(L/K) is

Gi,v ′ = Gi,v ′(L/K) = {g ∈ Dv ′(L/K) | v ′(ga− a) > i for all a ∈ Ov ′}.

Have G0,v ′ = Iv ′(L/K). For N� 0 have GN,v = {1}.
The condition v ′(ga− a) > i is equivalent to ga ≡ a (mod πi+1L ). Hence so g ∈ Dv ′

lies in Gi,v if and only if g induces the trivial automorphism of the ring Ov ′/(πi+1L ).
Here L and K needn’t be complete fields, but as before, if Lv ′ , Kv are the completions

of L, K respectively, we have the equality Gi,v ′(L/K) = Gi,v ′(Lv ′/Kv).
For the rest of this, though, we’ll assume L and K nonarchimedean local fields; write

v ′ = vL and v = vK, O ′v = OL and Ov = OK, and drop the subscript v ′, so
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Gi(L/K) = {g ∈ Gal(L/K) | vL(ga− a) > i for all a ∈ OL}.

As before, this is the same as saying that g ∈ Gal(L/K) acts trivially on the ring
OL/(πi+1L ). To check this it’s enough to check that g preserves a generator. As a result,
we get that

If OL = OK[a0] then

{Gi(L/K) = {g ∈ Gal(L/K) | vL(ga0 − a0) > i}. (5)

In fact,

Proposition 7.2. For i ≥ 0

Gi(L/K) = {g ∈ I(L/K) | vL(gπL − πL) > i}

= {g ∈ Iv ′(L/K) | gπL ≡ πL (mod πi+1L )}.
(6)

Proof. We first reduce to the case where L/K is totally ramified. (Otherwise, replace K
with the inertia field T(v ′).)

By Proposition 7.1, have OL = OK[π], so this now follows from (5).

Now, for each i ≥ 1, we can define a map

φi : Gi(L/K)/Gi+1(L/K) ↪→ Ui,L/Ui+1,L

given by g 7→ [gπL/πL]. This is a well-defined injection by Proposition 7.2.
The map φi may look non-canonical, but actually it doesn’t depend on the choice

of πL! Indeed, if we replace πL by uπL for u ∈ O×L , will multiply the quotient by
gu/u ∈ Ui+1,L. Exercise: φi is a group homomorphism.

Recall that for i = 0 have U0,L/U1,L ∼= `× canonically, and for i > 0 have Ui,L/Ui+1,L ∼=
`+ non-canonically.

If ` has characteristic p, then this means that I(L/K)/G1(L/K) = G0(L/K)/G1(L/K) is
cyclic of order prime to p, whereas all Gi(L/K)/Gi+1(L/K) are abelian p-groups – hence
G1(L/K) is a p-group. In particular, it is the Sylow p-subgroup of I(L/K).

The group I(L/K)/G1(L/K) is called the tame inertia group of L/K and G1(L/K) is
called the wild inertia group of L/K. If the wild inertia group G1 vanishes, then L/K is
called tamely ramified. This happens if and only if the order eL/K of I(L/K) is relatively
prime to p. Note that the condition (eL/K,p) = 1 makes sense even if L/K is not Galois:
we will say that an arbitrary finite extension L/K is tamely ramified if (eL/K,p) = 1.

Example. K = Q2, L = Q2(ζ8), πL = ζ8 − 1.

Gal(L/K) = {g1,g3,g5,g7} ∼= Z/8Z×.

Here gi is the element of Gal(L/K) sending ζ8 → ζi8.
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vL(g1πL − πL) =∞
vL(g3πL − πL) = vL(ζ8 − ζ

3
8) = 2

vL(g5πL − πL) = vL(2ζ8) = 4

vL(g7πL − πL) = vL(ζ8 − ζ
7
8) = 2

So G0 = G1 = Gal(L/K), G2 = G3 = {g1,g5} and G4 = G5 = · · · = {g1}.

7.3 Tamely ramified extension

Let K a local field with residue characteristic p. As noted above, we say that a finite
extension of L/K is tamely ramified if eL/K is relatively prime to p. Note that in particular
unramified extensions are tamely ramified – being tamely ramified just means that any
ramification that happens must be tame.

We won’t show this, but the class of tamely ramified extension is a nice class; it’s
preserved under composita and Galois closures. Hence for any finite extension L/K we
can talk about the maximal tamely ramified subextension of L. If L/K is unramified, the
maximal tamely ramified subextension is the fixed field of the inertia group G1(L/K).
(See Chapter 1 of Cassels + Fröhlich for more on this)

Theorem 7.3. Let L/K be a tamely ramified Galois extension. Then L/K is contained in the
extension K(ζm, d

√
πK) for some m,d with (m,p) = (d,p) = 1.

Proof. First of all, WLOG can assume [L : K] totally ramified. If not, replace K with the
maximal unramified subextension of K contained in L.

Then L/K is a cyclic extension of [L : K] = n with (n,p) = 1.
Let K ′ = K(ζn), L ′ = L(ζn). Then Gal(L ′/K ′) injects into Gal(L/K), so is cyclic of

order d with d | n. Now use Kummer theory to get L ′ = K ′( d
√
a) for some a ∈ K ′×:

write a = πrKu. Then L ⊂ K ′( d
√
u, d
√
πK). The extension K ′( d

√
u)/K is unramified, so

must be contained in K(ζm) for some m, and we’re done.

(By the discussion above, one can drop the condition that L/K is Galois.)

7.4 A few comments on the big picture

Let’s step back and think about abelian extensions of Qp. First of all, we know that the
maximal unramified extension of Qp is Qunr

p = Qp(ζprime to p), and this is abelian with
Gal(Qunr

p /Qp) = Ẑ.
Assuming class field theory, one obtains that Gal(Qab

p /Qunr
p ) = Z×p .

One can show that the maximal abelian tamely ramified extension of Qp is Q
ab,tame
p =

Qunr
p (pp−1): and Gal(Qab,tame

p /Qunr
p ) = F×p is the prime-to-p part of Z×p .
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7.5 Upper numbering

One more comment: the indexing we’ve given for the inertia groups has the awkward
feature that if K ⊂ L ⊂ L ′ is a tower of fields, there is no relation between Gi(L ′/K)
and Gi(L/K) (because the two groups are using valuations that have been normalized
differently). One can fix this problem as follows.

Define a function φ on [0,∞) by

φ(u) =

∫u
0

dt

[G0(L/K) : Gt(L/K)]
.

The function φ is the integral of a positive piecewise constant function, so piecewise
linear.

Define
Gi(L/K) = G(φ

−1(i))(L/K).

Herbrand’s theorem says that Gi(L ′/K) restricts to Gi(L/K). Another important the-
orem is Hasse-Arf: when L/K is abelian, the jumps in filtration occur at integers.

In our example before of K = Q2, L = Q2(ζ8), one can check that φ(0) = 0, φ(2) = 2,
φ(4) = 3, and φ connects those points piecewise-linearly. As a result, have G0 = G0,
G2 = G2 and G3 = G4 are the points where the filtration jumps.

8 September 26

Moving on to the next unit of this class: Galois cohomology. I plan to loosely follow
Cassels and Fröhlich. Neukirch’s book Class Field Theory: the Bonn Lectures is good as a
less terse reference on the material (Neukirch’s Algebraic Number Theory only does the
minimum necessary amount of cohomology needed to do class field theory, so it’s not
an adequate reference.) Dummit and Foote also has a decent introduction to the basics
of group cohomology.

8.1 The category of G-modules

Let G be a finite group. Then a G-module A is an abelian group with a left action
of G preserving the abelian group structure (g(a + b) = ga + gb). That is, it’s like a
representation of G, but on a group rather than a vector space.

As one does for representations, define the morphisms by

HomG(A,B) = {φ ∈ HomZ(A,B) | gφ(a) = φ(ga) for all a ∈ A}

Example. Let G = Gal(L/K). Then L+, L×, µn(L), O×L , Cl(L), A×L , G(L) for G any com-
mutative algebraic group over K, eg E(L) for E an elliptic curve, are all G-modules.
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Example. Let G be any group. Then any abelian group A is a G-module with trivial G
action, e.g. A = Z.

Definition. The group ring Z[G] is the ring of all formal linear combinations
∑
ag
g with

addition and multiplication done formally.

Example. If G = Cn = 〈t | tn = 1〉 then Z[G] = Z[t]/(tn − 1). (This is not Z[ζn], though
it has that ring as a quotient.)

Definition. The augmentation map is the G-module homomorphism ε : Z[G] → Z

defined by ε(
∑
cgg) =

∑
cg. The augmentation ideal IG ⊂ Z[G] is equal to ker ε.

As a Z-module IG is free, with basis (g− 1) for g ∈ G. If G = Cn then IG = (t− 1),
but in general IG is not principal.

Also element N =
∑
g g ∈ Z[G]. Notation here is because if G = Gal(L/K), A = L×

treated as a G-module, then N acts as the norm Na = NL/K(a). Note though that that if
instead A = L+, then N acts as trace Na = trL/K a.

The category of G-modules is an abelian category: that is to say, you can do all
the constructions of kernels, images, quotients, direct sums, etc, in it. A couple more
operations in the category of G-modules:

ForA and B, G-modules, can put aG-module structure on Hom(A,B) = HomZ(A,B),
where the action is gφ = g ◦φ ◦g−1. Note that this is not the same as the set HomG(A,B)
of G-module homomorphisms from A to B. Also, can put a G-module structure on
A⊗ B = A⊗Z B, by g(a⊗ b) = ga⊗ gb. (Notational convention: when we drop the
subscript on Hom or ⊗ the ring is assumed to be Z.)

Now we write down some functors from G-modules to Z-modules.

Definition. For A a G-module, the group of invariants of A is

AG = {a ∈ A | ga = a for all g ∈ G}.

The group of co-invariants of A is

AG = A/IGA.

The group AG can also be expressed as the quotient of A by all elements of the form
ga− a.

We note now that for any G-module B, HomG(B,−) gives a functor from G-modules
to Z-modules. In the special case of B = Z with trivial G-action, have HomG(Z,A) =

AG, so this generalizes the functor of invariants.
Similarly, the functor of coinvariants is a special case of the tensor product func-

tor. However, defining the tensor product A⊗G B is is a little subtle as Z[G] is non-
commutative. In general if R is a non-commutative ring ring can only define A⊗R B if A
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is a right R-module and B is a left R-module, and this is only an abelian group. We can
make any G-module A into a right Z[G]-module using the action r(g)a = g−1a.

As a result the tensor product A⊗G B is defined as the quotient of A⊗Z B by all
relations of the form g−1a ⊗ b − a ⊗ gb. This only has the structure of a Z-module
(because Z[G] is noncommutative.)

So for any B we get another functor B⊗ − from G-modules to Z-modules. In the
case where B = Z, we recover the functor of coinvariants: Z⊗G A = AG.

Two more identities: HomG(A,B) = Hom(A,B)G and A⊗G B = (A⊗ B)G.
Now we will consider the exactness of these functors. The functor A 7→ AG is left

exact but not exact. That is, if

0→ A
φ→ B

ψ→ C→ 0

is an exact sequence, we have an exact sequence

0→ AG
φ→ BG

ψ→ CG.

To verify this: if φ is injective, then so is its restriction to AG. For exactness at the
middle, note that if b ∈ BG has ψ(b) = 0, then exactness of the original sequence gives
the existence of some a ∈ A with φ(a) = b. Furthermore, this a is unique by injectivity
of φ. But φ(ga) = gb = b for any g ∈ G, so uniqueness implies a ∈ AG, giving the
required exactness.

More generally, for any G-module B, the functor HomG(B,−) is left-exact; the proof
is similar.

Also, the functor A 7→ AG is right-exact. Again, this is a special case of the functor
B ⊗G − being right exact. The proofs of these are a bit more involved and we leave
them as an exercise. One approach is to use the adjoint functor theorem: the identity
B⊗G − : Z − mod→ G− mod has a left adjoint Hom(B,−) : G− mod→ Z − mod:

HomZ(B⊗G A,C) = HomG(A, HomZ(B,C))

Example. To show A 7→ AG is not an exact functor: G = C2 = {1, t}. Let χ be the character
χ : G→ ±1 with χ(t) = −1. Define a G-module Zχ which is Z as an abelian group, and
on which g acts by ga = χ(g)a.

Then there is an exact sequence

0→ Zχ
×2→ Zχ → Z/2→ 0.

The invariants of this sequence are

0→ 0→ 0→ Z/2→ 0

is not exact at Z/2
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The coinvariants are:

0→ Z/2 ×2→ Z/2 ∼→ Z/2→ 0

is not exact at the first Z/2.

Example. A number-theoretic example:
Let L/K ramified quadratic extension of local fields (though any degree works), eg

Q(
√
p)/Q.

1→ O×L → L×
v→ Z→ 1

is an exact sequence of G = Gal(L/K) modules but the invariants are

1→ O×K → K×
v→ Z→ 1

which is not exact at Z by definition of ramification.

A few more properties that modules can have: We say that a G-module is free if it is
the direct sum of copies of Z[G].

If F is free then HomG(F,−) is exact (F is projective). Equivalently, for any surjection
π : B� C, and any φ : F→ C there is a lifting φ̃ : F→ B.

Also, F⊗G − is exact (F is flat).
If A is any G-module, there exists a surjection F→ A where F is a free G-module (this

category has “enough projectives”)

Definition. A G-module is co-induced if it is of the form coIndG(X) = HomZ(Z[G],X) for
an abelian group with G action given by gφ(b) = φ(bg) (this is not the standard action
on Hom(Z[G],X)).

A G-module is induced if it is of the form IndG(X) = Z[G]⊗ X. Here the G-action is
the standard one: g(b⊗ x) = gb⊗ x.

(These definitions are actually equivalent for finite G!)
“Baby Frobenius reciprocity:”

HomG(B, coIndG(X)) ∼= HomZ(B,X) (7)

HomG(IndG(X),B) ∼= HomZ(X,B). (8)

EveryG-moduleA injects into a co-inducedG-module: take Hom(G,A), then a 7→ φa
where φa(g) = ga.

Also every G-module has a surjection from an induced G-module: take Z[G]⊗ A,
with map given by (g,a) 7→ ga.
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8.2 Our plan

We will construct group cohomology functors Hq(G,A), q ≥ 0 such that H0(G,A) =

AG, and such that a short exact sequence of modules gives a long exact sequence in
cohomology.

We’ll also construct group homology functors Hq(G,A), q ≥ 0, such that H0(G,A) =
AG and such that a short exact sequence of modules gives a long exact sequence in
homology.

We’ll then splice them together, to get what’s called Tate cohomology functors Ĥq(G,A)
for q ∈ Z, where

Ĥq(G,A) =


Hq(G,A) for q ≥ 1
AG/NA for q = 0

ker(N : AG → A) for q = −1

H−1−q(G,A) for q ≤ −2

In particular, note here that if G = Gal(L/K) and A = L×, then H0(G,L×) = K×/NL×,
which is a group we’ve seen before in the statements of local class field theory. Ulti-
mately we’ll be able to define the Artin map as a cup product with a given cohomology
element.

9 September 28

9.1 Clarification about co-induced modules:

Last time we defined coIndG X = HomZ(Z[G],X). This is correct as abelian groups, but
the standard way of giving coIndG X a G-module structure is not by using the module
structure on HomZ(A,B) that I defined last time. That would give (gφ)(b) = φ(g−1b).
Instead, we will define the G-module structure on coIndG(X) by gφ(b) = φ(bg).

The upshot here is that if R is any non-commutative ring, in order to make HomZ(A,B)
into a left R-module, we need to choose a left R-module structure on B and a right R-
module structure on A. For Z[G] there are two different natural right R-module struc-
tures.

Ultimately, this doesn’t actually affect the definition of co-induced modules, since
the two different right G-module structures on Z[G] are isomorphic to each other via the
map

∑
cgg 7→∑ cgg

−1.
However, last time I stated that the map A 7→ coInd(A) given by a 7→ φa where

φa(g) = ga is a G-module homomorphism; this is true with the G-module structure we
have just defined, as (hφa)(g) = φa(gh) = gha = φha(g).
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9.2 Group cohomology as derived functor

Now want to define the group cohomology functors Hq(G,A) for q ≥ 1. We will do this
by giving a list of axioms they satisfy and showing that those specify a unique functor.

Theorem 9.1. There is a unique family of functors Hq(G,−) : G-mod → Z-mod, q ≥ 0 such
that

(i) H0(G,A) = AG

(ii) Any short exact sequence 0 A B C 0
i j

of G-modules induces
a long exact sequence

0 H0(G,A) H0(G,B) H0(G,C)

H1(G,A) H1(G,B) H1(G,C)

H2(G,A) . . .

i∗ j∗

δ

i∗ j∗

δ

(iii) Hq(G,A) = 0 for q ≥ 1 if A is coinduced.

Proof. First we show existence. To do this, we will first choose a resolution of Z by free
G-modules, that is, an exact sequence

· · · P2 P1 P0 Z
d2 d1 ε

where all Pi are free G-modules. We can construct this inductively: choose a free module
P0 with a surjective map ε : P0 → Z, choose P1 free with a surjection d1 : P1 → ker ε,
and then for each each q ≥ 2 choose a free module Pq with a surjective map dq : Pq →
kerdi−1.

Now, define a complex K by Ki = HomG(Pi,A); let di : Ki−1 → Ki be the map induced
by di : Pi → Pi−1. Let Hi(G,A) be the cohomology of the chain complex K:

Hi(G,A) =

ker(di+1 : HomG(Pi,A)→ HomG(Pi+1,A))/ im(di : HomG(Pi−1,A)→ HomG(Pi,A)).

for i ≥ 1, and

H0(G,A) = ker(d1 : HomG(P0,A)→ HomG(P1,A))
∼= HomG(P0/d1(P1),A)
∼= HomG(Z,A) ∼= AG.
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Now we construct the long exact sequence. Let 0→ A→ B→ C→ 0 be a short exact
sequence of G-modules. Because Pi is projective, we have a short exact sequence

0→ HomG(Pq,A)→ HomG(Pq,B)→ HomG(Pq,C)→ 0

for all q, giving a short exact sequence of chain complexes. The standard snake lemma
construction gives the desired long exact sequence.

Finally, if A = coIndG(X) is co-induced, then for each i, Ki = HomG(Pi,A) ∼=
HomZ(Pi,X). Because each Pi is a free Z-module, this sequence is exact and all Hq(G,A)
vanish for q ≥ 1.

We now prove uniqueness by what is known as a dimension shifting argument. We
induct on q.

For base case of q = 0, we know already that H0(G,A) = AG is uniquely determined.
Now we do the inductive step. We’ve seen that an A injects into a co-induced module

A∗ = Hom(Z[G],A). The short exact sequence 0 → A → A∗ → A ′ → 0 gives H1(A) ∼=
ker(H0(A∗) → H0(A ′) and Hq+1(A) ∼= Hq(A ′) for all q ≥ 1, so uniqueness follows by
induction.

It’s straightforward to show that the long exact sequence is natural in the sense that,
if

0 A B C 0

0 A ′ B ′ C ′ 0

i

φA

j

φB φC

i ′ j ′

is a morphism of short exact sequences, the diagram

Hq(G,A) Hq(G,B) Hq(G,C) Hq+1(G,A)

Hq(G,A ′) Hq(G,B ′) Hq(G,C ′) Hq+1(G,A ′)

i∗

(φA)∗

j∗

(φB)∗

δ

(φC)∗ (φA)∗

i ′∗

j ′∗

δ ′

commutes.
Example. Let G = Cn = 〈t | tn = 1〉, so Z[G] = Z[t]/(tn − 1) is commutative. Recall that
N =

∑
g∈G g = 1+ t+ t2 + · · ·+ tn−1. Then

· · ·Z[G] Z[G] Z[G] Z[G] Z
×(t−1) ×N ×(t−1) ε

is a free resolution. Since HomG(Z[G],A) ∼= A for any A, the chain complex K∗ is

A A A A · · · .
×(t−1) ×N ×(t−1) ×N

As a result, we compute H0(A) = ker(t− 1) = AG, H2i+1(A) = kerN/(t− 1)A for i ≥ 0,
and H2i(A) = AG/NA for i ≥ 1.
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9.3 The standard resolution

However, we’re going to need to be more systematic to get free resolutions for an arbi-
trary G.

Fortunately, there is a standard way of producing these.
Let Pi = Z[Gi+1] be the span of all q+ 1-tuples (g0, . . . ,gi), with diagonal action of

G. That is, g(g0, . . . ,gi) = (gg0, . . . ,ggi). This is a free G-module: one possible basis is
the elements of the form (1,g1, . . . ,gi).

Define di : Pi → Pi−1 by di((g0, . . . ,gi)) =
∑
j(−1)

j(g0, . . . , ĝj . . . ,gi).
Then didi+1 = 0. On the other hand, if di(g0, . . . ,gi) = 0 then for any s ∈ G, have

also di+1(s,g0, . . . ,gi) = (g0, . . . ,gi), so in fact kerdi = imdi+1 and hence we have a
projective resolution.

(A more homological interpretation: for s ∈ G, the map h(g0, . . . ,gi) = (s,g0, . . . ,gi)
gives a chain homotopy : dh+ hd = 1, implying exactness.)

We can interpret the elements of Hom(Pi,A) as follows.

Definition. A homogeneous i-cochain is a map f : Gi+1 → A such that f(gg0, . . . ,ggi) =
gf(g0, . . . gi). The set of homogeneous i-cochains is denoted by C̃i(G,A).

Then we have identifications Hom(Pi,A) ∼= C̃i(G,A) for all i. The differential di :
C̃i−1(G,A)→ C̃i(G,A) on homogeneous cochains is given by

(dif)(g0, . . . ,gi+1) =
∑
j

(−1)jf(g0, . . . , ĝj, . . . ,gi).

The kernel of di+1 in C̃i(G,A) is called the group of homogeneous cocycles Z̃(G,A).
The image of di inside C̃i(G,A) is called the homogeneous coboundaries B̃(G,A). We have
Hi(G,A) ∼= Z̃i(G,A)/B̃i(G,A).

Next time we’ll change variables to work with inhomogeneous cochains, which are
easier to compute with. For now let’s just work out the case of i = 1 to see how things
go.

Example. We have C̃0(G,A) is the set of maps f : G→ A with f(gg0) = gf(g0). Any such
map is determined by f(1) = a, so C̃0(G,A) ∼= A.

Now C̃1(G,A) is the set of maps f : G×G → A with f(gg0,gg1) = gf(g0,g1). Any
such map is determined by the function φ : G→ A given by φ(g) = f(1,g).

We now work out d1 : A ∼= C̃0(G,A) → C̃1(G,A). For a ∈ A, d1(a) is the function
(g0,g1) 7→ g0(a)−g1(a), and Z̃1(G,A) consists of all homogeneous cochains of this form.
The corresponding function φ : G→ A is g 7→ a− g(a).

On the other side, the map d2 : C̃1(G,A)→ C̃2(G,A) sends a homogeneous 1-cochain
f to the 2-cochain d2f given by

d2f(g0,g1,g2) = f(g1,g2) − f(g0,g2) + f(g0,g1).
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The homogeneous cochain f lies in Z̃2(G,A) if and only if this is always 0. By homo-
geneity, it’s enough to check this when g0 = 1: we change variables to (1,g,gh). Then
our cocycle condition is

0 = f(g,gh) − f(1,gh) + f(1,g) = gφ(h) −φ(gh) +φ(g),

writing it in terms of the function φ(g) = f(1,g).
As a result, we see that

H1(G,A) ∼=Z̃1(G,A)/B̃1(G,A)
∼=
(
functions φ : G→ A with φ(gh) = φ(g) + gφ(h)

)/(
functions φ : G→ A of the form φ(g) = a− g(a)

)
.

10 October 3

10.1 Cohomology via inhomogeneous cochains

We generalize the change-of-variables calculation we did to compute H1 last time.

Definition. An inhomogeneous i-cochain is a map φ : Gi → A. We let Ci(G,A) denote
the abelian group of inhomogeneous i-cochains.

We can map homogeneous cochains to inhomogeneous cochains by the following
change of variables map. We send a homogeneous cochain f to the inhomogeneous
cochain φ with

φ(g1, . . . ,gn) = f(1,g1,g1g2, . . . ,g1g2 · · · gn).

This map is an isomorphism of abelian groups C̃i(G,A) ∼= Ci(G,A). Via this isomor-
phism, the map di : C̃i−1(G,A)→ C̃i(G,A) induces a map di : Ci−1(G,A)→ Ci(G,A).

We can work out what this is explicitly: the map di+1 : Ci(G,A) → Ci+1(G,A) sends
an inhomogeneus i-cochain φ to the inhomogeneous i+ 1-cochain di+1φ given by

(di+1φ)(g1, . . . ,gi+1) = g1φ(g2, . . . ,gi+1) −φ(g1g2,g3, . . . ,gi+1)

+φ(g1,g2g3, . . . ,gi+1) + · · · (−1)iφ(g1,g2, . . . ,gigi+1) + (−1)i+1φ(g1,g2, . . . ,gi). (9)

(My indices were off by one in class and I called this di.)
Let the group of inhomogeneous cocycles Zi(G,A) = ker(di+1 : Ci(G,A) → Ci+1(G,A))

and the inhomogeneous coboundaries Bi(G,A) = im(di : Ci−1(G,A) → Ci+1(G,A)). Then
we have Hi(G,A) ∼= Z̃i(G,A)/B̃i(G,A) ∼= Zi(G,A)/Bi(G,A).
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Example. We work out the maps di for small i.
The map

d1 : C0(G,A) ∼= A→ C1(G,A)

sends an element a ∈ A to the 1-cochain φ(a) = ga− a.
The map

d2 : C1(G,A)→ C2(G,A)

sends a 1-cochain φ to the 2-cochain d2φ given by

(d2φ)(g1,g2) = g1φ(g2) −φ(g1g2) +φ(g1).

The map
d3 : C2(G,A)→ C3(G,A)

sends a 2-cochain φ to the 3-cochain d3φ given by

(d3φ)(g1,g2,g3) = g1φ(g2,g3) −φ(g1g2,g3) +φ(g1,g2g3) −φ(g1,g2)

In consequence: inhomogeneous 1-coycles are maps G→ A with

φ(gh) = gφ(h) +φ(g).

These are also called crossed homomorphisms. Inhomogeneous 1-coboundaries are func-
tions of the form φa(g) = ga− a.

Note that if G acts trivially on A, Z1(G,A) = Homgroups(G,A) and B1(G,A) = 0, so
H1(G,A) ∼= Homgroups(G,A).

We have that Z2(G,A) is the group of maps G×G→ A with

g1φ(g2,g3) −φ(g1g2,g3) +φ(g1,g2g3) −φ(g1,g2) = 0

and B2(G,A) is the group of maps of the form

d2ψ = g1ψ(g2) −ψ(g1g2) +ψ(g1)

for a function ψ : G→ A.

Suppose we have a short exact sequence 0 → A
i→ B

j→ C → 0. Then we’ve con-
structed a corresponding long exact sequence. In particular, we have a connecting ho-
momorphism δ : CG = H0(G,C) → H1(G,A), which we can now describe explicitly in
terms of inhomogeneous cocycles. Pick b ∈ B lifting C, then the map g 7→ g(b) − b

lies in Z1(G,A). Replacing b by b ′ = b+ a adds an arbitrary element of B1(G,A). Fi-
nally, this cohomology class is trivial if and only if we can choose b ∈ BG, showing that
BG → CG → H1(G,A) is exact.
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10.2 H1, H2 and group extensions

We’re now going to pause to talk a bit about other places in math where the group
H1(G,A) comes up.

Recall that giving a group G acting on an abelian group A, the semidirect product
GnA is, as a set, G×A, but with the product given by

(g1,a1)(g2,a2) = (g1g2,a1 + g1a2).

We have a short exact sequence

0→ A→ GnA→ G→ 0. (10)

We claim that elements of Z1(G,A) correspond to splittings of this exact sequence. In-
deed, any such splitting must take the form g 7→ (g,φ(g)), and this is a group homo-
morphism if and only if

(gh,φ(gh)) = (g,φ(g))(h,φ(h)) = (gh,φ(g) + gφ(h)).

Additionally, the group A acts on the set of splittings G 7→ GnA by conjugation. One
can show that this conjugation action has the effect of adding a coboundary to φ. It then
follows that elements of H1(G,A) are in bijection with A-conjugacy classes of splittings
of the short exact sequence (10).

There is a similar interpretation of H2(G,A), involving group extensions

0→ A→ X
π→ G→ 0.

Given any such group extension, the group X acts on the normal subgroup A by con-
jugation. Because A is abelian, this action descends to an action of X/A = G on A by
conjugation. For any G-module A, the set H2(G,A) is in bijection with the set of isomor-
phism classes of group extensions of G by A such that the action of G on A coming from
the group extension agrees with the action coming from the G-module structure on A.

We won’t do all the details, but we will give the map in one direction. Given a
group extension, take a section s : G → X of the projection map π : X → G. Here
s is just some map of sets, not necessarily a homomorphism. Then we construct a
map ψ : G × G → A by s(g)s(h) = ψ(g,h)s(gh). Associativity is then equivalent to
ψ ∈ Z2(G,A), and replacing s by a different map s ′ adds an element of B2(G,A) to ψ.

10.3 Torsors

We now do another interpretation of H1 that comes up a lot in number theory.
If A is an abelian group, an A-torsor is a set X with a simply transitive action of A.

(One way of saying this is that X is nonempty, and X×A ∼= X×X in the category of sets,
via the map (x,a) 7→ (x,ax).)
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If A is a G-module, then we require that X be a G-set that makes the above an
isomorphism in the category of G-sets, that is: ga(gx) = g(ax)

(For clarity, we’ll often prefer to either write the A-action additively, eg ga+ gx =

g(a+ x), or write the G-action in superscript: ga gx = gax.)
Example. If A is an abelian group or G-module, then A is a torsor for itself, known as
the “trivial torsor”. In fact, if we are working just in the context abelian groups with no
G-action, then any A-torsor X is isomorphic to A. To give this isomorphism, pick any
x0 ∈ X. Then the map a 7→ a+ x0 is an isomorphism of torsors.
Example. A number-theoretic example. Let L/K be a field extension where L contains
the nth roots of unity. Let G = Gal(L/K) and A = µn(L). Then for any c ∈ (L×)n, the set
X = {a | an = c} is a torsor for µn(L) with action given by multiplication.

This torsor may or may not be trivial: if c = 1, then X = A. (More generally, if
c ∈ (K×)n then X ∼= A as torsors. Later we’ll be able to show this is if and only if.) On
the other hand, if µn(K) ⊂ L but c /∈ (K×)n, then A has trivial G-action, but X does not,
so they cannot be isomorphic torsors.

Theorem 10.1. The set of A-torsors is in bijection withH1(G,A). This bijection sends the trivial
A-torsor A to 0 ∈ H1(G,A).

Proof. We give maps in both directions. Suppose that [φ] ∈ H1(G,A) is represented by a
cocycle φ ∈ Z1(G,A).

Then we define a torsor X as follows. As an A-set, X = A with usual A-action.
However, the G action on A is twisted by φ as follows:

g ∗φ x = gx+φ(g).

We check that this gives a group action:

g ∗φ (h ∗φ x) = g(h ∗φ x) +φ(g)
= g(hx+φ(h)) +φ(g)

= ghx+ (φ(g) + gφ(h))

= (gh)x+φ(gh)

= (gh) ∗φ x,

using the fact that φ is a 1-cocyle. We also clearly have g ∗φ (a + x) = ga + g ∗φ (x).
Finally, to check that this map is well-defined, if φ ′ = φ+ (ga− a), then we have g ∗φ ′
(x) + a = g∗φ(x+ a), giving an isomorphism between the corresponding torsors.

In the other direction, suppose that X is an A-torsor. Choose any x0 ∈ X. Then we can
define a map φ : G→ A by φ(g) is the unique element of A satisfying g(x0) = φ(g) + x0.
Exercise to check that this is an element of Z1(G,A). If we replace x by a+ x, the cocycle
φ is replaced by φ+ g(a) − a, so the class [φ] ∈ H1(G,A) is well-defined.

Finally, it’s a simple exercise to check that these two maps are inverses.
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Using torsors, we can give another explicit interpretation of the connecting homomor-

phism δ : H0(G,C) → H1(G,A) coming from the exact sequence 0 → A
i→ B

j→ C → 0.
For c ∈ CG, the preimage j−1(c) is a torsor for A, which corresponds to the element
δ(c) ∈ H1(G,A) via the bijection above.

10.4 Group homology

We now define group homology functors Hq(G,A) for q ≥ 0. Recall that we have a right-
exact functor A 7→ AG from G-modules to Z-modules; here AG = A/IGA = A⊗G Z.

Theorem 10.2. There is a unique family of functors Hq(G,A), q ≥ 0 with the properties that

a) H0(G,A) = AG.

b) Hq(G,A) = 0 for q ≥ 1 if A is an induced G-module.

c) Any short exact sequence 0 A B C 0
i j

of G-modules induces a
long exact sequence

· · · H2(G,B) H2(G,C)

H1(G,A) H1(G,B) H1(G,C)

H0(G,A) H0(G,B) H0(G,C) 0

i∗ j∗

δ

i∗ j∗

δ

i∗ j∗

Proof. The proof here is very similar to that for cohomolgy.
To do the construction, let · · · F2 → F1 → F0 → Z be a free (flat) resolution of Z. Let

Hq(G,A) be the homology of the chain complex Fi ⊗G A. One checks that this satisfies
the required conditions in the same way as one does for cohomology.

The proof of uniqueness is again a dimension-shifting argument, using induced mod-
ules rather than co-induced modules, and reversing the directions of the arrows.

11 October 5

11.1 Group homology, continued

We can use the standard resolution · · ·→ Z[G2]→ Z[G]→ Z to compute group homol-
ogy the same way that we did for cohomology. However, we won’t go into the details
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here. One reason is that, for the purposes of class field theory, what we mostly need
is H0(G,A) = AG, plus one specific case of H1, which we work out now by dimension
shifting:

Proposition 11.1. Let G be a group. Then H1(G, Z) ∼= IG/(IG)2 ∼= Gab.

Proof. We have H1(G, Z[G]) = 0 because Z[G] is induced. Hence the short exact sequence
0→ IG → Z[G]→ Z→ 0 gives a long exact sequence

0→ H1(G, Z)→ IG/(I2G)→ Z[G]/IG.

Here the last map is the zero map, so H1(G, Z) ∼= IG/(IG)2.
Now, recall that IG is a free Z-module with basis ag = g − 1 for g 6= 1 ∈ G. To

form the quotient IG/(I2G), we impose all relations of the form (g− 1)(h− 1) = 0 for all
g,h ∈ G. But

(g− 1)(h− 1) = gh− g− h+ 1 = agh − ag − ah.

Hence IG/(I2G) is the abelian group with generators {ag} and relations agh − ag − ah.
This is the same thing as Gab.

Digression that will be relevant later: Let H be a group that is contained in a larger
group G. By the above, H1(G, Z) ∼= IH/(IH)2.

But also, we use the short exact sequence 0 → IG → Z[G] → Z → 0, now viewed
in the category of H-modules. The Z[H]-module Z[G] is free, hence induced. The exact
sequence is now

0→ H1(H, Z)→ IG/(IHIG)→ Z[G]/IHZ[G]

so we also have H1(H, Z) ∼= ker : IG/(IHIG)→ Z[G]/IHZ[G] = IHZ[G]/IHIG.
Exercise: check directly that IHZ[G]/IHIG ∼= IH/I2H.

11.2 Change of group and compatible pairs

So far we’ve just talked about Hq(G,A) and Hq(G,A) as functors in A. However, they
can actually be viewed as functors in the pair (G,A). Cohomology is contravariant in G
and covariant in A, while homology is covariant in G and covariant in A.

Compatible pairs for cohomology: Let (G,A) and (G ′,A ′) be pairs where A is a
G-module and A ′ is an G ′-module. We say that they are compatible (for cohomology) if
there are morphisms ρ : G ′ → G and λ : A→ A ′ such that λ(ρ(g ′)a) = g ′a.

Example. If H is a subgroup of G, then (H,A) and (G,A) are compatible via the inclusion
map i : H→ G and the identity map idA : A→ A.

Example. If H is a normal subgroup of G, then (G,A) and (G/H,AH) are compatible via
the quotient map π : G→ G/H and the inclusion i : AH → A.
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When (G,A) and (G ′,A ′) are compatible, the map ρ : G ′ → G gives a map ρ∗ :

Z[(G ′)q+1]→ Z[Gq+1]. Recall that the standard resolutions of G ′ and G respectively are
given by Pq(G ′) = Z[(G ′)q+1] and Pq(G) = Z[Gq+1], and ρ∗ maps Pq(G ′) to Pq(G).

We then get a map Hom(ρ∗, λ) : HomG(Pq(G),A)→ HomG ′(Pq(G
′),A). and this map

of chain complexes gives an induced map on homology Hq(G,A)→ Hq(G ′,A ′).
We can also describe this map explicitly in terms of inhomogeneous cochains: if

[φ] ∈ Hq(G,A) is represented by a cocycle φ ∈ Zq(G,A), the induced map sends it to
the class [φ ′] of the cocycle φ ′ ∈ Zq(G,A) given by

φ ′(g ′1, . . . ,g
′
q) = λ(φ

′(ρ(g ′1, . . . ,g
′
q))).

Example. For the compatible pair (G,A) and (H,A), with maps i : H → G and idA :

A → A, the induced map is denoted Res : Hq(G,A) → Hq(H,A) and is called re-
striction. If we work with inhomogeneous cochains, this map is literally restriction:
(Resφ)(h1, . . . ,hq) = φ(h1, . . . ,hq).

Example. For the compatible pair (G/H,AH) and (G,A) with maps π : G → G/H
and i : A → AH, the induced map is denoted Inf : Hq(G/H,AH) → Hq(G,A). If H
is normal, then there is also a natural map Inf : Hq(G/H,AH) → Hq(G,A). Again
Infφ(g1, . . . ,gq) = φ(g1H . . . ,gqH)

We claim that for H ⊂ G a normal subgroup and any G-module A, the composite
map Inf ◦Res : Hq(G/H,AH)→ Hq(G,A) is the zero map.

Note that for any φ ∈ Hq(G,A), the inhomogeneous cocycle ψ = Inf ◦Res(φ) is a
constant map ψ : Hq → A. In class I claimed that any such cocycle ψ that is constant
must be the zero cocycle. This is true if q is odd: in that case plugging in all hi = 1 to the
cocycle condition gives ψ(1, . . . , 1) = 0, and so ψ = 0. However, if q is even, all one can
deduce is that if the function ψ(h1, . . . ,hq) = a is a cocycle, then a ∈ AH. In that case,
however, ψ = dψ ′ where ψ ′ ∈ Zq−1(G,A) is the constant cocycle: ψ ′(h1, . . . ,hq−1) = a.

(A slicker way of showing Inf ◦Res = 0 is to make a commutative diagram of induced
maps

Hq(G/H,AH) Hq(G,A)

Hq(H/H,AH) Hq(H,AH)

Inf

Res Res

Inf

and note that Hq(H/H,AH) = Hq(1,AH) = 0, so the composition either way is the zero
map.)

Compatible pairs for homology: Let (G,A) and (G ′,A ′) be pairs where A is a G-
module and A ′ is an G ′-module. We say that they are compatible (for homology) if
there are morphisms ρ : G → G ′ and λ : A → A ′ such that λ(ga) = ρ(g)λ(a). Under
these conditions, we get morphisms Hq(G,A) → Hq(H,A), for similar reasons as with
cohomology.
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Example. The pairs (H,A) and (G,A) are compatible with i : H → G the inclusion map
and idA : A→ A the identity map.

The induced map Cor : Hq(H,A) → Hq(G,A) is know as corestriction. For q = 0 this
is the quotient map A/IGA→ A/IHA; for q = 1 and A = Z, this agrees with the natural
map Hab → Gab.

The functors Res and Cor have the property of compatibility with derived long exact

sequences: if 0 → A
i→ B

j→ C → 0 is a long exact sequence of G-modules, it is also a
long exact sequence of H-modules, and the diagrams

. . . Hq(G,A) Hq(G,B) Hq(G,C) Hq+1(G,A) . . .

. . . Hq(H,A) Hq(H,B) Hq(H,C) Hq+1(H,A) . . .

i∗

Res

j∗

Res

δ

Res Res

i∗ j∗ δ

and

. . . Hq(H,A) Hq(H,B) Hq(H,C) Hq+1(H,A) . . .

. . . Hq(G,A) Hq(G,B) Hq(G,C) Hq+1(G,A) . . .

i∗

Cor

j∗

Cor

δ

Cor Cor

i∗ j∗ δ

commute.
In fact, the family of functors Res : Hq(G,A)→ Hq(H,A) can be characterized by the

above compatibility with exact sequences along with the property that Res : H0(G,A)→
H0(H,A) is the inclusion AG → AH. Just those properties are enough to compute Res for
any q and A by dimension-shifting.

Likewise: Cor : Hq(H,A)→ Hq(G,A) is characterized by the property Cor is compat-
ible with exact sequences and Cor : H0(H,A)→ H0(G,A) is the quotient map AH → AG.

11.3 The inflation-restriction exact sequence

Theorem 11.2. There exists an exact sequence

0→ H1(G/H,AH) Inf→ H1(G,A) Res→ H1(H,A)

Proof. We check this using cochains.
First, if φ ∈ Z1(G/H,AH) is such that [φ] lies in the kernel of Inf, then there exists

a ∈ A such that φ(gH) = ga − a for all g ∈ G. This implies that ha − a = φ(H) =

a− a = 0 for all h ∈ H, so a ∈ AH, and so φ ∈ B1(G/H,AH).
If φ ∈ Z1(G,A) is such that [φ] lies in the kernel of res, then there exists a ∈ A such

that for all h ∈ H, φ(h) = ha−a. By subtracting off the cocycle g 7→ ga−a, may assume
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that φ(h) = 0 for all h ∈ H. Then we have φ(gh) = gφ(h) for all g ∈ G, h ∈ H, which
means that φ factors through a map φ̃ : G/H→ A. Also have φ(g) = φ(hg) = hφ(g), so
φ has image in AH. Hence φ̃ maps G/H → AH, and is a cocycle because φ is, and has
Inf(φ̃) = φ by construction.

This is not in general true for Hq with q > 1; the correct generalization to larger q is
a spectral sequence. However, in a special case, it does hold:

Theorem 11.3. If Hi(H,A) = 0 for 1 ≤ i < q, then there exists an exact sequence

0 Hq(G/H,AH) Hq(G,A) Hq(H,A).Inf Res

Proof. This is a dimension-shifting argument. We induct on q, with q = 1 already proved.
Now assume q > 1 and that we know the inductive hypothesis for q− 1.
Let A∗ = coIndG(A) = HomZ(Z[G],A). We have a short exact sequence 0 → A →

A∗ → A ′ → 0 of G-modules.
We observe that A∗ is also co-induced as an H-module: Z[G] =

⊕
gH∈G/H gZ[H] is

a free right Z[H]-module, so HomZ(Z[G],A) is a product of copies of HomZ(Z[H],A),
and a product of co-induced modules is co-induced.

Hence the connecting homomorphism gives isomorphisms Hi(H,A ′) ∼= Hi+1(H,A ′)
for i ≥ 1. For 1 ≤ i ≤ q− 1, this gives us Hi(H,A ′) = 0. Therefore, we may apply the
inductive hypothesis to A ′, and we find that

0 Hq−1(G/H, (A ′)H) Hq−1(G,A ′) Hq−1(H,A ′).Inf Res

For i = q, we get that the connecting homomorphism δ : Hq−1(H,A ′) → Hq(H,A) is
an isomorphism.

We also know, from the long exact sequence on G-modules, that δ : Hq−1(G,A ′) →
Hq(G,A) is an isomorphism.

To handle Hq−1(G/H, (A ′)H), we note that the short exact sequence 0 → A → A∗ →
A ′ → 0 of A-modules gives a long exact sequence starting

0 AH (A∗)H (A ′)H H1(H,A)

but H1(H,A) = 0 by assumption so this is really a short exact sequence

0 AH (A∗)H (A ′)H 0.

Also, (A∗)H = HomZ(G,A)H = HomZ(G/H,A) is a co-inducedG/H-module. Hence,
in the long exact sequence in cohomology, the map Hq−1(G/H, (A ′)H) → Hq(G/H,AH)
are isomorphisms.
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Putting this all together gives a commutative diagram

0 Hq−1(G/H, (A ′)H) Hq−1(G,A ′) Hq−1(H,A ′)

0 Hq(G/H,AH) Hq(G,A) Hq(H,A)

Inf

δ

Res

δ δ

Inf Res

where the top row is exact by the inductive hypothesis, and all the vertical maps are
isomorphisms, hence the bottom row is also exact.

12 October 10

12.1 Tate Cohomology

Let G be a finite group. Recall we have the element N =
∑
g∈G g ∈ Z[G] and have norm

map N : A→ A given by left multiplication by g.
Observe that imN ⊂ AG and kerN ⊃ IGA, so N induces a map N∗ : H0(G,A) =

AG → AG = H0(G,A).
We now define the Tate cohomology groups for all q:

Definition. The Tate cohomology groups Ĥq(G,A) are defined by

Ĥq(G,A) = Hq(G,A) for q ≥ 1
Ĥ0(G,A) = cokN∗ : AG → AG

Ĥ−1(G,A) = kerN∗ : AG → AG

Ĥ−1−q(G,A) = Hq(G,A) for q ≥ 1.

Using the snake lemma to splice together the long exact sequences

Ĥ−2(G,C) AG BG CG 0

0 AG BG CG Ĥ1(G,A)

N∗A N∗B N∗C

to get a doubly infinite long exact sequence

Ĥ−2(G,C) Ĥ−1(G,A) Ĥ−1(G,B) Ĥ−1(G,C)

Ĥ0(G,A) Ĥ0(G,B) Ĥ0(G,C) Ĥ1(G,A)

Recall that if G is finite, a G-module A is induced if and only if it is co-induced.
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Proposition 12.1. If A is induced (equivalently, co-induced), then Ĥq(G,A) = 0 for all q ∈ Z.

Proof. We already know this for q 6= 0,−1. To resolve those two cases, enough to show
that N∗ : AG → AG is an isomorphism.

Assume then that A = ⊕g∈GgX is a co-induced G-module. Then, on the one hand,
the map AG → X given by [

∑
g∈G gxg] 7→ ∑g∈G xg is an isomorphism, with inverse

induced by the map X→ A. On the other hand, the map X→ AG given by x 7→∑g∈G gx
is also an isomorphism. The composition of these two isomorphisms is the norm map
N : AG → AG, which must also be an isomorphism.

We will now give an alternative but equivalent definition of the Tate cohomology
groups.

Let
· · ·→ P2 → P1 → P0 → Z→ 0

be a free resolution of Z in the category of Z-modules.
By dualizing, get an exact sequence

0→ Z→ Hom(P0, Z)→ Hom(P1, Z)→ Hom(P2, Z)→ · · ·
For q ≤ −1 define Pq = Hom(P−1−q, Z), so

0→ Z→ P−1 → P−2 → P−3 → · · ·
is an exact sequence. We can then join the two exact sequences to get

· · ·→ P2 → P1 → P0 → P−1 → P−2 → P−3 → · · ·
We can then define Ĥq(G,A),q ∈ Z as the homology of the complex HomG(Pi,A),

q ∈ Z.
This is equivalent to our previous definition: we’ll check this for the cases of q ≥ 1

and q ≤ −2. For q ≥ 1 we have Ĥq(G,A) = Hq(G,A), as before.
We will now check that for Ĥ−1−q(G,A) ∼= Hq(G,A) for q ≥ 1. To do this, it will be

enough to check that HomG(P−1−q,A) ∼= Pq ⊗G A for q ≥ 0.
First, we observe that HomZ(P−1−q,A) ∼= HomZ(HomZ(Pq, Z),A) ∼= Pq ⊗Z A as Pq

is a free Z-module. Next, take G-invariants of both sides, to get

HomG(P−1−q,A) ∼= (Pq ⊗G A)G.

Now, because the free module Pq ∼= Z[G]m for some m, we have that Pq ⊗A ∼= Z[G]⊗
Am, which is induced.

Remark. One has to be a little careful here, because the action on Am is not the triv-
ial action. However it’s still the case that Z[G] ⊗ Am ∼= ⊕g∈Gg(1 ⊗ Am), so is in-
duced/coinduced.
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From the proof of the previous theorem, we have that N∗ : (Pq ⊗A)G → (Pq ⊗A)G is
an isomorphism. But (Pq ⊗A)G is equal to Pq ⊗G A, as desired.

The cases q = 0,−1 can be checked separately, see page 103 of Cassels-Frohlich

Example. G = Cn = 〈t | tn = 1〉. Recall that a free resolution is given by

· · · Z[G] Z[G] Z[G] Z[G] Z
×(t−1) ×N ×(t−1) ε

If we dualize, we get

Z Z[G] Z[G] Z[G] Z[G] · · ·ε∗ ×(t−1) ×N ×(t−1)

using the isomorphism Z[G] ∼= Hom(Z[G], Z) given by sending 1 ∈ Z[G] to the function
φ : Z[G]→ Z given by φ(

∑
g cgg) = c0. (In class, I had that the maps were multiplication

by t−1 − 1; that was a mistake and I’ve corrected it.)
Joining these up, we can check that the map P0 → P−1 sends 1 → N, so must be

multiplication by N, and our complete resolution is:

· · · Z[G] Z[G] Z[G] Z[G] Z[G] Z[G] Z[G] Z[G] · · ·

P3 P2 P1 P0 P−1 P−2 P−3 P−4

×(t−1) ×N ×(t−1) ×N ×(t−1) ×N ×(t−1)

Applying the functor HomG(·,A) obtain chain complex

· · · Z[G] Z[G] Z[G] Z[G] Z[G] · · ·

Hom(P2,A) Hom(P1,A) Hom(P0,A) Hom(P−1,A) Hom(P−2,A)

×N ×(t−1) ×N ×(t−1)

Finally obtain: Ĥ2q(G,A) = Ĥ0(G,A) = AG/NA andĤ2q+1(G,A) = Ĥ−1(G,A) =

kerN/(t− 1)A.

12.2 Restriction and corestriction for Tate cohomology

With Tate cohomology, we can dimension shift both up and down.
For anyGmoduleA, defineA+ to be the cokernel of the natural mapA→ coIndG(A),

and define A− to be the kernel of the natural map IndG(A) → A so that we have short
exact sequences

0→ A→ coIndG(A)→ A+ → 0

0→ A− → IndG(A)→ A→ 0.
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Then the long exact sequence in Tate cohomology yields isomorphisms

Ĥq+1(G,A) = Ĥq(G,A+)

Ĥq−1(G,A) = Ĥq(G,A−).

We can use this to define Resq : Ĥq(G,A) → Ĥq(H,A) and Corq : Ĥq(H,A) →
Ĥq(G,A) for all q ∈ Z.

In the case of restriction, we already have defined these maps for q ≥ 1. We now
define them for all q by downwards induction: assume we already know how to define
Resq+1. Then we define Resq to be the unique map that fills the commutative square

Ĥq(G,A) Ĥq+1(G,A−)

Ĥq(H,A) Ĥq+1(H,A−)

δ
∼

Resq Resq+1

δ
∼

Likewise, we can define Corq for all q.
The maps Resq and Corq are functorial, and compatible with formation of long exact

sequences, in that for every short exact sequence 0 → A → B → C → 0 we have
commutative diagrams

Ĥq(G,C) Ĥq+1(G,A)

Ĥq(H,C) Ĥq+1(H,A)

δ

Resq Resq+1

δ

and
Ĥq(G,C) Ĥq+1(G,A)

Ĥq(H,C) Ĥq+1(H,A).

δ

δ

Corq Corq+1

The proof of this is by dimension shifting/diagram chase.
Furthermore, the functors Resq : Ĥq(G,A) → Ĥq(H,A) are uniquely determined

by this property of compatibility with exact sequences plus the property that Res0 :

Ĥ0(G,A)→ Ĥ0(G,A) is induced by the inclusion AG → AH. The analogous statement is
true for Corq.

We won’t give an explicit description of Resq and Corq in all dimensions, but we will
do the following important cases.

Theorem 12.2. The map Cor0 : Ĥ0(H,A) → Ĥ0(G,A) is induced by the map NG/H : AG →
AH defined as

NG/H(a) =
∑

g∈G/H

ga.
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The map Res−1 : Ĥ−1(G,A)→ Ĥ−1(H,A) is induced by the map N ′G/H : AH → AG defined
as

[a] 7→ ∑
g∈G/H

[g−1a] =
∑
g∈H\G

[ga].

Proof. We’ll do the argument for Res−1; the argument for Cor0 is similar.
It’s enough to show that if 0→ A→ B→ C→ 0 is exact, then the following diagram

commutes:
Ĥ−1(G,C) Ĥ0(G,A)

Ĥ−1(H,C) Ĥ0(H,A).

δ

N ′G/H Resq+1

δ

Indeed suppose [c] ∈ Ĥ−1(G,C) = kerN∗G : (CG → CG). Let b ∈ B be a preimage of
c ∈ C. Then can compute

Res0(δc) = [NG(b)] ∈ Ĥ0(H,A) = AH/NHA.

In the other direction, have Res−1(c) =
∑
g∈H\G[gc], and

δRes−1(c) =
∑
g∈H\G

[NH(gb)] =
∑
g∈H\G

∑
h∈H

[hgb] = [NG(b)]

as desired.

Proposition 12.3. If G is a group and H is any subgroup, then, for all q, the map Cor ◦Res :

Hq(G,A)→ Hq(G,A) is multiplication by [G : H].

Proof. By dimension shifting, enough to check this when q = 0. If [a] ∈ H0(G,A) =

AG/NA, then
Cor(Resa) =

∑
g∈G/H

ga =
∑

g∈G/H

a = [G : H]a.

We obtain the following corollaries.

Corollary 12.4. a) If n = |G|, then Ĥq(G,A) is an n-torsion group

b) If G is finite and A is finitely generated over Z[G], then Ĥq(G,A) is finite.

c) If the multiplication by n map A→ A is an isomorphism, then Ĥq(G,A) = 0.

d) If Gp is a Sylow p-subgroup of G, then Res : Ĥq(G,A) → Ĥq(Gp,A) maps the Sylow
p-subgroup (Ĥq(G,A))p injectively into Ĥq(Gp,A)

47



e) If for fixed q and every prime p, Ĥq(Gp,A) = 0 where Gp is a Sylow p-subgroup of G, then
Ĥq(G,A) = 0.

Proof. For a), we apply the previous proposition when H = {1}. This then tells us that
the multiplication by n-map n : Hq(G,A) → Hq(G,A) factors through Hq(H,A) = 0, so
multiplication by n must be the zero map.

For b), the explicit description shows that Ĥq(G,A) is a finitely generated Z-module.
By part a) it’s also n-torsion, hence finite.

Part c) follows immediately from a).
For d), note that Res ◦Cor is multiplication by [G : Gp], which has order prime to p,

so is injective on (Ĥq(G,A))p. Hence the same is true of Res.
Finally, e) follows immediately from d), since (Ĥq(G,A))p must be 0 for all p.

13 October 12

13.1 Cup Products

If A, B are G-modules, one can define a bilinear cup product ∪ : Hq(G,A)×Hq(G,B)→
Hp+q(G,A⊗ B). If G is finite, can do the same on Tate cohomology, get a cup product
map: Ĥp(G,A)× Ĥq(G,B)→ Ĥp+q(G,A⊗ B).

We’ll start by giving an axiomatic description:
The family of bilinear maps ∪ : Hq(G,A)×Hq(G,B) → Hp+q(G,A⊗ B) are charac-

terized by the following properties:

a) ∪ is natural in both A and B: if f : A→ A ′, g : B→ B ′ are morphisms, f∗(a)∪ g∗(b) =
(f⊗ g)∗(a∪ b) for all a ∈ Hq(G,A), b ∈ Hq(G,B).

b) Item p = q = 0, ∪ : H0(G,A) × H0(G,B) → H0(G,A ⊗ B) is induced by the map
AG ⊗ BG → (A⊗ B)G.

c) Suppose that both sequences 0 → A → A ′ → A ′′ → 0 and 0 → A⊗ B → A ′ ⊗ B →
A ′′ ⊗ B→ 0 are exact.

Then for a ′′ ∈ Hp(G,A) and b ∈ Hp(G,B) have

δ(a ′′ ∪ b) = δ(a ′′)∪ b.

On the other side, if 0→ B→ B ′ → B ′′ → 0 is exact and so is 0→ A⊗B→ A⊗B ′ →
A⊗ B ′′ → 0, then

δ(a∪ b ′′) = (−1)pa∪ δ(b ′′).
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There are multiple different ways of defining these cup-products. One method is to
use dimension-shifting: note that the short exact sequences used in dimension-shifting
both split in the category of Z-modules, so they remain exact after tensoring over Z with
another module B.

Another approach uses resolutions. (This is done e.g. in Chapter V of Cohomology of
Groups by Ken Brown). If one has projective/ complete resolutions for a group G and
for for another group H, one can tensor them together to build a resolution for G×H.
This then lets one define a cross product

× : Hq(G,A)×Hq(H,B)→ Hq(G×H,A⊗ B).

If G = H then we compose with the restriction map Hq(G×G,A⊗ B) → Hq(G,A⊗ B)
coming from the diagonal inclusion G ↪→ G×G to obtain the cup product.

The cup product maps also have nice descriptions in terms of cochains.
If f and f ′ are homogeneous cochains, then define f∪ f ′ by

f∪ f ′(g0, . . . ,gp+q) = f(g0, . . . ,gp)⊗ f ′(gp, . . . ,gp+q).

If φ and φ ′ are inhomogeneous cochains, define φ∪φ ′ by

φ∪φ ′(g1, . . . ,gp+q) = φ(g1, . . . ,gp)⊗ g1 . . . gpφ ′(gp+1, . . . ,gq).

Cassels and Fröhlich give explicit descriptions for cup product in negative dimen-
sions, in terms of the standard resolution. Neukirch’s Bonn Lectures work out some
low-dimensional cases of cup product by dimension-shifting.

Cup product has the following properties:
Associativity: (a∪ b)∪ c = (a∪ (b∪ c)).

Supercommutativity. a ∪ b = (−1)pqb ∪ a Compatibility with restriction/corestriction:
Res(a∪ b) = Res(a)∪ Resb and Cor(a∪ Resb) = Cor(a)∪ b.

All of these can be proved by checking for p = q = 0 and then dimension-shifting.
For instance, to check the last one, for if H ⊂ G, a ∈ AH, b ∈ BG, have

NG/H(a⊗ b) =
∑
g∈G

g(a⊗ b) =
∑
g∈G

ga⊗ b = NG/H(a)⊗ b

which proves the result for g = 0.

13.2 Our plan

Notation: Let L/K be a finite Galois extension. If A is a Gal(L/K)-module, write
Hq(L/K,A) for Hq(Gal(L/K,A), this is called the Galois cohomology of A.

For any finite Galois extension L/K, we’ll construct an isomorphism

invL/K : H2(L/K,L×) ∼= (
1

n
Z/Z).
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This map is known as the invariant map, and gives a canonical generator uL/K =

inv−1(1/n) ∈ H2(L/K,L×).
We’ll then show that cup product ∪uL/K : H−2(L/K, Z)→ H0(L/K,L×) is an isomor-

phism. Since H−2(L/K, Z) ∼= Gal(L/K)ab and H0(L/K,L×) ∼= K×/NL×, this will give us
an isomorphism K×/NL× ∼= Gal(L/K)ab.

(This is actually a bit more than I’ve previously promised: when I stated the main
theorem of local class field theory before, I restricted to the case of L/K abelian, in which
case you get an isomorphism Gal(L/K) ∼= K×/NL×.)

We’ll need two main ingredients for this; first we’ll need to understand the Galois
cohomology of L×. Then we’ll need a purely cohomological result (Tate’s theorem) that
will guarantee for us that ∪uL/K is an isomorphism.

13.3 Hilbert’s Theorem 90

Now we’re going to do some Galois cohomology. Before doing Galois cohomology of L×,
I want to say something about why L+ doesn’t have any interesting Galois cohomology.

Proposition 13.1. L+ is a coinduced G-module.

This is a consequence of the Normal Basis Theorem, which we won’t prove here. It
says that there exists a ∈ L such that {ga | g ∈ G} forms a basis of L. Hence L+ =

⊕g∈Gg(aK+).

Corollary 13.2. Ĥq(L/K,L+) = 0 for all q ∈ Z.

(In the case that L is characteristic 0, this is also a consequence the fact that the
multiplication by n map L+ → L+ is an isomorphism).

Now we’ll show that L× has trivial H1. This is known as Hilbert’s theorem 90, though
Hilbert only actually proved the corollary that we’ll give later, and this extension is due
to Noether.

Theorem 13.3 (Hilbert 90). H1(L/K,L×) = 0.

Proof. Suppose φ ∈ C1(L/K,L×) is an inhomogeneous cocycle, so φ(gh) = φ(g) · (gφ(h)).
Must show that φ is a coboundary, equivalently that there exists a ∈ L such that
φ(g) = a/ga for all g ∈ G.

Choose x ∈ L such that a =
∑
g∈Gφ(g) · gx 6= 0. This is possible because of linear

independence of automorphisms.
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Then we manipulate

a =
∑
g ′∈G

φ(g ′) · g ′x

=
∑
gg ′∈G

φ(gg ′) · gg ′x

=
∑
g ′∈G

φ(g) · gφ(g ′) · gg ′x

= φ(g)
∑
g ′∈G

g(φ(g ′) · g ′x)

= φ(g)g(a)

so this a has the desired property.

In the case where L/K is cyclic, this specializes to

Theorem 13.4 (Original Hilbert 90). Suppose L/K is cyclic with generator g. Then if x ∈ L×
with NL/Kx = 1, there exists y ∈ L× with x = gy/y.

Proof. By our computation of homology for cyclic groups, we have

1 = H1(L/K,L×) = ker(N : L× → L×)/ im(g− 1 : L× → L×).

Example. If L/K = Q(i)/Q, then this is saying that any x ∈ Q(i) with xx = |x|2 = 1 is of
the form x = y/y for y ∈ Q(i). If we write out y = a+ bi, and rescale so a,b ∈ Z, this
gives

x =
a+ bi

a− bi
=

(a+ bi)2

a2 + b2
=
a2 − b2

a2 + b2
+

2ab

a2 + b2
i

leading to the well-known parametrization of Pythagorean triples.

13.4 Cohomology of profinite groups

Let G be a group: we say that G is profinite if G = lim←−Gi where each Gi is finite. Recall
that in such a setting we have a natural topology on G, in which the sets ker : G → Gi
form a neighborhood basis at the identity.

Theorem 13.5. Let G be a topological group. TFAE:

a) G is profinite

b) G is compact and totally disconnected
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c) G = lim←−G/U where U runs over the open finite index subgroups of G.

Proof is not hard and is in Cassels-Fröhlich. Note also that if G is profinite, an open
subgroup of G must be finite index by compactness. Also any open subgroup U ⊂ G

must contain an open normal subgroup (take the intersection of all conjugates of U).

Definition. If G is a profinite group, a discrete G-module A is an abelian group A with
an action of G on A satisfying one of the two equivalent conditions:

• G×A→ A is continuous with respect to the discrete topology on A.

• A =
⋃
U⊂G openA

U.

For every U ⊂ G open normal have a group Hq(G/U,AU). If V ⊂ U, have an
inflation map InfU,V : Hq(G/U,AU) → Hq(G/V ,AV) (since G/U = (G/V)/(U/V) and
AU = (AV)(U/V).

Then we define

Hq(G,A) = lim−→
U

Hq(G/U,AU)

where U runs over the open normal subgroups of G lim−→U
denotes a direct limit: that

is, lim−→U
Hq(G/U,AU) is the quotient of

∐
UH

q(G/U,AU) by the equivalence relation
generated by x ∼ InfU,V(x) for all open normal subgroups U,V of G with V ⊂ U and all
x ∈ Hq(G/U,AU).

If K is a field andA is a discrete Gal(K̄/K) module, writeH1(K,A) = H1(Gal(K̄/K),A).

Example. Profinite Hilbert’s Theorem 90:

H1(K, K̄×) = lim←L/K finite
H1(L/K,L×) = lim←L/K finite

1 = 1

Which parts of Galois cohomology theory carry over to the profinite setting?
Still have long exact sequence (direct limits preserve exactness).
We can define cohomology using cochains, but they have to be continuous cochains:

that is, φ : Gn → A must factor through (G/U)n for some open U ⊂ G.
Inflation and restriction still work, as long as H ⊂ G is a closed subgroup (in which

case it is necessarily profinite).
Can’t define Tate cohomology (we don’t have inflation in negative dimensions, and

the groups aren’t compatibile in the right way).
Cup products still work.
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14 October 17

14.1 Clarification from last time

The way I defined Hq(K,A) last time is not quite correct in the case when K has positive
characteristic.

Instead, let Ksep denote the separable closure of K. We have Ksep = K̄when charK = 0

or more generally when K is perfect (eg K = Fp), but in general Ksep is the subfield of K̄
which is the union of all finite Galois extensions of K (since Galois implies separable).

Then, for any K and any Gal(Ksep/K)-moduleA, defineHq(K,A) = Hq(Gal(Ksep/K),A).
Then the profinite version of Hilbert’s theorem 90 is:

Theorem 14.1 (Profinite Hilbert 90). If K is a field, then H1(K, (Ksep)×) = 0.

14.2 Application to Kummer theory

Let K be any field, and let n be a natural number with (n, charK) = 1.
The short exact sequence of Gal(Ksep/K)-modules

1→ µn → (Ksep)× → (Ksep)× → 1.

yields the long exact sequence in cohomology:

1→ µn(K)→ K× → K× → H1(K,µn)→ H1(K, (Ksep)×) = 0.

Hence the connecting homomorphism δ : K× → H1(K,µn) induces an isomorphism

K×/(K×)n ∼= H1(K,µn)

Suppose µn ⊂ K, so µn has trivial Gal(Ksep/K) action. Then H1(K,µn) is the set of
continuous homomorphisms φ : Gal(K/K) → µn: these must factor through the kernel,
which will be Gal(L/K) for some L, so this is the set of fields L/K along with an inclusion
Gal(L/K) ↪→ µn.

We can compute the connecting homomorphism δ: for a ∈ K×, δ(a) is the cocycle φa
given by φa(g) 7→ g n

√
a

n
√
a

, with kernel field K[ n
√
a].

From this we can get the classical statement of Kummer theory: if K ⊃ µn and L/K
is a cyclic extension of degree n, then take an isomorphism φ : Gal(L/K) → µn, so
φ ∈ H1(K,µn). The inflation infφ is then an element of H1(Ksep/K,µn), and is equal to
δ(a) for some a ∈ K×. Hence Gal(Ksep/L) = ker infφ = ker(δ(a)) = Gal(Ksep/K( n

√
a)).

By the Galois correspondence, we deduce L = K( n
√
a) is generated by the nth root of an

element of K.
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14.3 H2(L/K,L×) when L/K is unramified.

We’ll now compute H2(L/K,L×) for finite unramified Galois extensions L/K of local
fields. (Sometimes people just call this H2(L/K). Also, some terminology: the Brauer
group of K is H2(Ksep/K, (Ksep)×). This has a special name because it was originally
defined in terms of central simple algebras and later recognized as a cohomology group.
We’ll explain the connection to central simple algebras later in this course.)

One way to do this is to note that, for L/K finite unramified, we know that Gal(L/K)
is cyclic, so H2(L/K,L×) is canonically isomorphic to Ĥ0(L/K,K×) = K×/NL×, which
we previously saw was cyclic of order n = [L : K].

However, we’ll actually compute H2(L/K,L×) in a second way that makes it easier to
see what the inflation/restriction maps we get from varying L and K are.

Lemma 14.2. Ĥq(L/K,O×L ) = 0 for all q.

Proof. Because of periodicity, enough to do q = 0 and q = 1. For q = 0, know that
N : O×L → O×K is surjective. For q = 1, use LES

0→ O×L → L×
vL→ Z→ 0

get
K×

vL→ Z→ H1(L/K,O×L )→ H1(L/K,L×).

On the one side, L/K is unramified, so vL : K× → Z is surjective. On the other side
H1(L/K,L×) = 0. Hence H1(L/K,O×L ) = 0.

Using the long exact sequence coming from the short exact sequence

0→ O×L → L×
v→ Z→ 0,

and applying the lemma above, we see that the map v∗ : H2(L/K,L×) → H2(L/K, Z) is
an isomorphism.

Now we dimension-shift, using the short exact sequence

0→ Z→ Q→ Q/Z→ 0

to obtain an isomorphism δ : H1(L/K, Q/Z) ∼= H2(L/K, Z).
Now H1(L/K, Q/Z) = Hom(Gal(L/K), Q/Z) and Gal(L/K) is cyclic with canonical

generator Frob of order n, so we get a canonical isomorphism H1(L/K, Q/Z) → 1
nZ/Z

given by φ 7→ φ(Frob).
We let invL/K : H2(L/K,L×)→ 1

nZ/Z be the composition of the maps

H2(L/K,L×) v∗−→ H2(L/K, Z)
δ−1−−→ H1(L/K, Q/Z)→ 1

n
Z/Z.
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We now wish to determine

H2(Kunr/K, (Kunr)×) = lim−→
L/K finite unram

H2(L/K,L×) = lim−→
n

H2(Kn/K,K×n )

where Kn/K is the unique ramified extension of degree n. To do this we must determine
the inflation maps H2(Kn/K,K×n )→ H2(KN/K,K×N) where n | N.

To do this, we write out the large diagram

H2(Kn/K,K×n ) H2(Kn/K, Z) H1(Kn/K, Q/Z) 1
nZ/Z

H2(KN/K,K×N) H2(KN/K, Z) H1(KN/K, Q/Z) 1
NZ/Z

v∗

Inf

δ−1

Inf Inf

v∗ δ−1

and observe that it commutes. Indeed, the first two squares commute because inflation
is natural and compatible with forming long exact sequences (it’s important here that Kn
and KN are both unramified extensions of K, so their valuations agree). The last square
commutes because the restriction map Gal(KN/K) → Gal(Kn/K) sends Frob( KN/K)
to Frob(Kn/K) (restricting to a subfield doesn’t change the defining property of the
Frobenius).

Hence we have

H2(Kunr/K, (Kunr)×) ∼= lim−→
n

H2(Kn/K,K×n ) ∼= lim−→
n

1

n
Z/Z ∼= Q/Z.

As in the finite case, we denote the isomorphism H2(Kunr/K, (Kunr)×) → Q/Z by invK.
For any L/K finite we can view H2(L/K,L×) as a subgroup of H2(Kunr/K, (Kunr)×), and
then the restriction of invK to H2(Kunr/K, (Kunr)×) that we’ve defined above is invL/K.

Now, suppose L/K is a finite extension of degree n; don’t need to assume unramified
or Galois. Then Lunr = L · Kunr, since Kunr =

⋃
(r,p)=1 K(ζr) (p the residue characteris-

tic) and likewise Lunr =
⋃

(r,p)=1 L(ζr). It follows that the natural map Gal(Lunr/L) →
Gal(Kunr/K) is injective.

Hence we can make a restriction map:
Res : H2(Kunr/K, (Kunr)×)→ H2(Lunr/L, (Lunr)×).

Proposition 14.3. invL ◦Res = n · invK.

Proof. Again this is proof by large commutative diagram. Let e = eL/K be the ramification
index, and let f = [` : k] be the inertia degree, so n = ef.

We write down the following diagram:

H2(Kunr/K, (Kunr)×) H2(Kunr/K, Z) H1(Kunr/K, Q/Z) Q/Z

H2(Lunr/L, (Lunr)×) H2(Lunr/L, Z) H1(Lunr/L, Q/Z) Q/Z

e·(vK)∗

Res

δ−1

Res

f·evalFrobK

Res

(vL)∗ δ−1
evalFrobL
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The first square commutes because

(Kunr)× Z

(Lunr)× Z

e·vK

vL

commutes (defintion of e) and restriction is natural. The second square commutes be-
cause restriction is compatible with long exact sequences. The third square commutes
because the image of FrobL in Gal(Kunr/K) is equal to f · FrobK (they both act as x 7→ xp

f

on the residue field extension k̄/k.

14.4 What’s next

We now want to construct for any Galois extension L/K of local fields of degree n,
possibly ramified, an isomorphism invL/K : H2(L/K,L×) → 1

nZ/Z. Equivalently, we
want to find a generator uL/K ∈ H2(L/K,L×) of order n (if we know invL/K we will let
uL/K = inv−1

L/K(
1
n)).

Our plan for this will first be to construct an element uL/K ∈ H2(L/K,L×) of order n.
Then we will show by independent methods that |H2(L/K,L×)| ≤ n. Putting these two
facts together, we must have equality and uL/K must generate.

To construct uL/K, we apply the unramified case and diagram-chase. Let Kn/K be
the unramified extension of degree n, and let Ln = KnL. We define uKn/K = inv−1

Kn/K(
1
n).

We have inflation maps InfKn : H2(Kn/K,K×n )→ H2(Ln/K,L×n ) and InfL : H2(L/K,K×n )→
H2(Ln/K,K×n ). We then will define

uKn/K = (InfL)−1 InfKn(uKn/K).

On the other side, to bound the order |H2(L/K,L×)| we’ll use induction. One corollary
of the whole ramification group setup is that if L/K is a Galois extension of local fields
then Gal(L/K) is solvable. So it’ll be enough to check cyclic extensions and induct.

15 October 19

15.1 Construction of the fundamental class uL/K

Let L/K be a finite Galois extension of local fields, of degree n.
Let Kn/K be the unique unramified extension of degree n, and let Ln = LKn (so Ln/L

is an extension of degree dividing n).
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Let un = uKn/K ∈ H2(Kn/K) be the element such that invKn/K(un) = 1
n . Then we

have a diagram

H2(Ln/L,L×n ) H2(Lunr/L, (Lunr)×) Q/Z

H2(Kn/K,K×n ) H2(Kunr/K, (Kunr)×) Q/Z.

invL

Res

n·invK

Res

The maps in the bottom row send the element un ∈ H2(Kn/K,K×n ) to 0 ∈ Q/Z. Since
the maps in the top row are all injections, we must have Res(un) = 0.

Now, we note that the restriction map Res : H2(Kn/K,K×n ) → H2(Ln/L,L×n ) factors
as a composition of the inflation map InfKn : H2(Kn/K,K×n ) → H2(Ln/K,L×n ) with the
restriction map ResL : H2(Ln/K,L×n ) → H2(Ln/L,L×n . We can put this inside a large
commutative diagram

H2(Ln/L,L×n ) H2(Ln/Kn,K×)

H2(Ln/K,L×n )

H2(Kn/K,K×n ) H2(L/K,L×)

0 0

ResL

ResKn

InfKn

Res

InfL

In this diagram, both diagonals are inflation-restriction exact sequences. We have
0 = Res(un) = ResL(InfKn un), so InfKn un ∈ ker ResL = im InfL. Define uL/K to be the
unique element H2(L/K,K×) with InfL(uL/K) = InfKn(un). Since un has order n, and
both inflation maps are injective, uL/K has the same order n.

This shows that H2(L/K,L×) contains a cyclic subgroup of order n generated by uL/K.
Next we’ll show that |H2(L/K,L×)| ≤ n, so in fact we have equality and uL/K generates.

15.2 Bounding the size of H2(L/K,L×)

We first consider the case when L/K is cyclic of degree n. ThenH2(L/K,L×) = Ĥ0(L/K,L×) =
K×/NL×. In this case we’ll be able to in fact directly prove that |Ĥ0(L/K,L×)| = n.

I know two proofs of this: one is for the case when L/K is cyclic of prime order, and
is a very hands-on proof using the filtrations of O×K and O×L : it can be found in these
notes of Barry Mazur at https://canvas.harvard.edu/courses/34189/files/folder/
251A/Lecture_Notes_and_Homework_98295/Lecture_Notes?preview=4354316.

The other is cohomological and uses the Herbrand quotient: this is the one we’ll do.
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Lemma 15.1. There exists an open (hence finite index) subgroup V ofO×L such that Ĥq(L/K,V) =
0 for all q.

Proof. (Characteristic 0 only: for characteristic p see the second proof of Cassels-Frohlich
page 134, which does a similar thing while avoiding use of the p-adic exponential).

Actually, we’ll show that V is co-induced. First, recall that L/K is co-induced, so there
exists a ∈ L such that L =

⊕
g∈G K · ga. Without loss of generality vL(a) > r, where r

will be chosen later. Let A =
⊕
g∈GOK · ga. Then A is an open subgroup of πrLOL. Now

take r large enough that expp : πrLOL → UL,r is an isomorphism. Let V = expp(A): then
V is open in O×L , and V ∼= A which is co-induced by construction.

Recall from HW that if G is a cyclic group and A a G-module, the Herbrand quotient
h(A) is defined by

h(A) =
|Ĥ0(G,A)|
|Ĥ1(G,A)|

Proposition 15.2. The Herbrand quotient h(O×L ) = 1.

Proof. Use short exact sequence 0 → V → O×L → O×L /V to0. The Herbrand quotient
h(V) = 1 by the previous lemma, and the Herbrand quotient h(O×L /V) = 1 by homework
since V is finite index.

So apply the HW again for multiplicativity of Herbrand quotient in long exact se-
quences.

Proposition 15.3. The Herbrand quotient h(L×) = [L : K]

Proof. Use short exact sequence 0→ O×L → L× → Z→ 0 and HW.

Now, we know |Ĥ1(L/K,L×)| = 1, so |Ĥ0(L/K,L×)| = [L : K] = n. as desired.
To do the general case:

Theorem 15.4. If L/K is a Galois extension of local fields of degree n, then |H2(L/K,L×)| ≤ n.
(in fact | n)

Proof. We induct on [L : K]: if [L : K] is prime the extension is cyclic, which we alerady
know. Otherwise, since Gal(L/K) is solvable (ramification filtration!) there exists a
nontrivial normal subgroup of Gal(L/K), which leads to an intermediate Galois exension
M/K. We then have an inflation-restriction sequence

0→ H2(M/K,M×)→ H2(L/K,L×)→ H2(L/M,M×)

so, using the inductive hypothesis

|H2(L/K,L×)| ≤ |H2(M/K,M×)| · |H2(L/M,L×)| ≤ [L :M][M : K] = [L : K].

and the induction goes through.

58



We can now draw some conclusions:

Theorem 15.5. If L/K is a finite Galois extension of local fields, then H2(L/K,L×) is cyclic of
order n = [L : K], with generator uL/K.

Proof. As explained above, this follows from the previous theorem plus the fact that uL/K
has order n.

Theorem 15.6. If K is a local field, then the inflation map

H2(Kunr/K, (Kunr)×)→ H2(Ksep/K, (Ksep)×) = Br(K)

is an isomorphism.
Hence have isomorphism invK : Br(K)→ Q/Z.

Proof. We alrady know that inflation is injective. To prove surjectivity: any element of
H2(Ksep/K, (Ksep)×) is represented by some element in some H2(L/K,L×) , which we can
write as a · uL/K for some a ∈ Z/[L : K]Z.

Let Kn be the unramified degree extension of K. By construction, uL/K and uKn/K
map to the same element in H2(Ln/K,L×n ). Hence a · uL/K and a · uKn/K also map to the
same element: so a · uL/K lies in the image of the inflation map as desired.

Proposition 15.7. if L/K is a finite extension of local fields, of degree n, then the diagram

Br(K) Q/Z

Br(L) Q/Z

invK

Res n·
invL

commutes (where the map on the right is multiplication by n).

Proof. Immediate consequence of Theorem 15.6 and Proposition 14.3.

Proposition 15.8. If E/L/K is a tower of local fields with E/K Galois, then ResuE/K = uE/L.

Proof. The elements uE/K ∈ H2(E/K,E×) and uE/L ∈ H2(E/L,E×) are uniquely deter-
mined by invK(uE/K) =

1
[E:K] and invL(uE/L) =

1
[E:L] . Now use previous proposition.

Likewies, if E/L/K is a tower with E/K and L/K both Galois, Inf(uE/K) = [L : K] ·
uL/K).
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15.3 Tate’s theorem

We are one cohomological theorem away from proving the main theorem of class field
theory. We’ll state the theorem now and prove it next time.

Theorem 15.9 (Tate). If G is a finite group and A a G-module such that for each subgroup
H ⊂ G we have H1(H,A) = 0 and H2(H,A) is cyclic of order |H|. If a generates H2(G,A) then
the cup product map

−∪ a : Ĥq(G, Z)→ Ĥq+2(G,A)

is an isomorphism for all q ∈ Z.

We now check that, if L/K is a Galois extension of local fields, then G = Gal(L/K),
A = L× satisfies the requirements. Any subgroup H ⊂ G is equal to Gal(L/M) for some
M, and then H1(H,A) = H1(L/M,L×) = 0 by Hilbert 90, while H2(H,A) = H2(L/M) is
cyclic of order |H| by Theorem 15.5.

We now use the conclusion when q = −2, taking a = uL/K. We have that

−∪ uL/K : Ĥ−2(L/K, Z)→ Ĥ0(L/K,L×)

is an isomorphism: however we know Ĥ−2(L/K, Z) ∼= Gal(L/K)ab while Ĥ0(G,L×) ∼=
K×/NL×.

Hence we get a canonical isomorphism:

−∪ uL/K : Gal(L/K)ab → K×/NL×

the inverse of which is what we’ll call the Artin map θL/K.
Finishing by saying a few words about the proof:
We’ll use the problem from the last homework, where we showed that if A is a G-

module such that Ĥq(H,A) = Ĥq+1(H,A) = 0 for all H ⊂ G, then Ĥq(G,A) = 0 for all
q ∈ Z.

We’ll construct a G-module M with the property that there exists an exact sequence

· · ·→ Ĥq(H, Z)
−∪a−−−→ Ĥq+2(H,A)→ Ĥq(H,M)→ Ĥq+1(H, Z)

−∪a−−−→ Ĥq+3(H,A)→ · · ·
for any H ⊂ G. We’ll then show that M satisfies the conditions of the homework prob-
lem, so Ĥq(G,A) = 0 for all q, and hence cup product with a is an isomorphism in all
dimensions.

16 October 24

16.1 Proof of Tate’s theorem

Last time we stated
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Theorem 16.1 (Tate). If G is a finite group and A a G-module such that for each subgroup
H ⊂ G we have H1(H,A) = 0 and H2(H,A) is cyclic of order |H|. If a generates H2(G,A) then
the cup product map

−∪ a : Ĥq(G, Z)→ Ĥq+2(G,A)

is an isomorphism for all q ∈ Z.

Proof. The first thing we’ll do is dimension-shift twice. We know there exists a module
B = (A+)+ with dimension-shifting isomorphisms Ĥq(G,B) ∼= Ĥq+2(G,A). Let [b] ∈
Ĥ0(G,B) be the preimage of a ∈ Ĥ2(G,A).

We have the following commutative triangle:

Ĥq(G, Z) Hq+2(G,A)

Ĥq(G,B)

−∪a

−∪b o

So it’s enough to show that if H−1(H,B) = 0 for all H ⊂ G and H2(H,B) is cyclic of
order |H|, then

−∪ b : Ĥq(G, Z)→ Ĥq(G,B)

is an isomorphism for any generator b of Ĥ0(G,B).
As mentioned last time, we want to fit the maps

−∪ b : Ĥq(G, Z)→ Ĥq(G,B)

into a long exact sequence. Fortunately for us, these maps are all induced by the map
Z → B given by n 7→ nb. The problem is that the map n 7→ nb is not necessarily
injective. To fix this, we’ll replace B to another Z[G] module with the same cohomology.
(If you like topology, you should think of this as a “mapping cylinder” construction.)

Consider the SES

0→ Z
i−→ B⊕Z[G]→M→ 0

where: i : Z→ B⊕Z[G] is given by i(n) = (nb,nN) (here as usual N =
∑
g∈G g ∈ Z[G].

and M = cok i.
This gives a LES

· · · i∗−→ Ĥ−1(H,B ′)→ Ĥ−1(H,M)→ Ĥ0(H, Z)
i∗−→ Ĥ0(H,B ′)→ Ĥ0(H,M)→ Ĥ1(H, Z)

i∗−→ · · ·
Using the commutative triangle

Ĥq(H, Z) Ĥq(H,B)

Ĥq(H,B ′)

i∗

∪b o
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we may replace B with B ′ everywhere in the long exact sequence to get

· · · ∪b−−→ Ĥ−1(H,B)→ Ĥ−1(H,M)→ Ĥ0(H, Z)
∪b−−→ Ĥ0(H,B)→ Ĥ0(H,M)→ Ĥ1(H, Z)

∪b−−→ · · ·
Note that Ĥ−1(H,B) = 0 (assumption) and Ĥ1(H, Z) = Hom(H, Z) = 0.
We can compute Ĥ0(H, Z) ∼= Z/|H|Z. The group Ĥ0(H,B) = B/NHB is a quotient

of B/NGB = Ĥ0(G,B), so it is generated by the class of [b], which has equal to |H|

by assumption. We conclude that the map − ∪ b : Ĥ0(H, Z) → Ĥ0(H,B) which sends
n 7→ n[b] is an isomorphism.

We conclude that Ĥ−1(H,M) = Ĥ0(H,M) = 0 for all H ⊂ G. By the previous HW we
conclude that Ĥq(G,M) = 0 for all q ∈ Z. Applying the long exact sequence again, we
get that

−∪ b : Ĥq(G, Z)→ Ĥq(G,B)

is an isomorphism for all q, as desired.

16.2 Another characterization of local reciprocity, and compatibility

We explained last time how to use Tate’s theorem to get an isomorphism Gal(L/K)ab →
K×/NL×. The inverse isomorphism is the local reciprocity map denoted θL/K : K×/NL×

or by the norm residue symbol (a,L/K) = θL/K(a).
We now give another way of characterizing the local recirpocity map:

Proposition 16.2. Let L/K be a finite extension with Galois group G. Then for any

χ ∈ H1(L/K, Q/Z) = Hom(G, Q/Z) = Hom(Gab, Q/Z)

and any
[a] ∈ H0(L/K,L×) = K×/NL×

we have
χ(θL/K([a])) = invL/K([a]∪ δχ).

where δ : H1(G, Q/Z) → H2(G, Z) is the connecting homomorphism coming from the exact
sequence 0→ Z→ Q→ Q/Z→ 0.

Furthermore, θL/K([a]) is determined by the above property.

Proof. By definition of θL/K, [a] = θL/K([a]) ∪ uL/K. Plugging this in and using associa-
tivity/commutativity properties of cup product,

inv([a]∪ δχ) = inv(θL/K([a])∪ uL/K ∪ δχ)
= inv((δχ∪ θL/K([a]))∪ uL/K)

= inv(δ(χ∪ θL/K([a]))∪ uL/K)
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By the current homework, we have

χ∪ θL/K([a]) = [χ(θL/K(a))] ∈ Ĥ−1(G, Q/Z) ∼=
1

|G|
Z/Z.

Also, the connecting homomorphism δ from Ĥ−1(G, Q/Z) ∼= 1
|G|

Z/Z to Ĥ0(G, Z) ∼=

Z/|G|Z is given by multiplication by |G|.
Hence

inv([a]∪ δχ) = inv(δ(χ∪ θL/K([a]))∪ uL/K) = inv(|G| · χ(θL/K(a)) · uL/K) = χ(θL/K(a))

since inv(uL/K) = 1/|G|.

As a consequence of this characterization we can show

Proposition 16.3. Let E/L/K be a tower of local fields with E/K and L/K Galois. Let πE/L be
the canonical surjection Gal(E/K)→ Gal(L/K) For any a ∈ K× we have

πE/L(θE/K([a])) = θL/K([a])

Proof. By the characterization we’ve just proved it’s enough to show that

χ(πE/L(θE/K([a]))) = invL/K([a]∪ δχ).

for every homomorphism χ : Gal(L/K)→ Q/Z.
Let χ ′ : Gal(E/K) → Q/Z be given by χ ′ = χ ◦ πE/L. Note that χ ′ = Infχ ∈

H1(E/K, Q/Z),
Then

χ(πE/L(θE/K([a]))) = χ
′(θE/K([a])) = invE/K([a]∪ δχ ′)

= invE/K([a]∪ δ(InfE/L χ))

= invE/K(InfE/L([a]∪ δχ))
= invL/K([a]∪ δχ)

by compatibility of inv with inflation.

We can restate this proposition as saying that we have a commutative diagram:

K× Gal(E/K)ab

Gal(L/K)ab

θE/K

θL/K
πE/L

63



Hence the maps θL/K for L/K finite Galois combine to give a map

θ/K : K× → lim−→
L/K finite Galois

Gal(L/K)ab ∼= Gal(Kab)/K.

Because each θL/K is surjective, the map θ/K has dense image. However, θ/K is not
surjective.

(We have a commutative diagram

K× Gal(Kab/K)

Z Ẑ ∼= Gal(Kunr/K).

v

θ/K

Since the bottom row is not surjective, neither is the top row. But we’ll see that this is
the only way in which θ/K fails to be surjective.)

The map θ/K is injective, but showing this will take some work. Note that

ker θ/K =
⋂

L/K finite Galois

NL×

is the group of universal norms in K×. We wish to show that the only universal norm is
1, which implies injectivity of θ/K.

16.3 Normic Subgroups

Definition. A subgroup A of K× is called normic if there exists L/K Galois such that
A = NL×.

In this definition L/K need not be abelian; however if L ′/K is the maximal abelian
subextension of L, then NL ′/K(L ′×) = NL/K(L×). To show this, note that NL ′/K(L ′×) ⊂
NL/K(L×) and the two groups both have index in K× equal to |Gal(L/K)|ab. (In fact this
is still true even if L/K is not Galois, but it takes more work: see Serre local fields for a
proof.)

We wish to show that every finite index open subgroup of K× is normic. This is true
for any local field K, but for now we’ll only show for characteristic 0 (the proof uses
Kummer theory): so for the rest of the section assume that K has characteristic 0.

Remark. K× is not profinite, so there are open subgroups, such as O×K that are not finite
index! On the other hand, every finite index subgroup of K× contains (K×)n, which is
open in K×, (for sufficiently large r, (K×)n ∩Ur = Ur+v(n)), so finite index subgroups are
open.
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17 October 26

17.1 Existence

Proposition 17.1. There is a bijection between finite abelian extensions L/K and normic sub-
groups A of K× given by L 7→ NL×. This bijection is order-reversing and [L : K] = [K× : A] if
L↔ A.

Proof. We already know that the map L 7→ NL× is surjective, and it is order-reversing
because of compatibility of norms in towers. Also we have

[L : K] = |Gal(L/K)| = |K×/NL×| = [K× : NL×]

by class field theory.
To show that L 7→ NL× is a bijection, we construct the inverse map. We send A ⊂ K×

to the fixed field (Kab)θ/K(A) of the subgroup θ/K(A) ⊂ Gal(Kab/K).
Since L 7→ NL× is surjective, it’s enough to check that L = (Kab)θ/K(NL

×). For
one inclusion, note that θL/K(NL

×) = 1 so θ/K(NL
×) fixes all elements of L and L ⊂

(Kab)θ/K(NL
×).

On the other hand, we have

[(Kab)θ/K(NL
×) : K] = [Gal(Kab/K) : θ/K(NL

×)] = [θ/KK
× : θ/KNL

×] = [K× : NL×] = [L : K]

since the kernel of θ/K is contained in NL×. Hence we have equality.

Proposition 17.2. If A is normic any B ⊃ A is normic. If A and B are normic, so is A∩ B.

Proof. Suppose A = NL×, so Gal(L/K) ∼= K×/A. Then for any B ⊃ A take M to be the
fixed field of θL/K(B/A). Have diagram

K×/NL× Gal(L/K)

K×/NM× Gal(M/K)

θL/K

θM/K

where the vertical maps are the natural projections and the horizontal maps are iso-
morphisms. Then θL/K(B/A) = Gal(M/L) is the kernel of the projection Gal(L/K) →
Gal(M/K), so B/A = ker(K×/NL×) → (K×/NM×) = (NM×)/A, hence B/NM× is
normic.

For the second part: if A = NL× and B = NM× are normic then A∩B = N(LM×). To
see this, note that N(LM×) ⊂ N(L×) ∩N(M×). On the other hand, if a ∈ NL× ∩NM×
then θM/K(a) = 1 ∈ Gal(M/K) and θL/K(a) = 1 ∈ Gal(L/K), so θLM/K(a) = 1 in
Gal(LM/K).
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(Eg normic subgroups form a neighborhood base at 1 for a topology on K×.)
To show that every finite index subgroup of K× is normic, it’s enough to show that

Proposition 17.3. Assume K has characteristic 0. Then the subgroup of nth powers (K×)n is
normic.

Proof. First do the case where K ⊃ µn. We claim that if L is the extension of K generated
by taking all nth roots, or equivalently (Kummer theory) the maximal degree n abelian
extension of K, then NL× = (K×)n. We have NL× ⊃ (K×)n since L is a compositum of
degree n extensions.

Since Gal(L/K) is an abelian group of exponent n, |Gal(L/K)| = |Hom(Gal(L/K),µn)|.
By Kummer theory however,

Hom(Gal(L/K),µn) ∼= Hom(Gal(Kab/K),µn) ∼= (K×)/(K×)n

so
|K×/NL×| = |Gal(L/K)| = |Hom(Gal(L/K),µn)| = |(K×)/(K×)n|

and hence we must have equality NL× = (K×)n.
Now, let K ′ = K(µn). We know there is a Galois extension L ′ of K ′ such that

NL ′/K ′(L
′)× = (K ′×)n. The extension L ′/K need not be Galois, so enlarge to a Galois

extension L/K.
Then

NL/KL ⊂ NL ′/KL ′ = NK ′/K(NL ′/K ′L ′) = NK ′/K(K ′)n ⊂ Kn.

Hence Kn contains a normic subgroup, so is itself normic.

Comment about characteristic p: we can’t just transfer this proof over, because Artin-
Schreier theory as we’ve stated it only works for exponent p extensions, not for exponent
pr. Need something more complicated for that. Instead we’ll prove existence again later
using formal groups, and that argument will work in all characteristics.

17.2 Reciprocity map and ramification

Theorem 17.4. Let L/K be a finite unramified extension of local fields (automatically Galois and
abelian). Then θL/K([a]) = Frobv(a)

L/K.

Proof. Check this using the characterization

χ(θL/K([a])) = invL/K([a]∪ δχ).

Recall how we constructed invL/K when K is unramified:

H2(L/K,L×) v∗−→ H2(L/K, Z)
δ−1−−→ H1(L/K, Q/Z)

evalFrob−−−−→ 1

n
Z/Z.
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So
[a]∪ δχ 7→ vp(a) · δχ 7→ vp(a)χ 7→ χ(Frobv(a)p ).

Proposition 17.5. Suppose L/K is a Galois extension: then θL/K sends (OK)× onto the inertia
group I(L/K).

Proof. Let T be the inertia field so I(L/K) = Gal(L/T).
Then if a ∈ O×K , then θT/K(a) = 1 so θL/K(a) ∈ Gal(L/T) = I(L/K).
Since θL/K is onto, it’s enough now to show that if θL/K([a]) ∈ I(L/K) then [a] = [b]

where [b] ∈ O×K .
Let f = [T : K] be the inertia degree. Running previous argument backwards get

f | vK(a). Then let b = a ·N(πL)
−vK(a)/f.

17.3 Quadratic extensions

Suppose L/K is a quadratic extension of local fields. Then Gal(L/K) and K×/NL× are
both of order 2, so θL/K is the unique isomorphism K×/NL× → Gal(L/K).

Example. K = Qp, p odd. By Kummer theory: L = K(
√
a) for some nontrivial a ∈

K×/(K×)2.
The group K×/(K×)2 = (1,u,p,up) where u is a nonresidue mod p.
If a = u, then L/K is unramified, and NL× is {x | vp(x) even} (generated by (K×)2 and

u.
If a = p, NL× is generated by (K×)2 and −p.
If a = up NL× is generated by (K×)2 and −up.

Example. A global example: ` is an odd prime, `∗ = (−1)(`−1)/2` ≡ 1 (mod 4).
Let K = Q(

√
`∗). Identify Gal(K/Q) with ±1.

Let a ∈ Z, a > 0, (a, 2p) = 1.
For each place v of Q consider the function a 7→ (a,Kw/Qv) = θKw/Qv([a]) where w

is a place of Q above v.
If v = `, then

(a,Kw/Q`) =

(
a

`

)
.

If v = p where p 6= ` is odd, then (a,Kw/Qp) = 1 if
(
`∗
p

)
= 1, otherwise (a,Kw/Qp) =

(−1)vp(a); either way

(a,Kw/Qp) =

(
`∗

p

)vp(a)
.

If v = 2, then
(a,Kw/Q2) = 1
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always since Kw/Q2 is unramified (Kw = Q2 or Q2(
√
5)) and a is a unit at 2.

Also v = ∞ so Qv = R. We haven’t defined the reciprocity map for archimedean
extensions, but it’s straightforward. If Kw = R then (a, R/R) = 1 of necessity, and if
Kw = C then (a, C/R) = sgna which in this case is 1 by assumption.

Now set a = p where p is an odd prime distinct from `.
Then statement

∏
v(a,Kw/Qv) = 1, which is a form of global reciprocity, is equivalent

to (
`∗

p

)
=

(
p

`

)
,

which is a form of quadratic reciprocity.

18 October 31

18.1 The big picture for Qp

For any local field K and any uniformizer π ∈ K, have Gal(Kab/K) ∼= (OK)× × πẐ.
Let Kunr be the fixed field of O×K , and define Kπ to be the fixed field of πẐ. Note

that Kπ depends on the choice of π, so it’s not canonical. Then Kunr ∩ Kπ = K, and
Kab = KunrKπ. The Artin map gives isomorphisms of Galois groups Ẑ ∼= Gal(Kunr/K)
and O×K ∼= Gal(Kπ/K).

Now, in the case of K = Qp and π = p can identify these fields: we have Qunr
p =

Qp(ζn)(n,p) = 1 and Qπ
p = Qp(ζp∞).

Can make explicit the Artin maps here. If a = pru, u ∈ Z×p , we’ve already seen

θ/Qp(a)(ζn) = (ζn)
pr

for (n,p) = 1.
What’s also true is that

θ/Qp(a)(ζpm) = (ζpm)
u−1

for all m.
Two main proofs of this:
Deduce from global reciprocity law (Q× is in kernel of global reciprocity map θQ(ζpm/Q :

AQ → Gal(Q(ζpm/Q)), already know what the local reciprocity map is at all places other
than p.)

Proof using local methods: most easily done with machinery of Lubin-Tate formal
group laws, which we’ll now develop.

Additionally, the Lubin-Tate theory will also give us Kπ and the local reciprocity map
for all local fields K.
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18.2 Some broader context: group schemes

Lubin-Tate theory is a generalization of the theory of cyclotomic fields: to do this we’ll
first understand what’s so special about cyclotomic fields. For this we’ll talk about affine
group schemes.

Motivating question of affine group schemes. Let A be a ring; in this context all A-
algebras are assumed to be commutative. For which A-algebras R is Hom(R,B) naturally
a group for any A-algebra B? More precisely: we want G(B) = Hom(R,B) to be a functor
from A-algebras to groups; G is referred to as the affine group scheme coming from A.

Example. R = A[t], then Hom(R,B)↔ B is a group under addition. We denote this group
scheme by Ga, so Ga(B) = B

+.

Example. R = A[t, t−1], Hom(R,B)↔ Gm(B) = B
×.

Example. The group scheme µn: here R = A[t, t−1]/tn = A[t]/tn, Hom(R,B) ↔ µn(B).
Note that µn(B) is naturally a subgroup of B×, so µn is a sub-group scheme of Gm.

Example. The group scheme GLn: let R = A[tij,1≤i,j≤n, det−1], where det ∈ A[tij,1≤i,j≤n] is
the determinant of the matrix [tij]. Then GLn(B)↔ Hom(R,B).

Answer to motivating question: A necessary (and in fact sufficent) condition is that
R is a Hopf algebra over A.

Definition. A (commutative) Hopf algebra over A is a commutative A-algebra R with the
following extra structure

• a map ∆ : A→ A⊗A called comultiplication

• a map S : A→ A called coinversion

• a map ε : A→ R called the counit

(all tensor products taken over A) such that the following diagrams commute:

R R⊗ R

R⊗ R R⊗ R⊗ R

∆

∆ id⊗∆
∆⊗id

R R⊗ R

R

∆

id
ε⊗id

R R⊗ R

R

∆

id id⊗ε

R R⊗ R R⊗ R

A R

∆

ε

S⊗id

m

i

where in the last diagram the map m : R⊗ R→ R is defined by m(x⊗ y) = xy.

If R is a Hopf algebra, we obtain a group law on Hom(R,B) by the composition

Hom(R,B)×Hom(R,B) ∼= Hom(R⊗ R,B) ∆∗−→ Hom(R,B)

where the first map sends φ1,φ2 to φ given by φ(r1⊗ r2) = φ1(r1)φ2(r2), and the second
one sends φ to φ ◦∆.
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Applying the functor Hom(−,B) to the diagram above gives proofs of the group law
axioms on Hom(R,B).

Also, G(B) = Hom(R,B) will be abelian for all B if and only if the diagram

R

R⊗ R R⊗ R

∆ ∆

x⊗y 7→y⊗x
commutes, in which case we say that the group scheme G is abelian.

Example. If G = Ga, R = A[t], the map ∆ : A[t] → A[t]⊗A[t] is determined by ∆(t) =

1⊗ t+ t⊗ 1, S is determined by S(t) = −t and ε by ε(t) = 0. Can check that

(∆⊗ 1)(∆(t)) = (1⊗∆)(∆(t)) = t⊗ 1⊗ 1+ 1⊗ t⊗ 1+ 1⊗ 1⊗ t.

and likewise that the other axioms are satisfied.
Also, can check that the group law is as stated.

Example. If G = Gm, R = A[t, t−1], ∆ : A[t, t−1] → A[t, t−1]⊗A[t, t−1] is given by ∆(t) =
t⊗ t and ∆(t−1) = t−1⊗ t−1 while S is given by S(t) = t−1 and S(t−1) = t and ε is given
by ε(t) = ε(t−1) = 1.

Example. If G = µn, R = A[t]/(tn) = A[t, t−1]/(tn), the Hopf algebra structure is induced
from that on A[t, t−1], so ∆(t) = t⊗ t, S(t) = t−1 = tn−1, and ε(t) = 0.

Application to constructing Galois representations and abelian extensions: Suppose
that A = K is a field, and G is an abelian affine group scheme over K such that the corre-
sponding Hopf algebra A is a finite separable K-algebra. Then G(Ksep) = Hom(A,Ksep)

is a finite group, and Gal(Ksep/K) acts on G(Ksep) by group automorphisms, so we get
a homomorphism Gal(Ksep/K) → Aut(G(Ksep)), which factors through some injection
Gal(L/K) ↪→ Aut(G(Ksep)).

For example: G = µn, where charK does not divide n. Then µn(Ksep) is cyclic of
order n, and Aut(G(Ksep) is isomorphic to (Z/nZ)×. Note that these group schemes µn
are all subschemes of the group scheme Gm: in particular, µn is the kernel of the nth
power map, which is an endomorphism of Gm.

We would like to generalize this setup. There are a couple issues. One is that there
aren’t actually that many abelian affine group schemes over a field. For instance, the
only abelian group schemes defined over an algebraically closed field of characteric 0
are isomorphic to products of copies of Gm, Ga and µn. (There are more over a non-
algebraically closed field K, but here our program has the potential to get a bit circular,
as they are easier to construct if you’ve already constructed abelian extensions of K.
Characteristic p is another story, and an interesting one.)

There are two ways of dealing with this restriction. One is to drop the “affine”
condition and look at projective varieties that are also algebraic groups: this gets into
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the theory of elliptic curves and abelian varieties. This has the advantage that it works
over any field K, and we’ll mention this in the context of global fields next semester.

The other is to work with complete rings like the ring of power series OK[[x]], as we’ll
do shortly, in the theory of Lubin-Tate formal groups. We’ll be able to make OK[[x]]
into “something like a Hopf algebra”, and in fact this will let us construct quotients of
OK[[]x]] that are honestly finite-dimensional Hopf algebras over OK, and so give abelian
extensions as above.

The second, orthogonal issue with this setup is that Aut(G(Ksep)) is often not an
abelian group, and so this process might give us a non-abelian extension. For this reason,
we won’t be able to take arbitrary elliptic curves or formal groups, but only ones with
extra rigidity (“complex multiplication”) which forces the image of Gal(Ksep/K) to lie in
some commutative subgroup of Aut(G(Ksep)).

18.3 Definition of formal groups

As mentioned above, the goal here is to make to make OK[[X]] into “something like a
Hopf algebra”. Instead of having comultiplication go from OK[[X]] to OK[[X]]⊗OK[[X]],
however, we’ll instead ask that our comultiplication be a map

∆ : OK[[X]]→ OK[[X1,X2]].
(There is a natural inclusion OK[[X]]⊗OK[[X]] ↪→ OK[[X1,X2]] sending X⊗ 1 → X1 and
1⊗ X → X2, but it’s not an isomorphism), and furthermore that it be continuous. Here
the topology we use on the ring of formal power series OK[[X1, . . . ,Xn]] is the one with
neighborhood basis at the origin given by (X1, . . . ,Xn)k for k ∈ Z. (In particular, this has
nothing to do with the topology on OK.)

The reason for this, is that for any finite extension L/K, Homcts(OK[[X]],L) is canon-
ically in bijection with πLOL, via the map φ 7→ φ(X). Likewise, Homcts(OK[[X, Y]],L) is
canonically in bijection with πLOL × πLOL via the map φ 7→ (φ(X),φ(Y)).

Thus any such ∆ allows us to put a group structure on πLOL. Since the OK-algebra
∆ is topologically generated by X, in order to know ∆ we just need to know F(X1,X2) =
∆(X). We can then unpack what the Hopf algebra axioms say: they will be functional
equations satisfied by F. This then motivates:

Definition. A one-parameter commutative formal group law over a ring A is a power
series F(X, Y) ∈ A[[X, Y]] such that

• F(X, Y) = X+ Y (mod deg 2) (that is, modulo all monomials of degree ≥ 2)

• F(X, Y) = F(Y,X)

• F(F(X, Y),Z) = F(X, F(Y,Z))
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• exists iF(X) ∈ A[[X]] with F(X, iA(X)) = 0 (exercise: this axiom is redundant!)

• F(0, Y) = Y and F(X, 0) = X.

Note that if A is contained in a local field OK, then for any finite extension L/K, the
formal group law F makes πLOL into a group with group operation a,b 7→ F(a,b).
Example. The Hopf algebra structure on A[X] that gives the additive group scheme can
be extended to A[[X]]. We get the additive formal group law F(X, Y) = X + Y, with
iF(X) = −X.
Example. We can also get a formal group law for the multiplicative group, but we have
to change variables, since formal groups are required to have 0 as identity. However, we
do have an inclusion A[T , T−1] ↪→ A[[X]] given by T 7→ 1+X and T−1 7→ 1−X+X2−X3+

X4 − · · · .
This gives a formal group law F(X, Y) = X+ Y + XY, with inverse map iF(X) = −X+

X2 −X3 +X4 − · · · . This formal group is denoted the multiplicative formal group Ĝm.

19 November 2

19.1 More on Formal Groups

A homomorphism h : F → G of formal groups is a power series h ∈ A[[X]] with zero
constant term such that G(h(X),h(Y)) = h(F(X, Y)). We say that h is an isomorphism if
has an inverse (under composition of power series), and h is an endomorphism if F = G.

The set Hom(F,G) of formal group homomorphisms from F to G is an abelian group
under the addition law h1 +G h2 = G(h1,h2). Additionally, if F = G the group End(F) =
Hom(F, F) is a (possibly noncommutative) ring with multiplication given by composition.

If h : F → G is an homomorphism of formal group law over OK, then the function
defined by h, that is, a 7→ h(a) : F(πLOL)→ G(πLOL) is also a homomorphism.

Also, last time we just defined F(πLOL) for L a finite extension of K, but we can to
the analogous construction for infinite extensions. E.g. let Ksep be the separable closure
of K, with ring of integers OKsep and maximal ideal πKsep Then define F(pKsep) to be pKsep

with group law given by a+F b = F(a,b).
As with the finite case, the function a 7→ h(a) also gives a homomorphism F(pKsep)→

G(pKsep).
Example. Let A = Qp, F(X, Y) = Ĝa(X, Y) = X+ Y, G(X, Y) = Ĝm(X, Y) = X+ Y +XY.

Then f(X) = expp(X)−1 is an isomorphism Ĝm → Ĝa, with inverse f−1(X) = logp(1+
X).

However, as formal groups over Zp, Ĝa and Ĝm are not isomorphic. This is because
Ĝa(πLOL) = πLO+

L is always a torsion-free group for any finite extension L of Zp, while
Ĝm(πLOL) may contain p-torsion. (E.g. if L = Qp(ζp), the element ζp − 1 ∈ Gm(πLOL) is
p-torsion.)
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Example. Let A = Zp, F = G = Ĝm, and let

hn(X) = (X+ 1)n − 1 =
∑
k≥1

(
n

k

)
Xk.

for n ∈ Z. Then hn ∈ End(Ĝm). In fact, hn makes sense even if n ∈ Zp, since we can
define write (

n

k

)
=
n(n− 1) · · · (n− k+ 1)

k!
∈ Zp

for any n ∈ Zp.
The map Zp → End(Ĝm) is a ring homomorphism (in fact an isomorphism as we’ll

see later). As a consequence, if n ∈ O×p , then hn−1(hn(X)) = X and hn is an isomorphism.

Let F and G be formal groups over OK, and let h ∈ Hom(F,G). Then we can try to
make sense of the kernel of h. First we can look at the kernel of the group homomor-
phism F(pKsep)→ G(pKsep). This is

{a ∈ pKsep | h(a) = 0},

that is, the set of solutions of h(a) = 0 in pKsep . Note that this kernel is acted on by
Gal(Ksep/K).

We can also look at the ring quotient OK[[X]]/h(X). In some cases, such as when h(X)
is a monic polynomial, this will be a finite OK-algebra, and then will be a Hopf algebra.

For instance, in the previous example, with K = Qp, F = G = Ĝm and hp(X) =

(X+ 1)p − 1, we have

OK[[X]]/hp(X) ∼= OK[X]/((X+ 1)p − 1)

which is a Hopf algebra isomorphic to µp(OK).
Note though that if ` 6= p, and we consider h`(X) = (X+ 1)` − 1 we have

OK[[X]]/h`(X) ∼= OK[X]/X.

since (X+1)`−1
X is a unit in OK[[X]] (the constant term is a unit). This is related to the fact

that h` : Gm(pQ
sep
p
)→ Gm(pQ

sep
p
) is an injection (there are no nontrivial `th roots of unity

in 1+ p
Q

sep
p

.)

19.2 Lubin-Tate formal groups

Let K be a local field with uniformizer π, and such that |OK/πOK| = q. We will choose
a formal group F, so that the kernels of endomorphisms of F become modules for
Gal(Ksep/K), and use this to construct abelian extensions. We don’t want to take an
arbitrary formal group F because we might not get abelian extensions. So we’ll special-
ize to a special type of formal group.
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Definition. The set Fπ of Lubin-Tate series is the set of all f(x) ∈ OK[[X]] such that f(x) ≡
πX mod deg 2 and f(x) ≡ Xq mod π

Example. K = Qp, π = p, f(X) = (X+ 1)p − 1.

Example. K and π arbitrary, f(X) = Xp + πX.

Theorem 19.1. For any f ∈ Fp there’s a unique formal group Ff for which f is an endomorphism.
For any a ∈ OK there’s a unique [a]f such that [a]f commutes with f and [a]f ≡ a (mod deg 2).
Then [a]f is also an endomorphism of Ff. The map a→ [a]f : OK → End(Ff) is an isomorphism
of rings.

Any two Lubin-Tate group laws are isomorphic over OK.

The following “workhorse lemma” will let us prove everything in the theorem.

Lemma 19.2. For f,g ∈ Fπ, and any linear polynomial Φ1 ∈ OK[X1, . . . ,Xr]. the equation

f(Φ(X1, . . . ,Xr)) = Φ(g(X1),g(X2), . . . ,g(Xr)))

has a unique solution Φ ∈ OK[[X1, . . . ,Xr]] such that Φ ≡ Φ1 (mod deg 2).

Proof. We induct on the following statement:
There is a unique Φk in OK[[X1, . . . Xr]] such that

f(Φk(X1, . . . ,Xr)) ≡ Φk(g(X1),g(X2), . . . ,g(Xr))) (mod degk+ 1). (11)

and Φk ≡ Φ1 (mod deg)2.
For k = 1 we just need to check that Φ1 satisfies (11): indeed, the linear terms of both

sides are πΦ1(X1, . . . ,Xr).
Now assume that we have shown that there is a unique Φk ≡ Φ1 (mod deg)2 of

degree k satisfying (11).
Then anyΦk+1 with the desired property will have to reduce toΦk modulo degk+ 1,

so can write Φk+1 = Φk +Q, where Q is homogeneous of degree k+ 1.
Have

f(Φk+1(X1, . . . ,Xr)) ≡ f(Φk(X1, . . . ,Xr)) + πQ(X1, . . . ,Xr) (mod degk+ 2)

because f has linear term πX, and all higher-order terms involvingQ have degree≥ k+2.
Also

Φk+1(f(X1), . . . , F(Xr)) = Φk(X1, . . . ,Xr) +Q(f(X1), . . . , f(Xr))
≡ Φk(f(X1), . . . , f(Xr)) +Q(πX1, . . . ,πXr) (mod degk+ 2)

= Φk(f(X1), . . . , f(Xr)) + πk+1Q(X1, . . . ,Xr)

Setting these equal and solving, we get

Q(X1, . . . ,Xr) =
f(Φk(X1, . . . ,Xr)) −Φk+1(f(X1), . . . , f(Xr))

πr+1 − π
.

74



Hence we must show that the numerator is divisible by πr+1 − π, or equivalently by π,
since πr − 1 is a unit.

For this, use the fact that f(X) ≡ Xq (mod π), so

f(Φk(X1, . . . ,Xr)) ≡ Φk(X1, . . . ,Xr)q ≡ Φk(Xq1 , . . . ,Xqr ) ≡ Φk(f(X1), . . . , f(Xr)) (mod π)

where Φk(X1, . . . ,Xr)q ≡ Φk(Xq1 , . . . ,Xqr ) mod π because the Frobenius map

F 7→ Fq : OK/π[[X1, . . . ,Xr]]→ OK/π[[X1, . . . ,Xr]]

is an OK/π-algebra homomorphism.

We now use the lemma to show that there’s a unique formal group Ff for which f is
an endomorphism. First we apply the lemma directly to get that there is a unique power
series Ff such that

f(Ff(X, Y)) = Ff(f(X), f(Y))

with Ff ≡ X+ Y (mod deg 2).
We need to show that F satisfies the formal group axioms: this will follow by applying

uniqueness repeatedly. For instance, commutativity follows since also

f(Ff(Y,X)) = Ff(f(Y), f(X))

associativity follows from applying uniqueness to the two power series F(F(X, Y),Z) and
F(X, F(Y,Z)). Likewise 0 is a left identity because the power series F(X, 0) and X both
commute with f, and a right identity for the same reason.

Existence of an inverse follows from the other axioms (as previous mentioned), but
we can also define iFf directly as the unique power series iFf ∈ OK[X] which commutes
with f and has constant term equal to −X. (This is also what we are calling [−1]f.) Again
this satisfies the required property by uniqueness.

20 November 7

20.1 Lubin-Tate formal groups, continued

For f,g ∈ Fπ define [a]g,f ∈ OK[[X]] to be the unique power series satisfying

[a]g,f ◦ f = g ◦ [a]g,f,

and define [a]f = [a]f,f.
We have

Ff([a]g,f(X), [a]g,f(Y)) = [a]g,f(Fg(X, Y))

by uniqueness in workhorse lemma, so ag,f is a homomorphism Ff → Fg.
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Also,
[a]g,f +G [b]g,f = [a+ b]g,f

and
[a]h,g[b]g,f = [ab]h,f

also follow by uniqueness.
If we specalize to f = g, we see that [a]f is an endomorphism of Ff, and the map a→

[a]f is a ring homomorphism by uniqueness. Also, the uniqueness property means that
any element of End(f) is equal to [a]f for some a ∈ OK, so a 7→ [a]f is an isomorphism.

Also, if a is a unit, then [a]g,f is an isomorphism of formal groups Ff → Fg with
inverse [a−1]f,g.

This proves Theorem 19.1.

Definition. A formal OK-module F is a formal group F along with a homomorphism
OK → End(F), which we write as a 7→ [a]F, such that [a]F(X) = aX (mod deg 2)..

The above discussion shows that Ff is a formal OK-module with [a]Ff = [a]f.
Note that if F is a formal OK-module, then F(pKsep) is an OK-module. We will now

look at the torsion submodules of this OK-module, in the case where F = Ff comes from
a Lubin-Tate series.

20.2 The field Kπ,n generated by πn-torsion of Ff
Let Ef,n the set of {x ∈ pKsep | [πn]f(x) = 0} all πn torsion of Ff. Then Ef,n is an OK-module
via the action a ∗ x = [a]fx, and is annihilated by πnOK. Let Kπ,n be the field generated
by Ef,n.

Proposition 20.1. The power series [1]g,f gives an isomorphism Ef,πn → Eg,πn . The field Kπ,n

is not dependent on the choice of Lubin-Tate formal group.

Proof. For the first part: [πn]f(x) = 0 iff

[1]g,f[π
n]f(x) = [πn]g1g,f(x) = 0

so we have a map Ef,πn → Eg,πn . By definition of [1]g,f this is an isomorphism of OK-
modules, and clearly [1]f,g is the inverse map.

The second part follows from the first, because for any X ∈ Ef,πn , the field K(x) is
complete so contains [1]g,f(x).

Theorem 20.2. Ef,n is isomorphic as OK-module to OK/(πn)OK. This isomorphism is not
canonical.

76



Proof. By the above, WLOG f = [π]f is a monic polynomial of degree q.

Now we observe that for all k ≥ 1, [π]kf
[π]k−1f

is an Eisenstein polynomial of degree

qk − qk−1, with constant term π. Hence it has exactly qk − qk−1 roots in pKsep .
Conclude that |Ef,n| = qk. Because OK is a DVR, any OK-module is isomorphic to⊕m
i=1OK/(πdi). Now observe that the π-torsion submodule of Ef,n is equal to Ef,1, which

has order q. It follows that m = 1 and d1 = n.

Although this isomorphism is not canonical, the isomorphism Aut(Ef,n)→ (OK/(πnOK))×
is canonical, and the inverse map is given by a 7→ [a]f.

Corollary 20.3. Ef =
⋃
Ef,n ∼= K/OK. This isomorphism is not canonical.

Proof. For each n ≥ 1, choose αn ∈ Ef,n such that α1 generates Ef,1 and [π]fαn = αn+1.
The annihilator in OK of αn is πn, so αn generates Ef,n.

Now, define an isomorphism Ef → K/OK by sending αn to π−n.

Again, we have a canonical isomorphism

Aut(Ef) ∼= lim←−
n

Aut(Ef,n) ∼= lim←−
n

(OK/(πnOK))× ∼= O×K .

Now, note that Gal(Kπ,n/K) acts on Ef,n (since the latter is the set of roots of the
polynomial [πn]f), and this action is compatible with the OK-module structure on Ef,n.

Proposition 20.4. The map Gal(Kπ,n/K)→ EndOK(Ef,n) is an isomorphism.

Proof. First of all this map is injective because Kπ,n is generated by Ef,n.
We now show that both groups have the same order. On the one hand, Kπ,n = K(αn)

where αn is a generator of Ef,n, so is a root of the Eisenstein polynomial [π]nf
[π]n−1f

. Hence

|Gal(Kπ,n/K)| = [Kπ,n : K] = qn − qn−1.
On the other hand, we already have |EndOK(Ef,n)| = |OK/(πn)|× = qn − qn−1.

Corollary 20.5. The map Gal(Kπ/K)→ EndOK(Ef)→ O×K is an isomorphism.

We’ve now constructed a field extension Kπ/K, depending only on π, such that
Gal(Kπ/K) ∼= O×K . We previously saw how to construct such a Kπ using class field
theory. We’ll ultimately prove that these two constructions give the same field. The first
step towards this is:

Proposition 20.6. π ∈ NKπ,n/K(K
π,n)×.

Proof. Proof: N(αn) = (−1)q
n−qn−1π = π unless q is even and n = 1. In that case,

N(−αn) = −N(αn) = π.
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In fact, it will be true that any finite abelian extension L/K such that π ∈ NL× is
a contained in Kπ (as this agrees with the definition of Kπ we gave previously) but we
don’t yet have the abiliity to prove this.

20.3 Building maximal abelian extension and Artin map with Lubin-
Tate theory

Can now construct a candidate Lπ for Kab and a candidate Artin map K× → Gal(L/K) as
follows:
Lπ = KunrKπ, rπ : K× → Gal(L/K) is given by:

• For u ∈ O×K , rπ(u)|Kunr = id and rπ(u)|Kπ is determined by

rπ(u)(x) = [u−1]f(x)

for every x ∈ Ef.

• rπ(π)|Kunr = Frob and rπ(π)|Kπ = id.

Goal: Lπ = Kab and rπ = θ/K is the Artin map.
Strategy: we’ll show that Lπ and rπ don’t depend on our choice of π. Once we know

that it won’t take much work to show rπ = θ/K, and we’ll then be able to get Lπ = Kab.

21 November 9

21.1 Characterization of the Artin Map

Theorem 21.1. Let K be a field. Assume that the field L = Lπ = KunrKπ is independent of the
choice of uniformizer π of K.

If r : K× → Gal(L/K) is a homomorphism such that

• the composition
K×

r−→ Gal(L/K)→ Gal(Kunr/K)

is given by a 7→ FrobvK(a).

• For any uniformizer π ∈ K, r(π) is the identity on Kπ.

Then r = θL/K.

Proof. Observe that K× is generated by uniformizers (uπn = πn−1 · (uπ)). Hence it’s
enough to check that r(π) = θL/K(π) for every uniformizer π of K.

Our first hypothesis gives

r(π)|Kunr = Frob = θL/K(π)|Kunr
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We saw last time that π ∈ (NKπ,n)× for any n, so

θL/K(π)|Kπ = id |Kπ = θL/K(π)|Kπ

and we’re done since L = KπKunr.

Our plan for this and the next lecture is to show that in fact the candidate field Lπ =

KπKunr is independent of π, and that the candidate reciprocity map rπ : K× → Gal(Lπ/K)
is also independent of π. Then we’ll be able to use the theorem above to get θLπ/K = rπ.

However, before we do that, we’ll derive some consequences from θLπ/K = rπ.
First, we can compute the subgroup

N(Kπ,n)× = ker(θKπ,n/K) = ker rπ : K× → Gal(Kπ,n/K)

For this, let πru be an arbitrary element of K×, where u ∈ O×K . Let f be a Lubin-Tate
series, so that Kπ,n = K(Ef,n) is generated by πn-torsion of the formal group Ff, and let
x ∈ Ef,n be arbitrary. Have

rπ(π
ru)(x) = rπ(u)(x) = [u−1]f(x).

Hence rπ(πru) acts on the OK-module Ef,n as multiplication by u−1. Since Ef,n ∼= OK/πn

as OK-modules, rπ(πru) is the identity on Kπ,n if and only if u−1 is 1 (mod π)n if and
only if u is 1 (mod π)n.

We conclude that
N(Kπ,n)× = Un · πZ

where Un = {a ∈ OK (mod a) ≡ 1 (mod πn)}.
As a consequence, we obtain

Theorem 21.2. Any finite abelian extension L of K is contained in KπKunr. Hence KπKunr =

Kab.

Proof. Look at the group NL×, which by class field theory we know has finite index in
K×. Hence NL× contains πf for some f. Also, NL× is open in K×, so must contain Un
for some n. Hence

NL× ⊃ (Un · πZ)∩ {x ∈ K× | vK(x) ≡ 0 (mod f)}

= N(Kπ,n)× ∩N(Kunr,f)×

= N(Kπ,n · Kunr,f)×

where Kunr,f is the unique unramified extension of K of degree f. Hence L ⊂ Kπ,n ·
Kunr,f ⊂ Kπ · Kunr, as desired.
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21.2 Completions of infinite algebraic extensions of local fields

Now we’ll do the groundwork to show that Lπ and rπ are independent of π. Let π,ω be
uniformizers, and let f ∈ Fπ and g ∈ Fω be Lubin-Tate series with formal group laws
Ff, Gg.

We need a way of relating the formal groups Ff and Gg. However, these formal
groups are not isomorphic over OK: if they were we would have Kπ = Kω, which will
not be the case. We want to find a larger ring over which Ff and Gg are isomorphic
as formal groups: the ring of integers of Kunr seems like a possible choice, since we
are hoping to show KunrKπ = KunrKω. Unfortunately, the problem is that Kunr is not a
complete field (can construct Cauchy sequences that don’t converge), so instead we will
have to work with the completion K̂unr and its ring of integers Ôunr.

We’ll now make a couple general comments about completions of local fields. If L
is an infinite algebraic extension of K, then L is not complete, but we form take the
completion L̂.

Example. (Not to be used here, but for general context) K = Qp, L = Qp, L̂ is known as
the “p-adic complex numbers” Cp and is algebraically closed.

If g ∈ Gal(L/K), we can extend g by continuity to a unique element ĝ ∈ Aut(L̂/K)
(we don’t call this a Galois group, because L̂ is a transcendental extension). For example,
get Frobenius element Frob ∈ Aut( ^Ounr). We’ll write aφ as shorthand for Frob(a).

Proposition 21.3. K is a local field, L/K an algebraic extension, then any x ∈ L̂ which is
separable over L must actually lie in L.

Proof. (Fixed from class.) Let Lsep be the separable closure of L, which has a topology
coming from the absolute value on Lsep. Choose an embedding L(x) into Lsep: under this
embedding x lies in the topological closure L ′ of Lsep.

So it’s enough to show that L ′ = L. For this we use Galois theory. Suppose g ∈
Gal(Lsep/L). Because g is continuous, gmust also fix the closure L ′. Hence Gal(Lsep/L) =
Gal(Lsep/L ′). By the Galois correspondence for infinite extensions this gives L ′ = L.

21.3 Proof that any two Lubin-Tate group laws are isomorphic over
^Ounr

Notation as before: Let π,ω be uniformizers, and let f ∈ Fπ and g ∈ Fω be Lubin-Tate
series with formal group laws Ff, Gg. Also, we use the notation aφ for Frob(a) (or, if
α =
∑
anX

n ∈ Ounr[[X]], αφ =
∑
a
φ
nX

n).

Lemma 21.4. There exists a power series α(X) ∈ Ôunr[[X]] such that

a) αφ = α ◦ [u]f
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b) αφ ◦ f = g ◦ α.

c) α is a formal group homomorphism Ff → Gg (Gg ◦ (α× α) = α ◦ Ff)

d) α ◦ [a]f = [a]g ◦ α for all a ∈ OK

Proof. (following Milne) By HW, choose ε ∈ (Ounr)× such that Frob(ε)/ε = u.
First show that an α exists with Frob(α) = α ◦ [u]f. Write αφ as shorthand for Frob(α).
We induct on n, show that there exist polynomials αn of degree n such that

αφn = αn ◦ [u]f (mod deg)n+ 1.

For n = 1, αn(X) = εX works.
Write αn+1 = αn + cXn+1.
Then (αn+1)

φ(X) = αφn(X) + c
φXn+1 (mod degn+ 2).

While αn+1 ◦ [u]f(X) = αn ◦ [u]f(X) + cun+1Xn+1 (mod degn+ 2)

Must then solve equation of form cun+1 − cφ = d in Ounr.
Change variables to c = bεn+1 to get b− bφ = d ′, which we know has a solution by

HW.
Now, we let g ′ = αφ ◦ f ◦ α−1 = α ◦ [u]f ◦ f ◦ α−1.
First, we note that g ′ ∈ OK[[X]]: for this, enough to show (g ′)φ = g.
We have

gφ = αφ ◦ [u]f ◦ f ◦ (αφ)−1 = α ◦ [u]f ◦ [u]f ◦ f ◦ [u]−1f ◦ α
−1 = αφ ◦ [u]f ◦ f ◦ α−1.

also, modulo ω,

gφ = αφ ◦ Xq ◦ α−1 = αφ ◦ (α−1)q = αφ ◦ (α−1(Xq))φ = Xq.

So g ′ ∈ Fω. Hence there is a power series [1]g,g ′ with [1]g,g ′ ◦ g ′ ◦ [1]−1g,g ′ = g.
Modify α to α ′ = [1]g,g ′ ◦ α, so g = (α ′)φ ◦ f ◦ (α ′)−1. Still have (α ′)φ = (α ′) ◦ [u]f

because [1]φ
g,g ′ = 1g,g ′ .

So α ′ satisfies a) and b): by homework this implies c) and d).

22 November 14

22.1 Proof of Independence of uniformizer

Now we’re ready to prove

Theorem 22.1. For all π and ω, Lπ = Lω
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Proof. We have previous seem that the power series α is an isomorphism of formal
groups Ff → Gg over Ounr. Hence the map x 7→ α(x) is an isomorphism of the πn

torsion modules Ef,n → Eg,n, with inverse x 7→ α−1(x).
It follows that K̂unrKπ,n = K̂unrKω,n.
Taking the union, get K̂unrKω = K̂unrKπ. Completing both sides it follows that

K̂unrKω = K̂unrKπ. Taking the separable closure of K in both sides and applying the
lemma get KunrKω = KunrKπ.

Proving that the reciprocity map is independent of π is a little more work:

Theorem 22.2. rπ = rω.

Proof. Need to show that rπ(y) = rω(y) for all y ∈ K×. Since uniformizers generate K×,
enough to show this when y is a uniformizer.

We already have that rπ(y)|Kunr = rω(y)|Kunr . So it’s enough to show that rπ(y)|Kω =

rω(y)|Kω . We’ll do this by showing that both are equal to ry(y)|Kω .
After relabeling, need to check that

rπ(ω)(x) = rω(ω)(x)

for all x ∈ Eg and all uniformizers π,ω of K. (As usual, write π = uω.
By definition, rω(ω)(x) = x.
Write x = α(x ′) for x ′ ∈ Ef. Get

rπ(ω)(α(x ′)) = rπ(ω)(α(x ′)) = rπ(ω)(α)
(
ruω(x

′)
)
= αφ([u−1]f(x

′)) = α(x ′)x.

as desired.

We’ve now determined that Lπ and rπ are independent of choice of π, so by what we
did last time, we have Lπ = Kab and rπ = θ/K.

22.2 Artin map and Ramification filtration

We conclude the discussion of Lubin-Tate theory with one application to local fields.
Let L/K be a finite extension. Have surjection O×K → I(L/K). Both sides have natural

filtrations
UK,m = {u | u ≡ 1 (mod πmK )}

and
Gi(L/K) = {g ∈ G | g(πL) ≡ πL (mod πiL)}

for n ≥ 1.
Want to compare them.
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First we do this for the case L = Kπ,n, where the reciprocity map θL/K induces an
isomorphism O×K /UK,n → Gal(L/K) you will show on problem set that

Gi(L/K) =


Gal(L/K) if i < 1
θL/K(UK,m) if qm−1 ≤ i ≤ qm and 1 ≤ m ≤ n− 1

1 if qn−1 ≤ i.
(12)

Actually we can combine the last two cases, as θL/K(UK,m) = 1 if m ≥ n.
Hence for all i ≥ 1

Gi(K
π,n/K) = θKπ,n/K(UK,m) if qm−1 ≤ i ≤ qm. (13)

Recall there’s also an upper numbering filtration: Gm(L/K), defined by

Gm(L/K) = Gφ−1(i)(L/K)

where φ(x) =
∫x
0

1
[G0:Gt]

dt.
For the case L = Kπ,n we can compute φ(qm−1) = m for i = 1, 2, . . . ,n+ 1.
Combining this with (13), we get

Gm(Kπ,n/K) = θKπ,n/K(UK,m).

We can also extend this result to the infinite field Kπ. For this, we use the fact (which
we haven’t proved: see e.g. Neukirch for a proof) that if E/L/K is a tower, Gm(E/K)
surjects onto Gm(L/K). Hence, for an infinite extension L/K we may define

Gm(L/K) = lim←−
L ′

Gal(L ′/K)

where L ′ runs over all finite subextentions of L/K.
We then immediately get

Gm(Kπ/K) = θKπ/K(UK,m).

Hence can define Gm(Kπ/K) and Gm(Kab/K).
for L = Kπ,n have

Gm(L/K) = θL/K(UK,m).

for all i ≥ 1.
Hence Gi(Kπ/K) = θKπ/K(UK,m)

Can get that also Gi(Kab/K) = θKπ/K(UK,m): so for any L/K abelian Gm(L/K) =

θL/K(UK,m) for each i.
Note that we have Gal(Kπ/K) ∼= O×K , so we have in this case θKπ/K : UK,m →

Gm(Kπ/K) is an isomorphism.
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Now we consider extensions that are not totally ramified, starting with Kab/K. We
have

O×K I(Kab/K) I(Kπ/K) Gal(Kπ/K)
θ
Kab/K

θKπ/K

Hence we have I(Kab/K) ∼= I(Kπ/K), and induced isomorphismsGm(Kab/K) ∼= Gm(Kπ/K).
As a result, we have also that also

Gm(Kab/K) = θ/K(UK,m).

Applying the surjection Gm(Kab/K) to Gm(L/K) for any abelian extension Gal(L/K), we
get

Gm(L/K) = θL/K(UK,m)

in general for any finite extension L/K.

22.3 Introduction to Brauer Group from the point of view of Central
Simple Algebras

Take a base field K. We’ll be interested in non-commutative algebras over K, e.g. the
algebra Mn(K) of n× n matrices

As another example of a non-commutative algebra, take the R-algebra of Hamilton’s
quaternions H = R〈i, j〉/(i2 = j2 = −1, ij = −ji), which is spanned over R by 1, i, j and
k = ij = −ji. This is a division algebra (every nonzero element has an inverse).

Note that if we try to construct the quaternions over C, would get

HC = H⊗R C = C〈i, j〉/(i2 = j2 = −1, ij = −ji)

which is isomorphic to M2(C) via the map

i 7→ (
i 0
0 −i

)
, j 7→ (

0 −1
1 0

)
.

We can say then that H is a twist or form of M2(R), since H⊗R C ∼=M2(R)⊗R (C).
Generally, for a field K, we will be interested in twists of Mn(K), that is, K-algebras A

such that A⊗K Ksep ∼=Mn(K
sep). One thing we’ll see is that these twists are classified by

elements of a non-abelian Galois cohomology set (no longer a group!) H1(K, PGLn(Ksep))

which we haven’t defined yet. We’ll get a connecting homomorphismH1(K, PGLn(Ksep)→
H2(K, (Ksep)×) = Br(K), which explains how the Brauer group comes into things.

There’s another class of noncommutative K-algebras that can be defined in an unre-
lated way, but turns out to give exactly those K-algebras that are twists of Mn(K) for
some n. We’ll do that now.
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Definition. A K-algebra A is simple if A has no nonzero proper two-sided ideals. We say
that A is a central simple algebra over K if A is a simple algebra and the center Z(A) = K.

Example. The algebra of n×n matrices Mn(K) is central simple; we’ll do this at the start
of next time.

Example. For a,b ∈ K×, define a generalized quaternion algebra H(a,b) over K by

H(a,b) = K〈i, j〉/(i2 = a, j2 = b, ij = −ji).

As in the case of ordinary quaternions, H(a,b) has basis 1, i, j,k = ij.
You’ll prove on HW that H(a,b) is central simple.

23 November 16

(Reference for all this material is Milne’s CFT notes: http://www.jmilne.org/math/

CourseNotes/CFT.pdf, chapter 4)

23.1 Definition of Brauer Group in terms of Central Simple Algebras

K is a field, A is a K-algebra. Recall:

Definition. A is simple if and only if there are no nontrivial 2-sided ideals of A.
A is central if and only if Z(A) = K

Observe that A is simple if every homomorphism from A to a nonzero K-algebra B
is injective.

Example. Mn(K) is simple

Proof. Let I be a nonzero 2-sided ideal of Mn(K). Choose x ∈ I nonzero, so xij 6= 0 for
some i, j. By rescaling may assume xij = 1. Then I also contains the matrix eij = eiixejj.
By multiplying by permutation matrices on both sides, get that I contains ekl for all k, l
in range, so I =Mn(K).

Also Mn(K) is central.
If D is a division algebra over K, then D is simple.
Saw quaternions last time. One more example of a central simple algebra (proofs

deferred, probably until problem set.)

Example. Gal(L/K) cyclic, generator g of order n (charK - n), a ∈ K×.
Then define Aa to be generated over L by an element γ with relations γn = a, and

γb = (gb)γ for all b ∈ L. Can show that Aa is n2-dimensional as a K-vector space.
If a = 1 have isomorphism A ∼= EndK(L). The isomorphism sends b ∈ L to the

multiplication-by-b map mb ∈ EndK(L), and sends γ to g ∈ EndK(L).
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If a ′/a ∈ NL× then Aa ∼= Aa ′ . To show this choose b ∈ L× with a ′/a = Nb, and
take the isomorphism Aa ′ → Aa that is the identity on L and the generator γa ′ of Aa ′ to
the element bγa of Aa.

This is central simple, but we won’t show it here; we may return later, or put in on
the problem set.

Proposition 23.1. If A⊗K L is a simple K-algebra, then so is A.

Proof. If I is an ideal of A, then I⊗K L is an ideal of A⊗K L.

The converse is not true, e.g. C⊗R C ∼= C⊕C, is not simple. More generally L⊗K L.
However, if A is central simple then A⊗K L is simple over L. More generally:

Proposition 23.2. A,B are K-algebras, A central simple, B simple implies A⊗K B simple.

Proof. Let I be an ideal of B and let
∑n
i=1 ai ⊗ bi be a nonzero element of I with n

minimal.
The ideal Aa1A is equal to all of A, so wlog can assume that a1 = 1. Take commutator

with arbitrary element a⊗ 1, minimality gives that a commutes with ai for each i. So
ai ∈ K, and get

∑n
i=1 ai⊗ bi in K⊗K B can be written as 1⊗ b. Now use that B is simple,

to get that I contains K⊗K B, hence contains A⊗K B.

Also, if we let Z(A) denote the center of a K-algebra A,

Proposition 23.3. Have Z(A⊗ B) = Z(A)⊗K Z(B)

Proof. Exercise.

It follows from the previous two problems that the set of central simple algebras /K
forms a monoid under tensor product.

From now on, we are going to require that all central simple algebras over K are
finite-dimensional.

The monoid of central simple algebras over K has a submonoid consisting of the
matrix algebras Mn(K) for n ∈ Z. We will define the Brauer group as the quotient of
the monoid of central simple algebras over K by the submonoid of matrix algebras. We
need to show that this is a group.

Definition. For a K-algebra A, define Aop to be the K-algebra which is equal to A as a
K-vector space but has the opposite multiplication: a ∗ b = ba.

Note that Aop is central / simple if and only if A is.

Proposition 23.4. If A is a central simple algebra of dimension n as a K-vector space, then
A⊗K Aop ∼= EndK(A) ∼=Mn(K).
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Proof. We define a homomorphism φ : A⊗K Aop → EndK(A) as follows.
Let φ(a⊗ 1) = `a, where `a is the left multiplication map by a: `a(b) = ab.
Let φ(1⊗ a) = ra, where ra is the right multiplication map by a: ra(b) = ba.
Because A⊗K Aop is a central simple algebra, φ is injective. However, EndK(A) ∼=

Mn(K) and A⊗K Aop are both K-vector spaces of the same dimension n2, so φ must be
an isomorphism.

Hence we may now give the original definition of the Brauer group:

Definition. The Brauer group Br(K) is the quotient of the monoid of central simple
algebras over K by the monoid of matrix algebras.

We have defined this but we aren’t yet ready to compute it in any cases, that will take
more theory.

23.2 Classification of Central Simple Algebras

In this section we’ll show that any central simple algebra is of the form Mn(D) =

Mn(K)⊗KD where D is a division algebra with center K.
First we need some facts about modules over non-commutative algebras.

Definition. If M is a (finitely generated) module over a K-algebra A, we say that

• M is simple if M has no nonzero proper A-submodules.

• M is semisimple if M is the direct sum of simple A-modules.

• M is indecomposable if M cannot be written as M1 ⊕M2 with M1,M2 6= 0.

Lemma 23.5. (Schur) If M is a simple A-module, then EndA(M) is a division algebra.

Proof. We need to show that any nonzero φ ∈ EndA(M) is a unit. Note that kerφ
must equal either 0 or M, but can’t be M, so must be 0. Likewise, imφ is either 0 or
M, but can’t be 0, so must be M. Hence φ is an invertible linear transformation, and
φ−1 ∈ EndA(M), so φ is a unit in EndA(M).

Proposition 23.6. If D is a division algebra, then any f.g. D-module M is isomorphic to Dn for
a unique n. Any set of n linearly independent vectors of Dn spans.

Proof. Same as for D a field.

For V a K-vector space and A a (simple: this was not stated in class) subalgebra of
EndK(V), let C(A) denote the centralizer ofA in EndK(V). Observe that C(A) = EndA(V).

Theorem 23.7 (Double Centralizer). C(C(A)) = A in EndK(V).
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Proof. Skipped: See Milne.

AA denotes A considered as left A-module. Note that EndA(AA) ∼= Aop, and more
generally, if V is a free A-module of rank n, EndA(V) ∼=Mn(A

op).

Theorem 23.8. Any central simple algebra over K is isomorphic to Mn(D) for D a division
algebra.

Proof. Choose a nonzero simple A-module S (eg a minimal nonzero left ideal of A).
Then A embeds in EndK(S). Let B be the centralizer of A in EndK(S): B is a division

algebra by Schur. Then A = EndB(S) by the double centralizer theorem. Since B is a
division algebra, S ∼= Bn for some n, and then A = EndB(S) ∼=Mn(B

op) as desired.

24 November 21

24.1 Classification results for CSAs and modules over CSAs

Last time we showed that any CSA A over K is isomorphic to Mn(D) for some division
algebra D with center K. Now we’ll show that D, and hence n, are uniquely determined
by A, giving a precise classification of central simple algebras.

Note that in our construction of D, there was exactly one choice that we had to make:
we had to pick a simple A-module S. We’ll now show that there is only one simple
A-module up to isomorphism, which will imply that D is uniquely determined by A.

Proposition 24.1. Let A be a central simple algebra over K (or generally, a simple algebra.)
Up to isomorphism there’s a unique simple module S over A. Every finitely generated A

module is semisimple and isomorphic to Sn for some n, so are classified by dimension.

Proof. By classification, A = Mn(D). Then S = Dn is an A-module; easily seen to be
simple.

First, we decompose AA (A viewed as a (left) A-module) as a sum of simple A-
modules as follows:

AA = ⊕iSi,

where Si is the set of all matrices which are 0 outside of the ith row. Each Si ∼= S, so is
simple.

Now let M be any simple A-module, and m ∈M be a nonzero element. Then define
a map phi : A → M by φ(a) = am. For some i the restriction φ|Si must be nonzero,
and since both M and Si are simple, this implies that φ is an isomorphism S→M.

We’ll only sketch the proof of the second part: if M is a finite-dimensional A-module,
we have a surjection φ ∼= Am = Smn → M for some m. By a similar but more involved
argument, we can show that we can restrict the domain of φ to obtain an isomorphism
Sk →M for some k.
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By the argument before the statement of Proposition 24.1, we can now deduce:

Proposition 24.2. Any CSA A over K is isomorphic to Mn(D) for some division algebra D.
The division algebra D and integer n are uniquely determined by A.

Corollary 24.3. There is a bijection between the set of division algebras D with center K and
Br(K) given by sending D to the class [D] of D in the Brauer group.

Corollary 24.4. Br(K) = 0 if K is algebraically closed.

Proof. Follows from the fact that any finite-dimensional division algebra over K is equal
to K (if x ∈ D, K(x) is a an algebraic field extension of K, so x ∈ K).

Wedderburn’s theorem says that every finite division algebra is a field: hence Br(Fq) =
0. (We’ll see other ways of proving this later.)

Likewise, the classification of finite-dimensional division algebras over R gives Br(R) ∼=
Z/2Z, where the nonzero element is the class [H] of the quaternions..

24.2 Extension of base field:

If A is a CSA over K, and L/K is any field extension, we’ve previously seen that A⊗K L
is a CSA / L. Hence we have a homomorphism Br(K)→ Br(L).

Proposition 24.5. If A is a CSA / K, then [A : K] = dimKA is a square.

Proof. We have A⊗K K ∼=Mn(K) for some n, so dimKA = dimKA⊗K K = n2.

For L/K any field extension, let Br(L/K) be the kernel of the natural map Br(K) →
Br(L). We say that a CSA A/K is split by L if A⊗K L is a matrix algebra: this is equivalent
to [A] ∈ Br(K).

(One implication of this is clear: for the other direction, we need to check that whether
A⊗K L is a matrix algebra depends only on [A] ∈ Br(K). Write A =Mn(D), where D is
a division algebra. If D⊗K L = Mm(D

′), A⊗K L ∼= Mn(D⊗K L) ∼= Mmn(D
′), which is

a matrix algebra if and only if D ′ = K. This condition depends only on D, so depends
only on the class [A] ∈ Br(K).)

Proposition 24.6. Br(K) =
⋃
L/K finite Br(L/K)

Proof. Let A ∈ Br(K) be arbitrary. We already know that we have an isomorphism
φ :Mn(K) → A⊗K K. Take L large enough that φ(eij) lies in A⊗K L: then φ restricts to
an isomorphism Mn(L)→ A⊗K L.

Our goal now is to to show that for L/K Galois, Br(L/K) ∼= H2(L/K,L×).
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24.3 Maximal Subfields of CSAs

First we’ll ask a more basic question: if A is a CSA over K, how to tell which extensions
L of K split A?

Example. K = Q, A = H(−1,−1) is the quaternion algebra with generators i, j,k and
relations i2 = j2 = k2 = −1 and ij = −ji = k.

Then for any extension L of Q, the algebra A ⊗Q L = HL(−1,−1) is a quaternion
algebra over L. By your last HW, A is split by L if and only if either one of the following
two equivalent conditions holds:

• x2 + y2 + z2 = 0 has a nonzero solution in L3.

• x2 + y2 + z2 +w2 = 0 has a nonzero solution in L4

Consider the case where L = Q(
√
D) is a quadratic extension of Q, D a squarefree

integer. First of all, if D > 0, then L embeds in R: since the quadratic forms above are
positive definite, we conclude that A is not split by L.

If D is congruent to 1 (mod 8), then Q(
√
D) embeds in Q2. Again, we can check that

the quadratic form x2 + y2 + z2 = 0 has only trivial solutions in Q2 (WLOG x,y, z ∈ Z2

are relatively prime, and work mod 4), so it has no solutions in Q(
√
D).

In any other case, we can use Legendre’s three squares theorem to write −D =

a2 + b2 + c2, for a,b, c ∈ Z and then (a,b, c,
√
D) is a solution to x2 + y2 + z2 +w2 = 0,

so A is split by L.
In short, Q(

√
D) splits A iff D is positive and 1 (mod 8) iff −D is the sum of three

rational cubes.
Another equivalent condition is the following: Q(

√
D) embeds in A. To see this, note

that if a = w+ xi+ yj+ zk, w, x,y, z ∈ Q, is an arbitrary element of A, a2 = D iff w = 0

and x2 + y2 + z2 = −D. This condition is one we’ll be able to generalize.

First we need the following algebraic fact, which we will state without proof:

Theorem 24.7. Double centralizer theorem for central simple algebras: if A is a CSA, B ⊂ A
simple, and C = C(B), then C is simple, B = C(C) and [A : K] = [B : K][C : K]. (As with field
extensions, [A : K] denotes the dimension of A as a K-vector space.)

Proof. (See Milne)

Corollary 24.8. If Z(B) = K then Z(C) = K and A ∼= B⊗K C.

Proof. For the first part, Z(B) = B ∩ C = Z(C). For the second part, since both B and
C are central simple over K, so is B⊗K C, and the natural map B⊗K C → A must be
injective. By dimension counting it’s an isomorphism.

Corollary 24.9. For A a CSA/K and L ⊂ A a field. TFAE:
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a) L = C(L)

b) [L : K]2 = [A : K]

c) L is a maximal commutative K-subalgebra.

d) L is a maximal commutative subfield

Proof. a) implies b) by double centralizer. b)implies c) : if L ′ is a comm K-subalg of A,
then [L ′ : K]2 ≤ [L ′ : K][C(L ′) : K] = [A : K] = [L : K]2, so [L ′ : K] ≤ [L : K], hence L is
maximal. c) implies a) : if x ∈ C(L) \ L then L[x] is commutative.

Corollary 24.10. If D is a division algebra, the maximal commutative subfields of D all have
dimension [L : K] =

√
[D : K].

Proposition 24.11. L splits A if and only if there is an algebra B ∼ A containing a subfield
isomorphic to L such that [B : K] = [L : K]2.

(done correctly in next lecture)

25 November 28

25.1 Condition for L to Split A

Last time we were proving:

Proposition 25.1. L splits A if and only if there is an algebra B ∼ A containing a subfield
isomorphic to L such that [B : K] = [L : K]2.

Let’s correct the proof of the⇒ direction, and give a proof of⇐:

Proof. ⇒: L splits A, so also Aop, so Aop⊗K L ∼= EndL(V) for some L-vector space V with
dimL(V) =

√
[A : K].

Take B to be the centralizer of Aop in EndK(V). By Corollary 24.8 we have B⊗Aop ∼=
EndK(V), so [B] = [A] in Br(K). Also, 1⊗ L ⊂ B since Aop ⊗ 1 commutes with 1⊗ L.
Finally,

[B : K] =
[EndK(V) : K]

[Aop : K]
=

dimK(V)
2

[A : K]
= [L : K]2

dimL(V)
2

[A : K]
= [L : K]2.

For other direction, enough to show that L splits B. Say [L : K] = n so [B : K] = [L : K]2.
We need a vector space V such that B⊗K L ∼= EndL(V): since B⊗K L is of dimension n2

over L, we need V to be an n-dimesional L-vector space.
The obvious choice is V = B: however, since B is non-commutative, we’ll take the

L-vector space structure on B to have L acting by right multiplication. (Alternatively we
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could take V = Bop with L acting by left multiplication, but this will be notationally
simpler.)

Then we can map B⊗K L→ EndL(V) by b⊗ 1 7→ `b (where `b is the left multiplication
by B map) and 1⊗ ` 7→ r` (where r` is left multiplication by `.) This map is an injection
because B⊗K L is simple, and is surjective by dimension count.

Corollary 25.2. Suppose [L : K] =
√

[D : K]. Then L splits D iff L embeds in D; that is, all
maximal subfields of D split D.

25.2 Noether-Skolem

Theorem 25.3 (Noether-Skolem). If A,B are K-algebras, A simple, B central simple, then any
two homs f,g : A→ B are conjugate: related by g = bfb−1.

Example. K = R, f,g : C → H given by f(i) = i, g(i) = j, take b = 1√
2
(1+ k), b−1 =

1√
2
(1− k),

bib−1 =
1

2
(1+ k)i(1− k) =

1

2
(i+ ki− ik− kik) = j.

We give the important corollaries first.

Corollary 25.4. If A is a simple algebra, all automorphisms of A are inner.

Corollary 25.5. If A is a central simple algebra over K, and L is a field, then any two embeddings
i1, i2 : L ↪→ A are conjugate to each other by some element of A (i2 = ai1a−1 for some a ∈ A).

Proof. We case of B =Mn(K) first. We put two different two A-module structures on Kn

exetending the K-vector space structure.
Let M1 = Kn with A-module structure a ∗1 v = f(a)v, and let M2 = Kn with A-

module structure a ∗2 v = g(a)v.
Since A-modules are classified by dimension, there is an A-module isomorphism

φ :M1 →M2. Since φ is a K-linear map, it can be viewed as a matrix φ ∈Mn(K).
Then φ(f(a)v) = g(a)(φv) for all v ∈ Kn, so φf(a) = g(a)φ ∈ Mn(K), hence f and g

are conjugate as desired.
Now let B be a general central simple algebra over K. We use the fact B⊗ Bop is a

matrix algebra, and apply the first part to get that f⊗ 1 is conjugate to g⊗ 1 in B⊗ Kop.
That is, there is some x ∈ B⊗ Bop with

x(f(a)⊗ b ′)x−1 = (g(a)⊗ b ′)

for all b ′ ∈ Bop. In particular, setting a = 1 get that x commutes with 1⊗Bop: implies
that x = b⊗ 1 for some b ∈ B. This b has the desired property.
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25.3 Bijection between Central Simple Algebras and Cocycles

Suppose L/K Galois, and G = Gal(L/K).
Then

Definition. A(L/K) is the set of CSAs A of degree [L : K]2 split by L

By Proposition 24.11, the map A(L/K)→ Br(L/K) that sends A 7→ [A] is a bijection.
We’ll now put AL/K in bijection with H2(L/K,L×).
Recall thatH2(L/K,L×) can be described using inhomogeneous cocycles as Z2(G,L×)/B2(G,L×),

where

Z2(G,L×) = {φ : G×G→ L× | g1φ(g2,g3) ·φ(g1,g2g3) = φ(g1g2,g3) ·φ(g1,g2)}

B2(G,L×) = {φ : G×G→ L× | φ(g1,g2) =
g1ψ(g2) ·ψ(g1)

ψ(g1g2)
for some ψ : G→ L×}.

We first describe the map A(L/K)→ H2(G,L×).
Suppose A ∈ A(L/K), and fix an embedding i : L ↪→ A (by Noether-Skolem, i is

unique up to inner automorphisms with A.) Identify L with i(L) ⊂ A.
Take any g ∈ Gal(L/K). By Noether-Skolem applied to i, i⊗ g : L → A there exists

ag ∈ A× such that g(x) = agxa
−1
g for all x ∈ L. Here ag is well defined up to left

multiplication by elements of C(L) = L, since if

g(x) = agxa
−1
g = bgxb

−1
g

for all x ∈ L we have that agb−1g commutes with g(x) for all x ∈ L.
(Alternatively, ag is well-defined up to right multiplication by elements of C(L) = L,

since a−1g bg commutes with all x ∈ L. But these come down to the same thing since
ag` = g(`)ag for all ell ∈ L.)

Now note that for g,h ∈ G (agah)x(agah)
−1 = g(h(x)), so agah must equal φ(g,h)

for some φ(g,h) ∈ L.
This φ = φA will give our desired cohomology class in H2(G,L×). To check that φ is

a cocycle, expand(ag1ag2)ag3 = ag1(ag2ag3) and cancel the unit ag1g2g3 from both sides.
Now, the elements ag are only defined up to multiplication by elements of L. If we

choose a different set of elements a ′g = ψ(g)ag, then the new cocyle φ ′ is given by

φ ′(g,h) =
ψ(g,h)

ψ(g) · gψ(h)φ(g,h)

so represents the same class in H2(G,L×).
We now give the inverse map.
Let [φ] ∈ H2(G,L×) be arbitrary represented by a cocycle φ.

93



Definition. Aφ = ⊕g∈GLeg, where the multiplication structure is determined by egx =

g(`)eg for all g ∈ G, x ∈ L and egeh = φ(g,h)egh.

The multiplicative identity 1 in Aφ is given by e1
φ(1,1) , and so we have a canonically

embedded copy of L inside A given by Le1 = L · 1.
(One can choose the representative cocycle φ so that φ(1, 1) = 1, and then e1 is the

identity.)
It follows from the cocycle conditions that A is an associative K-algebra. Also [A :

K] = |G|[L : K] = [L : K]2.

Proposition 25.6. Aφ is central simple over K.

Proof. Central: If a ∈ Z(A) then a commutes with L so a ∈ L = Le1, but also a commutes
with all eg so a is in the fixed field of Gal(L/K) namely K.

Simple: Let I be a nonzero proper ideal of A. Take an element a = c1egk + · · · +
cnegk ∈ I with c1, . . . , ck ∈ L, k minimal. WLOG g1 = 1. Since I is not all of A, k ≥ 2

Take x ∈ L such that g2(x) 6= x. Then xa− ax ∈ I but

xa− ax = (xc1 − c1x)e1 + (xc2 − c2g2(x))eg2 + · · · = (x− g2(x))c2(x)eg2 + · · ·

contradicts minimality of k.

We’ve now defined maps A→ φA : A(L/K)→ H2(G,L×), and φ→ Aφ : H2(G,L×)→
A(L/K). It’s clear that φAφ = φ, since we can take ag = eg. The other direction is only
slightly harder. If φ = φA, then there’s a natural homomorphism Aφ → A sending L
to L and eg to ag. This homomorphism is injective because A is central simple, and is
surjective by dimension count.

Hence we’ve established a bijection A(L/K) → H2(G,L×), and have already estab-
lished a bijection Br(L/K)→ A(L/K), so composing the two gives a bijection Br(L/K)→
H2(G,L×).

26 November 30

26.1 Conclusion from Last time

Let L/K be a finite Galois extension of arbitrary fields. Last time we gave a bijection
Br(L/K) ↔ H2(L/K,L×). One can show that this bijection is indeed a group homomor-
phism (Aφ ⊗K Aφ ′ ∼= Aφ+φ ′ ⊗Mn(K)), but we won’t do it here.

As well, the following diagrams commute (though we won’t check them either)

Br(L/K) Br(E/K)

H2(L/K,K×) H2(E/K,E×)

∼ ∼

inf
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where E ⊂ L is a field with E/K finite Galois.
and

Br(L/K) Br(E/K)

H2(L/K,K×) H2(E/K,E×)

A 7→A⊗KL
∼ ∼

Res

where M is any intermediate field.
As a consequence of the first diagram above we get an isomorphism

Br(K) =
⋃
L/K

Br(L/K) = lim−→
L

Br(L/K) = lim−→
L

H2(L/K,L×) = H2(K, (Ksep)×)

(where L runs through all finite Galois extensions of K), justifying the terminology Br(K)
used previously in this class.

Corollary 26.1. If [L : K] = n, Br(L/K) is an n-torsion group. Br(K) is a torsion group.

26.2 Examples of fields with trivial Brauer groups:

We’ve previously seen that Br(K) = 0 if K is algebraically closed or if K is finite. (We
know how to prove these both on the CSA side and on the Galois cohomology side!)

We’ll now develop a tool for studying division algebras that will let us show that a
wider range of fields have trivial Brauer group.

Let A be a central algebra over K with [A : K] = n2. Let L be any field that splits
A, and pick an L-algebra isomorphism φ : A⊗K L → Mn(L). (By Noether-Skolem, φ is
unique up to conjugation.)

Then, define
Nrd(a) = det(φ(a⊗ 1)).

A priori, Nrd(a) ∈ L×.
However, we claim
Claim: Nrd(a) is fixed by Gal(L/K), hence lies in K×.

Proof. For g ∈ Gal(L/K) be arbitrary. By Skolem Noether: the two L-algebra maps
φ,φ ′ : A ⊗K L → Mn(L) given by φ ′(a ⊗ x) = gφ(a ⊗ g−1)x are conjugate. Taking
determinants of both sides, detφ(a⊗ 1) = gdet(φa⊗ 1), as desired.

Now suppose that A = D is a division algebra. Because Nrd is multiplicative, it maps
D× → K×: in other words, it is a function on D which is only zero at d = 0.

However, Nrd is a polynomial function, in the sense that if v1, . . . , vn2 form a basis
for D, then

Nrd(
∑
i

xivi) ∈ K[x1, . . . , xn2 ]
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is a homogeneous polynomial of degree n. So we have a polynomial in K[x1, . . . , xn2 ],
homogeneous of degree only n, with no roots in Kn \ 0. There are a number of fields
over which this is impossible.

Definition. K is quasi-algebraically closed (QAC) if any homogeneous degree d polyno-
mial f ∈ K[x1, . . . , xN] with d < N has a nonzero solution in Kn.

We now automatically get

Theorem 26.2. If K is QAC, then Br(K) = H2(K, (Ksep)×) = 0

Proof. By the above discussion, if D is a division algebra over K with [D : K] = n2, we
must have n2 ≤ n, so n = 1 and D = K.

Example. If K is algebraically closed then K is QAC.

Example. If K = Fq is a finite field, then the Chevalley-Warning theorem says K is QAC.
More specifically, it shows that the number of solutions of f in Kn is a multiple of p,
where p = charK, and therefore 0 cannot be the only solution. The proof is a matter of
evaluating

∑
v∈Fnq

(1− f(v)q−1) in two different ways.

Example. Tsen’s theorem: C[t] is quasi-algebraically closed. (More generally, function
fields in one variable over C.

Example. (Lang: any complete DVR with alg closed residue field, eg, C[[t]] or the com-
pletion K̂unr of the maximal unramified extension of a local field.

Example. The maximal unramified extension Kunr of a local field is also itself quasi-
algebraically closed.

Also:

Theorem 26.3 (Lang). If K is QAC, then any finite extension of K is also QAC.

One consequence of Lang’s theorem plus the fact that the Brauer group of any QAC
field is trivial is the following: If K is QAC, then for any L/K ′/K H1(L/K ′,L×) =

H2(L/K ′,L×) = 0. It follows (by an old HW), that all Ĥi(L/K ′,L×) = 0. In particu-
lar, for any finite extension L/K, every element of K is a norm from L.

26.3 Brauer Groups of Local Fields

First we deal with archimedean local fields. Br(C) = 0 because C is algebraically closed.
For R we can compute via cohomology: Br(R) = H2(R, C×) ∼= Ĥ0(R, C×) = R×/NC× is
cyclic of order 2.

If K is an archimedean local field: we have already constructed an isomorphism
inv : Br(K) ∼= H2(K, (Ksep)× → Q/Z.
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We also know that if L/K has degree n, the following diagram commutes

Br(K) Br(L)

Q/Z Q/Z.

Res

inv inv

×n

Hence if x ∈ Br(K) has inv(x) ∈ 1
nZ, then x is split by any extension L with [L : K] = n.

In particular, x is split by the unramified extension Kn of K of degree n. Now, Kn/K is
cyclic, so any element of Br(Kn/K) is of the form Aa for some a ∈ K×/NL× (see problem
2 on current problem set).

However, there’s also a way of seeing all this from the point of view of central simple
algebras.

Let D be central division algebra over K with [D : K] = n2. Let L be a maximal
subfield, so L splits D.

We can extend the absolute value ||K on to D, in a similar manner to how we extend

absolute value to field extensions. Define |a|D = |Nrd(a)|
1
n
K . This is certainly multiplica-

tive, and a similar argument to the commutative case shows that it is a non-archimedean
absolute value. (First check that it is a non-archimedean absolute value when restricted
to any subfield of D.)

Likewise we can extend the valuation v = vK : K× → Z to a valuation v : D× → 1
nZ

by v(a) = 1
nv(Nrd(a)). We can define a ramification index e = eD/K to be the index of

v(D×) in v(K×) = Z. Note that e must divide n.
Also, we say that a uniformizer of D is an πD ∈ D× with the smallest positive absolute

value (namely 1/e.)
(For once I am breaking with my convention that valuations always have integer

values. There’s a reason for this which you’ll see later when we define inv([D]).)
We can then define a “ring of integers” (often called an “order” because of non-

commutativity)
OD = {x ∈ D | v(x) ≥ 0}

which has a maximal two-sided ideal

pD = {x ∈ D | v(x) > 0}.

Here pD = πDOD = ODπD for any uniformizer πD. Extend v : K× → Z to v : D× →
1/nZ.

Then OD/pD is a division algebra over OK/pK = Fq, so it must be a field. Any
primitive element ā of OD/pD lifts to an element a ∈ OD, and [K(a) : K] ≥ f. Since the
maximal subfields of L all have degree n over K, we conclde that f ≤ n.

Exactly the same argument as in the commutative case shows that ef = [D : K] = n2.
But we’ve bounded both e and f above by n! So e = n, f = n.
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In particular, the subfield K(a) ⊂ D is unramified of degree n, so Kn ∼= K(a) embeds
in D.

Now, there exists some element b ∈ D× such that bxb−1 = Frob(x) for all x ∈ b. The
element b is defined up to left multiplication by elements of Kn, so the image of v(b) in
Q/Z is well defined. We define invK([D]) = v(b) (mod Z).

26.4 Global Fields

If K is a Global field, the Brauer group of K is also known. The important theorem is

Theorem 26.4 (Albert-Brauer-Hasse Noether). There exists a short exact sequence 0 →
Br(K) 7→ ⊕v Br(Kv)→ Q/Z→ 0.

Proof will follow from what we do next semester.

Example. K = Q, A = H(a,b) is a quaternion algebra. Then ABHN says that H(a,b) is
non-split at an even number of places e.g.

∏
v(a,b)v is 1. And conversely, given an set S

of places with even cardinality, we can produce a quaternion algebra that it split exactly
at those places (this is a little stronger than ABHN).

Specialize to case of a = p,b = q positive primes. Then
∏
v(p,q)v = 1. (p,q)∞ = 1,

also (p,q)p is
(q
p

)
, and (p,q)q is

(p
q

)
, and (p,q)2 = (−1)(p−1)(q−1)/2. Hence in this case we

get quadratic reciprocity again!
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