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Preliminaries: A model and sculpture

A model of a 6ft x 6ft x 6ft sculpture made

at Penn State for the mathematics depart-

ment. It illustrates (separately) both members

of the McKay correspondence between finite

subgroups of SU(2) and simple Lie alge-

bras. It is the 24-cell, which I call the oc-

tacube, the 4th among the 4 dimensional reg-

ular solids. The rendering method, windowed

radial stereographic projection, is new, and ap-

pears to interest the visual arts community as

well as the popular press.















On the subgroups of SU(2) side its nodes are

the binary tetrahedral subgroup of SU(2), and

using the mid rooms as well, the binary octahe-

dral subgroup, which correspond to the affine

graphs E6 and E7. The edges and surfaces

have natural subgroup interpretations, with the

holes given by a play of lights in regular solids

as drawn by Leonardo da Vinci 500 years ago.



On the Lie algebras side its nodes are the

root system of type D4, and using part or all

the mid rooms as well, the root systems of type

B4 = C4 and F4. The sculpture also illustrates

the Weyl groups of these types, as well as the

reduction projection from D4 to B3 = C3 and

G2.

The 24 spheres surrounding a sphere in the

lattice packing can be seen on the sculpture

as well.



In a short paper in 1990, McKay made the fol-

lowing crucial observation. The Cartan matrix

C of a unimodular affine Lie algebra has the

form C = 2−∆Γ where Γ is an ADE graph and

∆Γ is its adjacency matrix. Any such graph

Γ is obtained from a subgroup G ⊂ SU(2)

as the fusion graph Γ = ΓG (analog of Cay-

ley graph) for tensoring the irreducible repre-

sentations Irr G with σ|G, the 2 dimensional

irreducible σ of SU(2) restricted to G. As

dim(σ|G) = dimσ = 2, we get by Perron-

Frobenius ||∆Γ|| = 2 with a unique eigenvalue

2, and thus the Cartan matrix C = 2 − ∆Γ is

positive with one degenerate eigenvector.

The fact that there are graphs Γ with ||∆Γ|| =

2 which do not appear above, the tadpoles,

was not addressed but will be discussed in our

talk.



Thus there is a correspondence between

G ⊂ SU(2) subgroup with dim(σ|G) = 2

↔
C ≥ 0 degenerate Cartan matrix for an affine

simple Lie algebra.

We shall describe quantum subgroups G which

we introduced, for which there is a correspon-

dence between

G ⊂ SU(2)N with dim(σ|G) = [2]N = 2cos(π/N)

↔
C > 0 nondegenerate Cartan matrix for a sim-

ple Lie algebra.

Thus the ADE (nonaffine) graphs have nat-

urally irreducible objects as vertices and have

edges given by tensoring. The quantum sub-

groups of SU(2) are already quite different from

the (classical) subgroups of SU(2), with Dodd
and E7 different from the other ADE’s. When

we go to SU(3), SU(4) . . . the quantum sub-

group classification will be very different, and

simpler than, the classification of the corre-

sponding (classical) subgroups.



Part I: Extending a monoidal tensor cate-

gory

The data for a monoidal tensor category con-

sists of:

• A set of (irreducible) objects {X, Y, Z, . . . }

• Euclidean vector spaces Hom[X ⊗ Y, Z] (the

fusion) with a trivial object 1,

• Coefficients (6j symbols) for changing base

between

Hom[(X ⊗ Y ) ⊗ Z, T ] =

=
⊕

U

Hom[X ⊗ Y, U ] ⊗ Hom[U ⊗ Z, T ]

Hom[X ⊗ (Y ⊗ Z), T ] =

=
⊕

V

Hom[X ⊗ V, T ] ⊗ Hom[Y ⊗ Z, V ]

(the 6 j’s are the 6 objects X,Y,Z,T,U,V in-

volved)



The main axiom is a pentagonal identity which

expresses the naturality of base change. From

this one obtains symmetry relations: Each ob-

ject X has a conjugate X with X ⊗X ∋ 1. The

Hom spaces Hom[X ⊗ Y, Z] have the symme-

try group S3 acting on the triangle with edges

X, Y, Z (Frobenius reciprocity), e.g.

Hom[X⊗Y, Z] ≈ Hom[X, Z⊗Y ] = Hom[Z ⊗ Y , X]

The axioms are modeled after the irreducible

representations of a finite or compact group,

less the commutativity.

An important additional data is a braiding, in

which there is a distinguished isomorphism

ε : Hom[X ⊗ Y, Y ⊗ X]

for each pair of objects X, Y , which commutes

with the fusion.



Modeled after the bimodules coming from sub-

factors, it is interesting to extend such a tensor

category in the same way in which, in topology,

one goes from the group of loops at a base

point to the groupoid of paths on a manifold.

We give a set of labels, the types {A, B, C, . . . }

and the objects have each a type, which is a

pair of labels (source and range) AXB. The ax-

ioms remain as before, except for the fact that

intertwiners are defined only for matching

types, as in Hom[AXB ⊗ BYC, AZC].

For a fixed type A the objects {AXA} form

a monoidal tensor category. The extension

problem for a monoidal tensor category starts

by labeling the objects X of the category as

{AXA}. The problem is then finding all the

possible other compatible types B, C, . . . .

The natural conditions are the following



• The nondegeneracy condition. Any

(AXB) ⊗B

(
BXA

)
decomposes into the given

A − A objects.

• The nonredundancy condition. For any dis-

tinct labels B, C there is no invertible BXC

(otherwise C is a relabeling of B).

Then dist(B, C) = minX log[BXC] is a distance

between vertices.

We called this maximal extension the maximal

atlas of the given A−A system. The idea be-

hind the name is that the objects of different

types, e.g. in the case of a group the group

elements and the group irreducibles, are pro-

viding alternative descriptions, or maps, of

the same structure.



The problem is defined in such simple terms

(given a tensor category of A−A objects, find

all the possible types B, C, . . . and objects of

type A − B, A − C, B − C, etc.) that it seems

either trivial or impossible. In fact it lies in the

interesting domain in between, it can be solved

in several general contexts, and leads to new

objects and results there.



3d ball (lens), 

with top to bottom

glued with π twist

2 point 

    suspension

          of a torus

singular point

singular point
not a manifold

α
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L(2,1)

•

•

• •

A

(from the properties of the labeled category)

gives Frobenius-Schur theorems

•

•

• •

•

•

• •

B

Thus switching labels each 3-manifold gives

a theorem in representation theory, stat-

ing that a certain quantity is the computed

with group elements is the same when com-

puted with group representations. The sphere

S3 gives

|G| =
∑

σ∈IrrG

|σ|2

while the projective plane or lens space L(2,1)

gives the Frobenius-Schur theorem

|{g ∈ G : g2 = 1}| =
∑

σ∈Irr G:σ⊗σ∋1

±|σ|



Part II: Quantum Subgroups

The problem of the maximal extension of a

tensor category can be solved in the case of

the elements or the irreducible representations

of a finite group G, and led to the subgroups

H of G twisted by a 2-cocycle.

The natural next step is the maximal extension

of the tensor category coming from a quantum

group at a root of 1. The objects which we ob-

tained this way are called by analogy quantum

subgroups.

From the time of Euler on, numbers, then

functions and afterwards whole mathematical

structures appear to have natural q-deformations.



The number n = 0,1,2, . . . deforms to the

quantum number

[n] = (qn/2 − q−n/2)/(q1/2 − q−1/2)

so e.g. [3] = q−1 + 1 + q. From a vector

space V we define (formally) qV with elements

{qv, v ∈ V } satisfying qvqw = qv+w. Just like

quantum numbers we have now quantum vec-

tors, [v] = (qv/2 − q−v/2)/(q1/2 − q−1/2).

The main step in quantizing SU(2), and sim-

ilarly simple Lie groups, is to replace the di-

agonal vector space H by qH and the relation

[e, f ] = h by [e, f ] = [h].

The dimension of the irreducible σn ∈ Irr SU(2)

of degree n becomes [n + 1]. At a root of

1, when q = e2πi/N , we have [N ] = 0 (N is

called the Coxeter number), and by a quotient-

ing procedure the quantum group SU(2)N re-

mains with only a finite number of irreducible



representations σ0, σ1, . . . , σN−1. These form a

braided tensor category, so in view of our

previous discussion, the natural problem is to

find the maximal extension from Irr SU(2)N

viewed as A − A objects to all the possible

B, C, . . . labels and corresponding objects.

The main result is that the types of the quan-

tum subgroups of SU(2)q with qN = 1 are

precisely those ADE graphs which have Cox-

eter number N . Thus, e.g. when N is odd,

the only label is A = AN−1 while for N = 30

the labels are A = A29, D16 and E8. Thus

SU(2)odd has no nontrivial quantum subgroups

while SU(2)30 has 2 nontrivial quantum sub-

groups, the quantum analogs of the binary di-

hedral and the binary icosahedral subgroups of

SU(2) studied by Felix Klein.



A=A11 D=D7 E=E6 

(1,1) (G,1)(H,µ) (K,λ)

The maximal atlas for a finite or compact group G
Vertices = (H,µ)  = subgroup H of G + scalar 2 cocycle µ on H

The maximal atlas of a quantum group 

at a root of 1 (Coxeter N)  (A.O.):

a quantum analog of the McKay picture
G = SU(2)10 withCoxeter number 12

Vertices = ADE  graphs with Coxeter number N

By analogy we call these the quantum subgroups of G

(µ Schur multiplier->projective representations of H)

g∈G α∈Irr G

(g,α)

g = representative for HgK,  

α∈Irrµλ
−

g   H∩gKg
–1

Irreducible objects:

α∈IrrλK
(the McKay picture)
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Note that the quantum subgroups appear in

this construction as a set of irreducible ob-

jects (representations) with Hom spaces for

tensoring. Their ”internal structure” remains

an open problem.

The Kleinian invariant theory has a very in-

teresting quantum analog. The degrees of the

quantum invariants correspond to the entries

in the modular invariant matrix defined first

in physics.



Invariants for classical and 

quantum subgroups of SU(2)
k

12

is the spin k/2 irreducible of SU(2)

The E8 (binary icosahedral) 

subgroup of SU(2)

polynomials in X,Y,Z modulo

            X5+Y3+Z2=0

no invariants other than 1,X,Y,Z

(other polynomials are 0)

(0,10,18,28)+1=(1,11,19,29) are 

the exponents of the Lie group E8 

The E8 subgroup of 

quantum SU(2)28  (q30=1)

X
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( Z = Jac(X,Y) )
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( Y = Jac(X,X) )
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We have (A.O., 1993)

• the ADE graphs have finitely many quantum

symmetries. Their number is

graph An
Dn

n=2n′
Dn

n=2n′+1
E6 E7 E8

cox. no. n 2n − 2 2n − 2 12 18 30

q.symm. n 2n − 2 2n − 1 12 17 32

• the affine ADE graphs have finitely

parametrizable quantum symmetries.

• the quantum symmetries of graphs of norm

> 2 are wild.



Each ADE graph has two nontrivial gener-

ating quantum symmetries with coefficients

complex conjugate to each other. The quan-

tum morphisms of ADE graphs and between

them are the following (A.O.)

A5-A5 D6-D6
D7-D7

E6-E6
E7-E7

E8-E8



Kleinian 

+ invariant

(wires slide under but not over 

the invariant prong)

modular 

invariant 

matrix

E7-E7
D10 with ambichiral twist 

(module only = 

type II in physics)

E6-E6
no ambichiral twist 

(quantum subgroup = 

type I in physics)

E–E objects (quantum symmetries)

Kleinian 

– invariant

Kleinian 

mixed invariant

Ambichirals

killing ring

ambichirals

move

between

sheets

Upper (+) world

Upper (+) world

Lower (–) world

Lower (–) world

The chiral worlds picture

A 

A 

A 

A 

ambichirals

) world

A 

A 
) world) world

ambichirals

) world
A 

) world) world

sheets
A 

A sheets

1 1 

1 1 

1 

1 1 

1 
1 1 

1 1 



We shall present now an elementary approach,

the quantum symmetries of graphs, which

starts from scratch. Let G be a graph, here

typically ADE or affine ADE. Such graphs

have few symmetries in the usual, or classical,

sense.

In quantum mechanics a particle is no longer

punctual, but spread around; the points in this

room X are replaced by linear combinations of

points CX (too big!), or rather L2(X, C).

In the same spirit, let us replace the EdgeG by

CEdgeG and look for its automorphisms.



G

G

I
I,W

i

ij

j

W:

ξ

ξ

Φ = Φ    :

Σ(

(

(

ij
(

–> C

–> 

–> Φ(ξ)=Φ(ξ)=
η

η

W:

Change basis in vertical graphs and decompose into irreducibles

Quantum symmetries of graphs

The maps are scaled unitaries–> 

i

ik, jlk, l

j

k l

ξ

ξ

Σ( (–> Ψ(Φ(ξ))=–> Ψ(Φ(ξ))=
η

η

i j
ξ

Σ–> 
η

ξ

η



The quantum symmetries of a graph of type

An are isomorphic, as a tensor category, with

the irreducible representations of the quantum

group SU(2)q at the n−1 root of 1 This gives

the most elementary realization of quantum

group cutoffs.

For a finite group G the maximal atlas is la-

beled by pairs (H, [µ]) of a subgroup H ⊂ G

up to inner conjugacy and a scalar 2-cocycle

(Schur multiplier) µ on H.

Let Gl denote a semisimple group G of cut off

by the WZW construction at a root of 1 with

level (= highest degree of irreducibles) l. In

view of the previous discussion it is natural to

call the labels of the maximal atlas coming

from Gl the quantum subgroups of Gl.

Remark that the TQFT language in which we

introduced the quantum subgroups is very



close to the tensor category into which they

were later rewritten by Kirillov and Ostrik (the

edges labels are the objects of the category,

the Hilbert spaces of triangles are the mor-

phisms, etc.) They obtained a new very inter-

esting characterization of the distinction be-

tween subgroups and modules (type I and type

II.)

The main problem as in all TQFT is not the

language used but is (i) the construction of

rich examples, (ii) the understanding of the

inner structure of the objects, leading to

(iii) classification results.

We showed that the quantum subgroups give

raise to, and can be alternatively described

by, quantum groupoid structures called dou-

ble triangle algebras. These have been studied

by Robert Coquereaux with collaborators, who



found very interesting properties and new as-

pects of them. In fact, quantum groups (more

generally, quantum groupoids) describe pre-

cisely the topological properties of rhombuses.

Adding an involution corresponds to allowing

to flip rhombuses on the other side.

The quantum subgroups at roots of unity

of quantum groups have provided an unex-

pectedly rich structure. We have developed

this structure for quantum subgroups of SU(2)

with methods which work without essential mod-

ifications for any nondegenerately braided

tensor category.



Answering the champagne bottle problem of

Zuber, which asked which are the higher SU(3)

analogs of the SU(2) Coxeter ADE graphs,

we reformulated the problem as the problem of

classifying the quantum subgroups of SU(3)

(the reformulation was kindly accepted by Zu-

ber).

We could classify the quantum subgroups

of SU(3) using the classification of modu-

lar invariants of SU(3) by Terry Gannon, and

the list of candidates remarkably guessed al-

most perfectly with “computer aided flair” by

diFrancesco and Zuber, except for a graph which

was not a quantum subgroup. and a later ad-

dition of orbifolds by

diFrancesco, Petkova, Pierce and Zuber)
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We developed a simple new method (cells re-

lated to 6j symbols) to characterize quantum

subgroups.

E
 
21

Modules, braiding and modular theory
Given A-A objects construct the A-B objects (modules, boundary conditions)

inner

def

–1–1 –1–1

–1–1

–1 –1 –1 –1

–1

–1

–1–1= Σ
A

AA

A

A
A

A

AAAA

B

B

B

B
B

B

B

B

W(                          )= δ              + δ

W: {              }→ C  extends to W(        ) = Σ   Π W(     )

For any

(normalization coefficients omitted)

Boundary conditions

Cells for a graph of a subgroup or module of SU(3)N   (A.O.)

For any

W(        ) = δ



On the constructive side we developed a method,

modular splitting for constructing graphs from

modular invariants (an equivalent observation

was made independently by F.Xu). We devel-

oped a simple bootstrap method for differen-

tiating between subgroups and modules (type

I and type II). We characterized the modules

associated to a given subgroup by the am-

bichiral twist. Using these results and meth-

ods the classification of quantum subgroups

of SU(3) is only mildly computational and

does not require any machine help.

For the classification of the quantum sub-

groups of SU(4), while Gannon’s algorithms

are very efficient for determining modular in-

variants up to fairly high levels, the modular

invariant classification is not known. The non-

linearity of the modular splitting yields upper

bounds for the Coxeter number of excep-

tional subgroups.



This gives the following rigidity result, with a

computable (if very large) upper bound. For

any semisimple Lie group, there are no ex-

ceptional subgroups beyond a certain (com-

putable) level (A.O.). Thus there are finitely

many orbifold series and finitely many excep-

tionals.

The actual highest level of exceptional quan-

tum subroups is unexpectedly small: for

SU(2) it is 28, for SU(3) it is 21 and for SU(4)

it is the surprisingly low 8. We constructed

with intensive computation the exceptional sub-

group of SU(4)8 and its module, which are the

first examples of quantum subgroups which do

not come from any known CFT construction

such as conformal inclusions. There are as well

unexpectedly few exceptional subgroups:

2 for SU(2), 3 for SU(3) and 3 for SU(4).

Compare this to the huge number of excep-

tional subgroups of the classical SU(4).
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Thus the quantum subgroup picture

- classifies the solutions of the boundary CFT

problem

- classifies boundary TQFTs for a given TQFTs

- answers problems set by Zuber et al. about

higher Coxeter graphs

- classifies the solutions of the boundary sta-

tistical mechanical problem of Zuber, Pierce,

Petkova et al.

- admits an elementary description as quan-

tum symmetries of graphs

- admits an easy test using cells on graphs

- answers several apparently unrelated main

problems in operator algebras

- explains the off-diagonal entries of the mod-

ular invariants in several different ways

- provides a machinery for the effective con-

struction of the quantum subgroups of a

nondegenerately braided object, such as quan-

tum groups at roots of 1.



Part III: Simple Lie Groups from

Quantum Subgroups of SU(2)N.

We want to rewrite and simplify the

classical construction and representation

theory of simple Lie groups using a new ap-

proach based on quantum

subgroups of SU(2).

The main problem with the traditional ap-

proach is the splitting of Lie algebras into

the upper and the lower triangular parts,

which makes the construction of the universal

enveloping algebras unnecessarily complicated.

Rather than impose our will, we should let the

constructions ask for the appropriate structure.

So we start with a new way to handle the n x

n matrices. (movie)
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The roots of any ADE graph are built the same

way.



S
H

IF
T

 D
O

W
N

 B
Y

 2
 =

 

C
O

X
E

T
E

R
 E

L
E

M
E

N
T

(p
ro

d
u

c
t 

o
f 

re
fl

e
c

ti
o

n
s

 

in
 s

im
p

le
 r

o
o

ts
 •

 )
=

Cartezian

product

over Z/2

Z
/(

2
N

) 
=

 
W

E
IG

H
T

 l
a

tt
ic

e
 o

f 
S

U
(2

)/
(2

 c
o

x
)

The Graph E6 

(quantum subgroup)

THE RANK•COX=6•12=72 ROOTS OF E6 

The linear space CRoots is too big. As the

space of roots is a cartezian product of two



graphs, we have a graph Laplacian (= adja-

cency matrix) ∆hor for the horizontal graph

and ∆vert for the vertical graph. We call har-

monic the functions f : Roots → C with ∆hor(f) =

∆vert(f).

The root space consists of the harmonic func-

tions on the ribbon. The roots are obtained by

projecting the base of CRoots on the harmonic

functions.



The root space consists 

 harmonic functions on 

the cartezian product graph

∆hor(f ) – ∆vert(f ) = 0

0

4

13
same

sum

inner product of a root

with the other roots
Dirac function at a root

Project onto

harmonic subspace

and rescale

––––>

+1

+2

+1

+1

+1

+1

+1

+1

0

00

00

0

–1

–1

–1

–1

1 0

000

000

000

000

00

00

• Weights are given by integer valued har-

monic functions on the ribbon. Roots → Z.

All the roots and weights have been con-

structed at the same time, without a choice

of a simple root base.



root shell





In fact we shall prove that any integral co-

efficient basis of the universal enveloping

algebra makes by its mere existence a dif-

ferent choice: it distinguishes a

Coxeter element.

This will show that the ribbon structure which

we introduce on semisimple Lie algebras is in

fact the most natural and canonical struc-

ture possible.

The main structure on the ribbon is the light

cone causality i.e. the product in the UEA

between two terms lives in the double cone

causality region between them.



Canonical Bases for

Universal Enveloping Algebras

According to the PBW theorem, the univer-

sal enveloping algebra (UEA) of a simple Lie

group, e.g. SU(n) has off diagonal base

:
∏

ij

e
nij
ij :=

∏

ij

e
nij
ij + lower degree terms

Equivalently one makes some some choice of

order in each product.

One wants a canonical choice of UEA base to

which all automorphisms of the Lie algebra

extend. This is impossible though from the

following argument, given here for convenience

in the case of SU(n).



In the UEA we have e12.e23−e23.e12 = [e12, e23] =

e13. With coefficients mod 2, either e12.e23 =

e13 + . . . and we write e12 < e13 < e23 or

e23.e12 = e13 + . . . and we write e23 < e13 <

e12. This breaks the symmetry , since a

Weyl group element which interchanges e12

with e23 cannot extend to the UEA basis .

These orderings for all noncommuting pairs ar-

range the roots on a ribbon and distinguish

the Coxeter element of the ribbon. So the

ribbon approach is the most canonical con-

struction possible.

This is why the structure of multiplicity and

intertwiner spaces of representations is much

simpler and more natural on the ribbon.

A base construction more canonical than the

usual lexicographic ordering was first done by

Lusztig starting from a choice of simple base

and makes the UEA base independent of the



ordering of the simple base . One starts with

an order dependent construction due to Ringel

using quiver representations for the upper

diagonal part. Lusztig then compensates for

the ordering of quivers by using a braiding.

The end result depends on the choice of simple

base.



What is the structure behind the ribbon?

• The idea is that the quantum subgroup S of

SU(2)N contains the information for putting

together copies of SU(2) into a simple Lie

group G, with its quantum deformation, uni-

versal enveloping algebra with a canonical base,

representations, etc..

• From SU(2)N itself we construct SU(N)q and

e.g. from the binary icosahedral subgroup of

SU(2)30 we construct the Lie group of type

(E8)q.

• While we may work elementarily with an ADE

graph Γ it is useful to view it as the graph of

irreducible representations Γ = Irr S of a quan-

tum subgroup or module (we call it subgroup)

S of SU(2)N . This means that we have a well

defined tensor product

Irr S × Irr SU(2)N → Irr S

defined in a natural way.

• A simple Lie algebra, e.g. su(N), is obtained



by putting together copies of su(2) with com-

binatorics given by a root system {rij}. There

is a diagonal part, in which rij corresponds to

hij = eii − ejj. We construct the root geom-

etry from the fusion (i.e. tensoring multi-

plicities) for quantum subgroups.

• The graph ADE is the McKay (or Cayley)

graph for tensoring the subgroup irreducibles

Irr S with the generator σ1 of SU(2)N . Paths

of length n between α ∈ Irr S and β ∈ Irr S are

a base of

HomS[α ⊗ σ⊗n
1 , β].

Inside this there is the linear subspace which

we call essential paths corresponding to the

highest weight σn ⊂ σ⊗n
1

HomS[α ⊗ σn, β],



with dimension called fusion number N
β
α,n.

D5

D5

A7=SU(2)6

A7xD5=D5

SU(2)6xD5=D5

+1

+1

+1

+1

+1

+1

σ5

σ6

σ1

σ0=id

σ3

σ2

σ4

+1

+1

fusion due to associativity,

fusion functions on the 

cartezian product graph

are harmonic: 

∆hor(f ) – ∆vert(f ) = 0

+1

+1

+1

+1

+1

+1

σ5

σ6

σ1

σ0=id

σ3

σ2

σ4

+1

+1

–1−σ6

–1

–1

–1

–1

–1

–1

−σ1

−σ0

−σ5

−σ6

−σ3

−σ4

−σ2

–1

–1

–10
2

24 –1

13
same

sum



Elementarily, the k-th contraction on paths

on a graph acts (up to a normalization) by

contrk : ξ = (ξ1, . . . , ξn) 7→

δ
ξk,ξ−1

k+1
(ξ1, . . . , ξ̂k, ̂ξk+1, . . . , ξn)

An essential path is a linear combination of

paths for which all the contractions are 0. This

condition reflects the fact that the irreducible

σn ⊂ σ⊗n
1 is not contained in lower degree (i.e.

shorter) σ⊗m
1 for m < n.



essential paths



• When we concatenate essential paths

ξ ∈ HomS[α ⊗ σn, β]

and

η ∈ HomS[β ⊗ σm, γ]

we obtain

ξ ◦ η ∈ HomS[α ⊗ σn ⊗ σm, γ].

Then we project it onto essential paths, corre-

sponding to σn+m ⊂ σn ⊗ σm, to get

ξ · η ∈ HomS[α ⊗ σn+m, γ].

This product of essential paths is the foun-

dation of the whole construction of Lie groups

from quantum subgroups.

• We construct a linear category with objects

Roots = Z/(2N) ×Z/2 Irr S

(taken with multiplicities) and homomorphisms

given by essential paths on the product graphs

Hom[(k, α), (l, β)] := HomS[α ⊗ σl−k, β].



Recall that we have defined a product of essen-

tial paths, corresponding to concatenation fol-

lowed by highest weight projection correspond-

ing to σn+m ⊂ σn ⊗ σm.

• The kernel of a homomorphism has again

a kernel (these are not vector space maps)

and remarkably after 6 terms any exact se-

quence closes (2N steps higher, but our verti-

cal coordinate has period 2N .) This gives the

hexagons in the root lattice. The snake

lemma in homology theory becomes the root

system of SU(4).



Snake lemma 

(homological 

algebra) 

 

= 

Root system 

of type A3 
(SU(4)) 

Thus homology theory has a crystallographic

component.



• The off-diagonal canonical base (we do not

single out the upper triangular part) is labeled

by multiplicities n : Roots → N. We denote

the corresponding base element by a formal

power rn, which is a natural choice rn =:∏
i r

ni
i :, intrinsic in the ribbon construction,

for the product
∏

i r
ni
i modulo lower order com-

mutants.

+1 +2 
+2 

+1 0 
–1 

–2 –1 
–2 

0 –1 
+1 

a canonical base 

element 

q 

0 +1 
0 

0 0 
+1 

0 0 
0 

0 0 
0 

r 

this is a harmonic 

function, i.e. a weight 

this is a product of 2 roots 

+ lower order terms 



• It remains to define the product rnrm. We

use the Hom’s defined before, make and count

extensions adapting Ringel’s beautiful idea of

the Hall algebra with coefficients counting lin-

ear maps over a field with q elements.

The number of extensions is counted over the

field with q elements, and is a polynomial in q.

Then the number q of elements in the field

becomes the deformation parameter q in the

Lie algebra.



• The ribbon construction provides a new path

basis for the representations of the simple

Lie groups.

Multiplicities of an irreducible representation of a simple group G

�e Kostant 
multiplicity formula: 
count all possible ways 
to add negative roots.
Correct this by adding 
with alternating signs paths from 
transforms of highest weight
by the (huge) Weyl group.

highest weightw w

negative roots

THE WAKE CONDITION
(LIGHT CONE CAUSALITY):

for each entry of the
highest weight
negative roots 

in its wake
but not in each 

other’s wake

for each entry of the
highest weight

in its wake

�e wake condition on the band 
chooses the correct multiplicity: 

no corrections are neededno corrections are needed

   weight

   weight

shipship

wake
(trail)
wake
(trail)

   many paths
small multiplicity



ξ1

ξ2 

ξ3 

ξ4 

SU(9) acting on (C9)   4

The vector ξ2   ξ4   ξ6   ξ9

in the path basis

Hodge dual ξ1   ξ3   ξ5   ξ7   ξ8

ξ5 

ξ6 

ξ7 

ξ8 

ξ9 

<

< < <

< < < <



�e canonical basis 
of the standard irreducible of E6 (27 dim)

(NOT            :causally dependent!)

�e canonical basis of the irreducible of A3 = su(4)
with Young tableau

highest weight

subtract positive roots



The fundamental formula of Weyl has a simple

interpretation in terms of essential paths.

2

4

8

6 7

11

9 9

5

5 12

78

10

6

3

1

3

7

5 6

10

8 8

4

4 11

67

9

5

2

1 1

32

2 2

6

4

4

7

3 3

35

42

111

11 1

323

72 2

656

104 4

858

114 4

767

93 3

535

42 2

111

�e Weyl vector+representation
�e Weyl vector

[9][12] /[4] 
=[1]+[9]+[17]
= 27

9 12

4



Part IV:

Higher Analogs of Simple Lie Groups

from Quantum Subgroups of SU(K)N .

The construction and representation theory of

simple Lie groups from quantum subgroups of

SU(2) was simple and natural enough to ex-

tend to quantum subgroups of SU(K)N , K > 2.

• Each subgroup and module give raise to a

Euclidean system of generalized roots and

generalized weights. These lattices are new

even in the simplest cases.



• The SU(3)1 Lattice Theta Function

The theta function of the lattice corresponding

to SU(3)1 is

θ(q) =
∞∑

m=0

N(m)qm

= 1 + 32q3 + 60q4 + 192q7 + 252q8 + . . .

where N(0) = 1 and for m > 0, m ≡ 0 or 3

mod 4 with m = 2n23n35n5 . . .

N(m) = 4·

· (22n2 − (−1)n3(3−1)/2+n5(5−1)/2+...)·

·
32(n3+1) − (−1)(n3+1)(3−1)/2

32 − (−1)(3−1)/2
·

·
52(n5+1) − (−1)(n5+1)(5−1)/2

52 − (−1)(5−1)/2
. . . .

If m ≡ 1 or 2 mod 4 let N(m) = 0.

This is a very interesting multiplicative mod-

ular function.



The E5 q.subgroup 

of SU(3)5 (cox 8)
X Ζ/3

Weights SU(3)/8 

= 256 higher roots in 24 dim Euclidean space

Scalar product of a higher root with the others

...

6

· ·

·

2·

· ·

–2

· 2

2

2

· ·

·

–2

1 1

·

–22

2 ·

2

· ·

·

–2

1 1

·

·–1

· 1

–22

2 ·

·

1 ·

–1

2

· –2

2



= +1 

= –1 

From SU(3)5 =         we obtain 

16 generalized roots in R6: 

the lattice D6
+, never before used 

in representation theory 

(note: D8
+ is the lattice E8). 

All other generalized lattices 

are new. 

 

Instead of the usual  

Lie algebra lattice hexagons 

 

the generalized roots  

form tetrahedra 

 

which suggest higher 

composition laws. 

The roots obtained from SU(K)N suggest higher

analogs of simple Lie groups with K-nary

composition laws. These higher simple groups

could be the base of

K-dimensional QFT.



• For the higher analogs of the An series the

roots can be constructed as vectors in a man-

ner analogous to the usual diagonal matrices

hij = eii − ejj.

0

0

0

0

0
0
0

0

0

0

0
0

0

0

0
0
0

00

0
0
0
0
0
0
00

0

0
0
0
0
0

0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0

0
0

0

0

0
0
0
0
0

0
0
0
0

0
0
0

0

0
0

–1

–1

–1
–10

0

+1

+1

+1

+1

0

0

SU(2)

a higher analog of hij

a diagonal 

element hij

DATA: A PAIR ON THE BAND
the mirror tip position

on the weight lattice
the pebble (+1) position

in the subgroup irrs.

SU(3)
A6, cox=7 A7, cox=9



• The identity analogous to hij +hjk = hik has

K + 1 terms for SU(K).

A higher analog of hij + hjk = hik

hij
ha

hb

hc

hd

hjk

hik

the higher relation 

has 4 terms 

ha – hb + hc – hd = 0

ha + hc                                                         hb + hd 

recall the 

higher analog of hij

0

0

0

0
0
0

0

0

0

0
0

0

0

0
0
0

00

0
0
0
0
0
0
00

0

0
0
0
0
0

0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0

0
0

0

0

0
0
0
0
0

0
0
0
0

0
0
0

0

0
0

–1

–1
–1

+1

+1

+1



• Here are the An series diagonal constructions

for SU(4).

A higher analog of hij + hjk = hik

= +1
= –1

rest = 0

in an N x N x N period 

of the root lattice of SU(4) 

A higher analog of hij

ha – hb + hc – hd + he = 0

ha + hc + he      =       hb + hd 

:



Z

Z Z Z
Z Z

Z Z Z
Z Z

Z Z Z
Z Z

Z Z Z
Z Z

Z

Z

Z

Z
Z Z Z

Z Z Z Z Z

SU(2)

LATTICE QUANTIZATION:

THE An SERIES

period 3,  sum over period = 0  

–>   SU(3)

period 4,  sum over period 

in each Weyl direction = 0  

–>   SU(3)
4

(also: orbifolds, exceptional lattices) 



Quantum Field Theory and

Tensoriality.

• If H is the Hilbert space describing a particle

(boson), then n bosons are described by the

symmetric tensor power 1/n!H⊗sn. A magma,

called quantum field theory (QFT), of contin-

uously creating and annihilating bosons of the

same kind is thus described by the symmetric

space

SH = eHs =
∞⊕

n=0

1

n!
H⊗sn.

These spaces behave tensorially,

eH⊕K
s = eHs ⊗s eKs

but the spaces obtained this way are

too big.



• One needs smaller spaces which behave

tensorially (i.e. the sections over U ∪V should

be the tensor product – rather than the di-

rect sum – of sections over U and V respec-

tively) but which are not eH.

• Hom spaces behave tensorially. From ob-

jects with usual binary laws, such as

Irr SU(K)N , the QFT is 2-dimensional. This is

the algebraic foundation of 2 dimensional con-

formal field theory and string theory.

• For a realistic 4-dimensional space-time QFT,

one needs Hom spaces of objects having qua-

ternary composition laws (i.e. compose 4

objects to get a 5-th one).

• The higher associativity required is dictated

by the topological structure of 4-dimensional

space.



ALGEBRAIC DATA:

FUNCTOR

α,β,γ ∈Irr
γ

γ

δ

α

α

β

β

⇒ Hom[α⊗β,γ]

⇒ Hom[α⊗β⊗γ,δ]

γ

δ
α

β

λ ⇒
→

⇒

≡
≡

⊕λHom[α⊗β,λ]⊗Hom[λ⊗γ,δ]

γ

δ
α

β
µ ⇒

⇒

⊕µHom[β⊗γ,µ]⊗Hom[α⊗µ,δ]

⊕ ⊗ H

H

H

2∆2=BI 2∆2=BII

H

H

H

⊕λ

⊕µ

associativity

⇒

⇒

⇒
assoc

labels

TENSORIAL: 2d QFT

QUANTUM FIELD THEORY

TOPOLOGICAL QUANTUM FIELD THEORY

2d QFT: tensorial Hilbert space 

for 2d space (= 1 space + 1 time)

with 0d particles

4d QFT: tensorial Hilbert space 

for 4d space (= 3 space + 1 time)

with 1d particles (Feynman diagrams)

3d TQFT:  topological invariants of (empty)

3-manifolds, knots by triangulation

∆3

∂∆3=BI∪BII

(associativity coefficients)

3∆4=BI 3∆4=BII∆5

∂∆5=BI∪BII

  Irr (objects: e.g. Irr G for G (quantum) group, 

            or irreducible bimodules{AXA} )

2d  associativity

4d  associativity

(only 0 dim vertices in common)

(only 1 dim edges in common)



Here are some highlights of the construction

and classification of quantum subgroups.



A5
D6

D7

E6
E7

E8

1 1

1 1

1

1 1

1
1 1

1 1

1

1

2

1

11

1

1

1

1

1

1
1

1

1
1

1

1

1

1

1

1

1

1

1

1 1

1 1

1 1

1

1

1

1 1

11

11

11

1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

Modular group representaions
An N-dimensional complex representation of SL(2,Z) 

associated to SU(2)q at qN=1

Hurwitz,( ... 150 yrs later rediscovered in physics) Verlinde

ρ(S)= (sin((k+1)(l+1)π/N)kl=0,..,N-1

ρ(T)= (δkl exp((k+1)2π/(2N))kl=0,..,N-1

The representation above is NOT irreducible. 

A modular invariant matrix (Mkl) is an intertwiner 

with entries Mkl natural numbers and M00=1. 

These were classified by Itzykson, Capelli, Zuber (1982)

Modular invariants corresponding to SU(3)q classified by T. Gannon

Modular invariants

series An, Dn

exceptionals E6, E7, E8

The diagonal terms: exponents of the A, D, E graph
The off diagonal terms were a mistery before our theory

-explained by the structure of quantum subgroups of SU(2)



i

ij

j

The modular invariant

with  Mij
(B)  

= dim  

 = Σij Mij
(B)

 = 

A

B

B



= ⊗

chiral 

right E6 

The quantum self-symmetries of a graph (e.g. E6)

 – the internal structure of the boundary data -

ambichirals
       A3

chiral 

left E6 
Explain the modular invariant:
- each modular block is an ambichiral

- entries count paths on joint graph

- the first line modular invariants 

M0k count the Kleinian invariants 

of the chiral graph

- M0k also describe the characters of the matrix 

of the chiral graph

- the modular invariants Mkl count the 

Kleinian invariants and characters of the total graph

 - the diagonal invariants Mkk describe the 

characters of the matrix of the module graph 

(as observed by Zuber)

 

E6-E6

1 1

1 1

1

1 1

1
1 1

1 1



A A

B

B

We need to diagonalize it to find the B–B objects

Very simple idea: use braiding to define some B–B objects, 

chiral + and chiral –, in terms of known A–A objects

The double triangle boundary Hopf algebra
The A-B objects can be properly studied only if the much richer 

B-B objects can be understood. 

A A

B

B

A A A

A

A

B

B

BB

A A

B

B

 = Σ

B

B

Bj+

A A

B

B

A A

A A

AA

B

B
 = Σ

 = 

B

B

B

A A

j
def

B

B

Bj–

A A

B

B

A A

A A
 = j
def



Ideally the chiral + and chiral – objects would be irreducible and yield everything   

B B

B

B

BB

B

B

 
=

 Σ

B–B:

(ideally)

B–B:

(in fact)

branching

(Kleinian invariants 

by Schurʼs lemma) 

all = span of + and –

(fibered product of chirals 

over ambichirals)  

All these phenomena are read in the modular matrix, 

which also gives the characters of all the graphs

Finally, a second Hopf algebra

shows that all B–B bimodules arise as a Hopf algebra product of the chiral + and chiral –

subsystems, fibered over the ambichirals.

both + and –
(ambichiral)

1 1

coef.

+ + 
+ 

+ 

– 
– – – 

all 

1 1

1 1

1

1 1

1
1 1

1 1


