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Abstract 

 We examine the rationality of individual and consensus professional forecasts of macroeconomic 
and financial variables using the methodology of Coibion and Gorodnichenko (2015), which focuses on 
the predictability of forecast errors from earlier forecast revisions.  We document two principal findings:  
forecasters typically over-react to information individual level, while consensus forecasts exhibit under-
reaction.  To reconcile these findings, we combine the diagnostic expectations model of belief formation 
from Bordalo, Gennaioli, and Shleifer (2018) with Woodford’s (2003) noisy information model of belief 
aggregation.  The model accounts for the findings, but also yields a number of new implications related to 
the forward looking nature of diagnostic expectations, which we also test and confirm.  Finally, we compare 
our model to mechanical extrapolation, rational inattention, and natural expectations.     
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I. Introduction 

Since the advent of the Rational Expectations Hypothesis, the dominant approach in economics is 

to assume that market participants form their beliefs about the future, and make decisions, on the basis of 

statistically optimal forecasts. Recent research challenges this approach. Empirically, a growing body of 

work tests the Rational Expectations Hypothesis using survey data on the anticipations of households and 

professional forecasters. The evidence uniformly points to systematic departures from statistical optimality, 

which take the form of predictable forecast errors. Such departures have been documented, for example, 

in the context of forecasting inflation and other macro variables (Coibion and Gorodnichenko 2012, 2015, 

CG henceforth, Fuhrer 2017), the aggregate stock market (Bacchetta, Mertens, and Wincoop 2009, 

Amromin and Sharpe 2014, Greenwood and Shleifer 2014, Adam, Marcet, and Buetel 2017), the cross 

section of stock returns (e.g., La Porta 1996, Bordalo, Gennaioli, La Porta and Shleifer 2017, BGLS 

henceforth), credit spreads (Greenwood and Hanson 2013, Bordalo, Gennaioli, and Shleifer 2018), and 

corporate earnings (DeBondt and Thaler 1990, Ben-David et al. 2013, Gennaioli, Ma, and Shleifer 2015, 

Bouchaud, Kruger, Landier, and Thesmar 2017).  Departures from optimal forecasts also obtain in 

controlled experiments (e.g., Hommes et al. 2004, Beshears et al. 2013, Frydman and Nave 2017, Landier, 

Ma, and Thesmar 2017).    

On the theoretical side, various relaxations of the Rational Expectations Hypothesis have been 

proposed to account for the data. In macroeconomics, the main approach builds on rational inattention and 

information rigidities (Sims 2003, Woodford 2003, Carroll 2003, Mankiw and Reis 2005, Gabaix 2014). 

This view maintains the rationality of individual inferences, but relaxes the assumption of common 

information or full information processing. This is often justified by arguing that acquiring, absorbing, and 

processing information entails sizable material and cognitive costs. To economize on these costs, agents 

optimally revise their expectations only sporadically, or on the basis of selected news. As a consequence, 

expectations (and decisions) under-react to news relative to the world of unlimited information capacity. 

In an important empirical test of these theories, CG (2015) study predictability of errors in consensus 

macroeconomic forecasts of inflation and other variables, and find evidence consistent with under-reaction. 
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In finance, in contrast, although there is some evidence of momentum and under-reaction (Cutler, 

Poterba, and Summers 1990, Jegadeesh and Titman 1993), the dominant puzzle is over-reaction to news. 

This puzzle has been motivated by the evidence that stock prices move too much relative to the movements 

in fundamentals both in the aggregate (Shiller 1981) and in the cross section (De Bondt and Thaler 1985). 

The leading psychological mechanism for understanding over-reaction is Kahneman and Tversky’s (1972) 

finding that, in reacting to news, people tend to overweight “representative” events (Barberis, Shleifer and 

Vishny 1998, Gennaioli and Shleifer 2010). For instance, exceptional past performance of a firm may cause 

overweighting of the probability that this firm is “the next google” because googles are representative of 

the group of well performing firms, even though they are rare in absolute terms. This approach is not 

inconsistent with limited information processing, but stresses that people infer too much from the 

information they attend to, however limited. Thus, beliefs and decisions move too much with news 

(Augenblick and Rabin 2017, Augenblick and Lazarus 2017).  BGLS (2017) look at the cross section of 

stock returns and at analyst expectations about earnings growth and find support for over-reaction driven 

by representativeness. 

This state of research motivates two questions. First, which departure from rational expectations is 

predominant, under- or over-reaction to news?  At the least, can we identify circumstances in which either 

of them is more likely to prevail?  Second, which mechanisms create these departures? Put differently, can 

one account for the main features in the data using a parsimonious model capturing precise cognitive 

mechanisms for under- and over-reaction? 

This paper addresses these questions by studying the predictions of professional forecasters about 

16 macroeconomic variables, which include but are not limited to those considered by CG (2015). We use 

both the Survey of Professional Forecasters (SPF) and the Blue Chip Survey, which gives us 20 

expectations time series in total.   These include forecasts of real economic activity, consumption, 

investment, unemployment, housing starts, and government expenditures, as well as multiple interest rate 

variables.  We examine both consensus and individual level forecasts.  SPF data are publicly available; 

Blue Chip data were purchased. 
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Section 3 addresses the first question above, namely what are the patterns of over- and under-

reaction in different series. We follow CG’s methodology of measuring a forecaster’s news by his forecast 

revision, and of using this forecast revision to predict the forecast error, computed as the difference between 

the realization and the corresponding forecast.  In this setting, under-reaction to news implies a positive 

correlation between forecast errors and forecast revisions, while over-reaction to news implies the opposite. 

Unlike CG, we examine not only consensus forecasts, defined as the average forecast across all analysts, 

but individual ones.  We then explore the consequences of aggregating forecasts, which turns out to be 

crucial for understanding their properties. 

For the case of consensus forecasts, our analysis confirms the CG findings of under-reaction: the 

average forecast revision positively predicts the average future forecast errors for most series. At the 

individual level, however, the opposite pattern emerges: for most series, the forecast revision of the average 

forecaster negatively predicts the same forecaster’s future error. In stark contrast with the consensus results, 

at the level of the individual forecaster over-reaction is the norm, under-reaction the exception.  These 

results are robust to a variety of potential sources of predictability, including forecaster heterogeneity, small 

sample bias, measurement error, non-standard loss functions, and non-normality of shocks. 

In Section 4 we propose a model that reconciles these seemingly contradictory findings from the 

viewpoint of leading theories of under- and over-reaction to news.  In our setup, agents must predict the 

future value of a state that follows an AR(1) process. Each agent observes a different noisy signal of the 

current value of this state.  To exploit such noisy information optimally, forecasters should use the Kalman 

filter. This setup captures Woodford’s (2003) “Noisy Information Model”, which also describes CG’s 

principal approach to rational inattention: noise stems from the cognitive costs of processing full 

information, but noisy signals are optimally evaluated using the Kalman filter.  This setup can also capture 

a setting in which different forecasters, rather than being inattentive, simply observe different news 

(stemming for instance from their use of different models or different information sources, CG 2012).    

To allow for over-reaction, we assume that – in processing the noisy signal – agents are swayed by 

representativeness. To formalize this heuristic we use the Gennaioli and Shleifer (2010) model, which was 

originally proposed to describe lab experiments on probabilistic judgments and later applied to social 



5 
 

stereotypes (Bordalo, Coffman, Gennaioli, and Shleifer 2016), forecasts of credit spreads (BGS, 2018) and 

forecasts of firm performance (BGLS 2017). In this approach, the representativeness of a given future state 

is measured by the proportional increase in its probability in light of recent news. Agents exaggerate the 

probability of more representative states (states that have become relatively more likely) and underestimate 

the probability of others. Representativeness causes expectations to follow a modified Kalman filter that 

exaggerates the signal to noise ratio of news. As in earlier work, we call expectations distorted by 

representativeness “diagnostic.” 

In this model, under-reaction in the consensus can be reconciled with over-reaction at the 

individual level, but only when each forecaster over-reacts to the news he receives. When each forecaster 

over-reacts to his own information, the econometrician detects negative predictability of his forecast error 

at the individual level.  At the consensus level, however, predictability may still be positive, provided the 

distortion caused by representativeness is not too strong. The reason is that, while over-reacting to his own 

signal, each individual forecaster does not react to the signals observed by the other forecasters. Because 

all signals are informative and on average correct about the state, the average forecast under-reacts to the 

average information. 

Our analysis demonstrates that judging whether individuals under- or over-react to information on 

the basis of consensus forecasts may be misleading.  Even if all forecasters over-react, as under diagnostic 

expectations, looking at consensus forecasts may point to under-reaction simply because different analysts 

over-react in different directions to partial information.  In Section 5 we assess whether the data are 

consistent with further distinctive predictions of diagnostic expectations. These predictions allow us to 

distinguish the model from the mechanical updating rule of adaptive expectations. They also allow us to 

better compare our model to Rational Inattention.  The general logic of these tests relies on the “kernel of 

truth” property of diagnostic expectations, which holds that belief updating exaggerates true patterns in the 

data.  This property yields testable predictions both across different series and in the time series of 

individual variables.   

We present cross sectional tests in Section 5.1. We show first that, upon receiving news, 

individuals’ forecast revisions are stronger for variables whose time series exhibit more persistence.  This 
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is consistent with diagnostic expectations and with rational inattention, but not with adaptive expectations 

in which the updating rule is fixed.  We then show that the individual-level CG coefficient of overreaction 

documented in Section 3 is closer to zero for series that are very persistent. This is in line with diagnostic 

expectations: as persistence increases, rational forecast revisions are more volatile (and in fact the signal 

to noise ratio increases) which reduces the scope for overreaction. 

In Section 5.2 we develop a time-series test of the kernel of truth.  We model individual series as 

AR(2) processes to account for long term reversals of actuals, consistent with the importance of hump 

shaped dynamics stressed by Fuster, Laibson, and Mendel (2010). We find that 12 out of 16 variables 

exhibit hump-shaped dynamics.  We solve a diagnostic expectations model under AR(2) and show such 

dynamics have far-reaching implications for expectations under the kernel of truth property.  In particular, 

they imply that: i) an upward forecast revision about the short term should predict excess pessimism about 

the long term, while ii) an upward forecast revision about the medium term should predict excess optimism 

about the long term.  Put differently, diagnostic expectations exaggerate both short-term momentum and 

long-term reversals.  We find that these predictions are borne out in the data. Besides strengthening the 

support for widespread over-reaction entailed by representativeness, these results also show the risks of 

using the CG method for AR(2) series. In fact, we show that overreaction to different time lags may 

contribute to finding apparent underreaction under an AR(1) specification.  Taken together, the evidence 

is broadly consistent with the kernel of truth property of beliefs that is central to the diagnostic expectation 

mechanism. 

In Section 6 we present a calibration exercise of our baseline model [to complete].  We also 

consider the realistic case where shocks are not normally distributed, where we replace the closed form 

Kalman filter with a numerical particle filter.  We show that the model’s predictions carry through.  

The main contributions in this paper are to document empirically the prevalence of over-reaction 

to information in individual forecasts of macroeconomic variables, and to unify this finding with under-

reaction in the consensus using diagnostic expectations. There have been several other approaches to 

similar phenomena.   One of them is fixed-rule extrapolation or adaptive expectations; and we show 

throughout that the diagnostic expectations model both has better psychological foundations and yields 
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predictions more consistent with the data.  Another approach is the model of Natural Expectations of Fuster, 

Laibson, and Mendel (2010). Diagnostic expectations yield some patterns that are similar to natural 

expectations, but also make distinctive predictions – such as over-reaction to long-term reversals – that 

more closely reflect the data. Finally, diagnostic expectations are related to the idea of over-confidence.  In 

particular, they imply an exaggeration of the perceived signal to noise ratio, which is a conventional 

formalization of overconfidence.  We focus on diagnostic expectations rather than overconfidence, because 

– as we show in other work – they help explain beliefs even in settings where overconfidence can be ruled 

out (such as in cases where information is common and public).  We return to these alternatives throughout 

our analysis. 

 

2. The Data 

Data on Forecasts 

We collect forecast data from two sources: Survey of Professional Forecasters (SPF) and Blue Chip 

Financial Forecasts (Blue Chip).2  SPF is a survey of professional forecasters currently run by the Federal 

Reserve Bank of Philadelphia. According to the enrollment form on Philadelphia Fed’s website, “most of 

the survey’s participants have formal and advanced training in economic theory and forecasting and use 

econometric models to generate their forecasts.” Participation is also limited to “those who are currently 

generating forecasts for their employers or clients or those who have done so in the past.” At a given point 

in time, around 40 forecasters contribute to the SPF anonymously. SPF is conducted on a quarterly basis, 

around the end of the second month in the quarter. It provides both consensus forecast data and forecaster-

level data (identified by forecaster ID). Forecasters report forecasts for outcomes in the current and next 

four quarters, typically about the level of the variable in each quarter.  

Blue Chip is a survey of panelists from around forty major financial institutions. The names of 

institutions and forecasters are disclosed. The survey is conducted around the beginning of each month. To 

match with the SPF timing most closely, we use Blue Chip forecasts from the end-of-quarter month survey 

                                                           
2 Blue Chip provides two sets of forecast data: Blue Chip Economic Indicators (BCEI) and Blue Chip Financial 
Forecasts (BCFF). We do not use BCEI since historical forecaster-level data are only available for BCFF. 
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(i.e. March, June, September, and December).  Blue Chip has consensus forecasts available electronically, 

and we digitize individual-level forecasts from PDF publications. Panelists forecast outcomes in the current 

and next four to five quarters. For variables such as GDP, they report (annualized) quarterly growth rates. 

For variables such as interest rates, they report the quarterly average level. For both SPF and Blue Chip, 

the median (mean) duration of a panelist contributing forecasts is about 16 (23) quarters. 

Given the timing of the SPF and Blue Chip forecasts we use, by the time the forecasts are made in 

quarter 𝑡𝑡 (i.e. around the end of the second month in quarter 𝑡𝑡), forecasters know the actual values of 

variables with quarterly releases (e.g. GDP) up to quarter 𝑡𝑡 − 1, and the actual values of variables with 

monthly releases (e.g. unemployment rate) up to the previous month.  

Table 1 presents the list of variables we study, as well as the time range for which forecast data are 

available from SPF and/or Blue Chip. These variables cover both macroeconomic outcomes, such as GDP, 

price indices, consumption, investment, unemployment, government consumption, and financial variables, 

primarily yields on government bonds and corporate bonds. SPF covers most of the macro variables and 

selected interest rates (three month Treasuries, ten year Treasuries, and AAA corporate bonds). Blue Chip 

includes real GDP and a larger set of interest rates (Fed Funds, three month, five year, and ten year 

Treasuries, AAA as well as BAA corporate bonds).  Relative to CG (2015), we add two SPF variables 

(nominal GDP and the 10Y Treasury rate) as well as the Blue Chip forecasts.3 

Table 1. List of Variables 
 

This table lists our outcome variables, the forecast source, and the period for which forecasts are available.  
 

Variable SPF Blue Chip Abbreviation 
Nominal GDP 1968Q4--2014Q4 N/A NGDP 
Real GDP 1968Q4--2014Q4 1999Q1--2014Q4 RGDP 
GDP Price Deflator 1968Q4--2014Q4 N/A PGDP 
Real Consumption 1981Q3--2014Q4 N/A RCONSUM 
Real Non-Residential Investment 1981Q3--2014Q4 N/A RNRESIN 
Real Residential Investment 1981Q3--2014Q4 N/A RRESIN 
Federal Government Consumption 1981Q3--2014Q4 N/A RGF 
State & Local Government Consumption 1981Q3--2014Q4 N/A RGSL 
Housing Starts 1968Q4--2014Q4 N/A HOUSING 
Unemployment Rate 1968Q4--2014Q4 N/A UNEMP 

                                                           
3 Relative to CG, we do not use SPF forecasts on CPI inflation and industrial production index, as real time macro 
data are missing for these two variables for a period of time.   
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Fed Funds Rate N/A 1983Q1--2014Q4 FF 
3M Treasury Rate 1981Q3--2014Q4 1983Q1--2014Q4 TB3M 
5Y Treasury Rate N/A 1988Q1--2014Q4 TN5Y 
10Y Treasury Rate 1992Q1--2014Q4 1993Q1--2014Q4 TN10Y 
AAA Bond Rate 1981Q3--2014Q4 1984Q1--2014Q4 AAA 
BAA Bond Rate N/A 2000Q1--2014Q4 BAA 

 
 

The main forecast horizon we analyze is annual. For variables like GDP and inflation, we look at 

the annual growth rate from quarter 𝑡𝑡 − 1 to quarter 𝑡𝑡 + 3. In SPF, the forecasts for these variables are in 

levels (e.g. level of GDP), so we transform them into implied growth rates (actual GDP of quarter 𝑡𝑡 − 1 is 

known at the time of the forecast, so this transformation complies with the forecasters’ information sets). 

In Blue Chip, the forecasts for these variables are in the form of quarterly growth rates, so we add up 

forecasts for growth rates in quarters 𝑡𝑡 to 𝑡𝑡 + 3. For variables such as the unemployment rate and interest 

rates, we look at the level in quarter 𝑡𝑡 + 3. Both SPF and Blue Chip have direct forecasts of the quarterly 

average level in quarter 𝑡𝑡 + 3.  Appendix A provides a description of variable construction. 

Consensus forecasts are computed as means from individual-level forecasts available at a point in 

time. We calculate forecasts, forecast errors, and forecast revisions at the individual level, and then average 

them across forecasters to compute the consensus.4  

Data on Actual Outcomes 

The actual outcomes of macroeconomic variables are released quarterly but are often subsequently 

revised. To match as closely as possible the forecasters’ information set, we focus on initial releases from 

Philadelphia Fed’s Real-Time Data Set for Macroeconomists. For a given quarter, we proxy the forecasters’ 

information set as the latest estimates available by the time of the forecast. Conversely, we measure the 

actual outcome that was forecasted using the initial release of the actuals in the corresponding time period. 

For example, for actual GDP growth from quarter 𝑡𝑡 − 1 to quarter 𝑡𝑡 + 3, we use the initial release of 

GDP𝑡𝑡+3 (available in quarter 𝑡𝑡 + 4) divided by the initial release of GDP𝑡𝑡−1 (available in quarter 𝑡𝑡, prior to 

                                                           
4 There could be small differences in the set of forecasters who issue a forecast in quarter 𝑡𝑡, and the set of forecasters 
who revise their forecast at 𝑡𝑡 (these forecasters need to be present at 𝑡𝑡 − 1 as well). Thus, simple averages of forecasts 
and forecast revisions may cover different sets of individuals. This issue does not affect the results much. We can 
restrict our calculation to forecasters that have both forecasts and forecast revisions and results are the same.    
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when the forecasts are made). For financial variables, the actual outcomes are available daily and are 

permanent (not revised). We use historical data from the Federal Reserve Bank of St. Louis.   

Summary Statistics 

Table 2 below presents the summary statistics of the variables, including the mean and standard 

deviation for the actuals being forecasted, as well as the consensus forecasts, forecast errors, and forecast 

revisions at a horizon of quarter t+3. The table also shows statistics for the quarterly share of forecasters 

with no meaningful revisions,5 and the quarterly share of forecasters with positive revisions. 

Table 2. Summary Statistics 
 

Summary statistics of main variables; means and standard deviations are presented. All values are in 
percentages. Panel A shows the statistics of actuals, consensus forecasts, consensus errors and consensus 
revisions. Actuals are realized outcomes corresponding to the forecasts, and errors are actuals minus forecasts. 
Revisions are forecasts of the outcome made in quarter t minus forecasts of the same outcome made in quarter 
t-1. Panel B shows additional individual level statistics. The forecast dispersion column shows the mean of 
quarterly standard deviations of individual level forecasts. The revision dispersion column shows the mean of 
quarterly standard deviations of individual level forecast revisions. Non-revisions are instances where forecasts 
are available in both quarter t and quarter t-1 and the change in the value is less than 0.01. The non-revision and 
up-revision columns show the mean of quarterly non-revision shares and up-revision shares. The final column 
of Panel B shows the fraction of quarters where less than 80% of the forecasters revise in the same direction.  
 

Panel A. Consensus Statistics 
 

    Actuals Forecasts Errors Revisions 
Variable Format mean sd mean sd mean sd mean sd 
Nominal GDP (SPF) 

Growth rate 
from end of 
quarter t-1 
to end of 
quarter t+3 

6.19 2.90 6.43 2.30 -0.24 1.75 -0.14 0.71 
Real GDP (SPF) 2.56 2.31 2.73 1.38 -0.17 1.74 -0.18 0.64 
Real GDP (BC) 2.66 1.55 2.62 0.86 0.03 1.30 -0.12 0.48 
GDP Price Index (SPF) 3.56 2.49 3.63 2.03 -0.07 1.14 0.02 0.48 
Real Consumption (SPF) 2.85 1.46 2.53 0.76 0.32 1.15 -0.05 0.51 
Real Non-Residential Investment 
(SPF) 4.90 7.35 4.41 3.68 0.49 5.86 -0.26 1.78 

Real Residential Investment (SPF) 2.77 11.68 2.67 6.19 0.11 8.71 -0.64 2.48 
Real Federal Government 
Consumption (SPF) 1.36 4.59 1.34 2.61 0.02 3.22 0.13 1.24 

Real State&Local Govt Consumption 
(SPF) 1.62 1.68 1.62 1.09 0.00 1.12 0.00 0.59 

Housing Start (SPF) 1.67 22.16 4.75 15.33 -3.08 18.81 -2.41 5.97 
Unemployment (SPF) 

Average 
level in 
quarter t+3 

6.38 1.55 6.38 1.43 0.00 0.76 0.06 0.33 
Fed Funds Rate (BC) 4.10 2.99 4.53 2.94 -0.42 1.04 -0.18 0.54 
3M Treasury Rate (SPF) 3.98 2.86 4.54 2.93 -0.56 1.15 -0.21 0.52 
3M Treasury Rate (BC) 3.76 2.73 4.28 2.72 -0.52 1.02 -0.18 0.51 

                                                           
5 We categorize a forecaster as making no revision if the forecaster provides non-missing forecasts in both quarters t-
1 and t, and the forecasts change by less than 0.01. For variables in rates, the data is often rounded to the first decimal 
point, and this rounding may lead to a higher incidence of none-revision. For national accounts variables in SPF, 
which are provided in levels, we define no-revision as less than 0.01% change in the implied growth rate forecasts.  
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5Y Treasury Rate (BC) 4.45 2.24 4.86 2.05 -0.41 0.89 -0.15 0.45 
10Y Treasury Rate (SPF) 4.49 1.56 4.99 1.40 -0.50 0.76 -0.12 0.37 
10Y Treasury Rate (BC) 4.42 1.56 4.86 1.38 -0.44 0.75 -0.13 0.39 
AAA Corporate Bond Rate (SPF) 7.26 2.4 7.74 2.52 -0.47 0.85 -0.11 0.39 
AAA Corporate Bond Rate (BC) 6.84 1.94 7.26 2.01 -0.42 0.7 -0.12 0.37 
BAA Corporate Bond Rate (BC) 6.30 1.08 6.75 0.95 -0.45 0.68 -0.14 0.31 

 
Panel B. Additional Individual Level Statistics 

 
    Forecasts Revisions 

Variable Format Dispersion Dispersion non-rev 
share 

up-rev 
share 

Pr(<80% revise 
same direction) 

Nominal GDP (SPF) 

Growth rate from end 
of quarter t-1 to end of 
quarter t+3 

0.59 1.13 0.02 0.45 0.79 
Real GDP (SPF) 0.63 0.94 0.02 0.43 0.74 
Real GDP (BC) 0.17 0.40 0.05 0.43 0.66 
GDP Price Index (SPF) 0.52 0.75 0.05 0.49 0.79 
Real Consumption (SPF) 0.68 0.76 0.03 0.48 0.76 
Real Non-Residential Investment 
(SPF) 1.03 2.47 0.02 0.49 0.71 

Real Residential Investment (SPF) 2.09 4.24 0.03 0.45 0.83 
Real Federal Government 
Consumption (SPF) 1.38 2.25 0.06 0.52 0.87 

Real State&Local Govt 
Consumption (SPF) 1.45 1.28 0.10 0.48 0.93 

Housing Start (SPF) 5.46 8.61 0.00 0.39 0.68 
Unemployment (SPF) 

Average level in 
quarter t+3 

0.13 0.30 0.18 0.42 0.77 
Fed Funds Rate (BC) 0.33 0.48 0.22 0.30 0.68 
3M Treasury Rate (SPF) 0.29 0.48 0.15 0.34 0.68 
3M Treasury Rate (BC) 0.29 0.46 0.19 0.32 0.63 
5Y Treasury Rate (BC) 0.15 0.42 0.12 0.35 0.61 
10Y Treasury Rate (SPF) 0.09 0.38 0.10 0.35 0.65 
10Y Treasury Rate (BC) 0.08 0.35 0.13 0.33 0.57 
AAA Corporate Bond Rate (SPF) 0.25 0.51 0.09 0.38 0.73 
AAA Corporate Bond Rate (BC) 0.22 0.47 0.12 0.34 0.71 
BAA Corporate Bond Rate (BC) 0.12 0.41 0.13 0.32 0.81 

 

Several patterns emerge from Table 2.  First, the average forecast error is about zero. It does not 

appear that macro analysts have asymmetric loss functions that persistently bias their forecasts in a given 

direction. Second, for each variable, there is significant dispersion of forecasts and revisions at each point 

in time, as shown in Table 2 Panel B. Third, analysts frequently revise their forecasts, but they do so in 

different directions. For example, as shown by the final column of Panel B, it is uncommon to have quarters 

where more than 80% forecasters revise in the same direction. This suggests that the appropriate model is 

one in which different forecasters observe or attend to different news, either because they are exposed to 

different information or because they use different models, or both.   Berger, Erhmann, and Fratzscher 
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(2011) show, for example, that the geographical location of forecasters influences their ability to predict 

monetary policy decisions.  Different forecasters may have personal contacts with the industry, 

policymakers, etc., which offers one explanation for the disagreement we see in the data. In this sense, 

forecasting is in part psychological: it involves subjective weighting of model output with private signals.6  

 

3. Over-reaction vs. Under-reaction: Basic Tests 

Studies of the rational expectations hypothesis often test whether forecast errors can be predicted 

using information available at the time the forecast was made. Understanding whether departures from 

rational expectations are due to over- or under-reaction to information is more challenging, since the 

forecaster’s full information set cannot be directly observed by the econometrician.  

To confront this problem, CG (2015) measure the news observed by a forecaster by his forecast 

revision. Denote by 𝑥𝑥𝑡𝑡+ℎ|𝑡𝑡
𝑖𝑖  the ℎ-periods ahead forecast made at time 𝑡𝑡 by forecaster 𝑖𝑖 about the value 𝑥𝑥𝑡𝑡+ℎ 

of a certain variable. Denote by 𝑥𝑥𝑡𝑡+ℎ|𝑡𝑡−1
𝑖𝑖  his forecast in the previous period. The ℎ-periods ahead forecast 

revision at 𝑡𝑡 is given by 𝐹𝐹𝑅𝑅𝑡𝑡,ℎ
𝑖𝑖 = �𝑥𝑥𝑡𝑡+ℎ|𝑡𝑡

𝑖𝑖 − 𝑥𝑥𝑡𝑡+ℎ|𝑡𝑡−1
𝑖𝑖 �, or the one period change in the forecast about 𝑥𝑥𝑡𝑡+ℎ. 

This revision captures the information that the forecaster has observed and used to update his forecast. 

CG analyze consensus forecasts, defined as the average of individual forecasters’ predictions 

𝑥𝑥𝑡𝑡+ℎ|𝑡𝑡 = 1
𝐼𝐼
∑ 𝑥𝑥𝑡𝑡+ℎ|𝑡𝑡

𝑖𝑖  𝑖𝑖 , where 𝐼𝐼 > 1  is the number of forecasters. In this setting, the ℎ -periods ahead 

“consensus information” or forecast revision is given by the change in the consensus forecast, 𝐹𝐹𝑅𝑅𝑡𝑡,ℎ =

�𝑥𝑥𝑡𝑡+ℎ|𝑡𝑡 − 𝑥𝑥𝑡𝑡+ℎ|𝑡𝑡−1�. The extent to which the consensus forecast under-reacts or over-reacts to information 

can then be assessed by estimating the regression: 

𝑥𝑥𝑡𝑡+ℎ − 𝑥𝑥𝑡𝑡+ℎ|𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1𝐹𝐹𝑅𝑅𝑡𝑡,ℎ + 𝜖𝜖𝑡𝑡,𝑡𝑡+ℎ .                                                          (1) 

Under the Rational Expectations Hypothesis, the forecast error should be unpredictable using any 

current information, including the forecast revision itself, so 𝛽𝛽1 = 0. When instead forecasters under-react 

                                                           
6 This is well illustrated by a quote from Cleveland Fed President Pianalto, as cited by Coibion and Gorodnichenko 
(2012): “To paraphrase one of my colleagues, we are looking at flawed data through the lens of imperfect models. To 
try to clarify my perspective on the economy, I also spend a lot of time talking with businesspeople.” 
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to information, we expect 𝛽𝛽1 > 0. As shown by CG, this includes the case in which analysts, perhaps 

because they are inattentive, observe different noisy signals of 𝑥𝑥𝑡𝑡+ℎ and update rationally based on those 

signals (see Section 4).  At the same time, 𝛽𝛽1 > 0 is also consistent with non-rational under-reaction, such 

as that arising under Adaptive Expectations. To see why 𝛽𝛽1 > 0 captures under-reaction, suppose that 

positive information is received, leading to a positive forecast revision 𝐹𝐹𝑅𝑅𝑡𝑡,ℎ > 0. If the forecast under-

reacts, the upward revision is insufficient, predicting a positive forecast error 𝔼𝔼𝑡𝑡�𝑥𝑥𝑡𝑡+ℎ − 𝑥𝑥𝑡𝑡+ℎ|𝑡𝑡� > 0. The 

converse holds if negative information is received: the downward revision is insufficient, predicting a 

negative error. This is why, when forecasters under-react, forecast errors are positively correlated with 

forecast revisions. 

By the same logic, when forecasters over-react to information we should expect 𝛽𝛽1 < 0. Indeed, 

over-reaction means that after positive information 𝐹𝐹𝑅𝑅𝑡𝑡,ℎ > 0 forecasters are too optimistic, so the forecast 

error is negative 𝔼𝔼𝑡𝑡�𝑥𝑥𝑡𝑡+ℎ − 𝑥𝑥𝑡𝑡+ℎ|𝑡𝑡� < 0. On the other hand, after negative information 𝐹𝐹𝑅𝑅𝑡𝑡,ℎ < 0 they are 

too pessimistic, so the error is positive 𝔼𝔼𝑡𝑡�𝑥𝑥𝑡𝑡+ℎ − 𝑥𝑥𝑡𝑡+ℎ|𝑡𝑡� > 0. That is, over-reaction implies that the 

forecast error should be negatively correlated with the forecast revision. 

To test for Rational Inattention, CG’s baseline estimate of Equation (1) uses consensus SPF 

forecasts for the GDP price deflator (PGDP_SPF) at a horizon ℎ = 3.  This yields 𝛽𝛽1 = 1.2, which is robust 

to a number of controls. They also run Equation (1) for 13 SPF variables by pooling forecast horizons from 

ℎ = 0 to ℎ = 3,7 and find qualitatively similar results, with 8 out of 13 variables exhibiting significantly 

positive 𝛽𝛽1’s, and the average coefficient being close to 0.7.  The general message is that consensus 

forecasts of macroeconomic variables display under-reaction. 

We estimate Equation (1) for our 20 series for the same baseline horizon ℎ = 3, using consensus 

forecasts. The results are reported in columns (1) through (3) of Table 3, and confirm the findings of CG. 

The estimated 𝛽𝛽1  is positive for 14 out of 20 series, statistically significant for 8 of them at the 5% 

confidence level, and for a further two series at the 10% level. Our point estimate for inflation forecasts is 

exactly in line with CG’s.  While results for the other SPF series are not directly comparable (since CG 

                                                           
7 These results are presented in Figure 1 Panel B of CG (2015). 
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pool across forecast horizons), the estimates lie in a similar range. The one exception is RGF_SPF (federal 

government spending) for which the estimated 𝛽𝛽1 is negative and significant at the 5% level.  Results from 

the Blue Chip survey align well with SPF where they overlap, but do not exhibit significant consensus 

overreaction for the remaining (exclusively financial variables) series. 

We stress that the various forecast series are not independent. For instance, nominal and real GDP 

growth are naturally highly correlated; the different interest rate series are also closely connected. 

Nonetheless, the general message holds: for macro variables and short rates, under-reaction is common in 

the consensus forecast regressions, while such patterns are largely absent in long-term rates.  

As mentioned above, insufficient updating of consensus beliefs may be due to aggregation issues, 

rather than to under-reaction to information by individual forecasters. As we saw in Table 2, individual 

forecasters often revise in different directions, perhaps because they look at different data or use different 

models. In this case, even if individual forecasters over-react to their own information, such over-reaction 

is attenuated by averaging individual revisions going in opposite directions.  

Table 3. Error-on-Revision Regression Results 

This table shows coefficients from the CG (error on revisions) regression (1). Coefficients are displayed for both 
consensus time-series regressions, and forecaster-level pooled panel regressions, together with standard errors and p-
values. Standard errors are Newey-West for consensus time-series regressions, and clustered by both forecaster and 
time for individual level regressions. 

 
 Consensus Individual 
  No fixed effects With fixed effects 
 𝛽𝛽1 s.e. p-val 𝛽𝛽1

𝑝𝑝 s.e. p-val 𝛽𝛽1
𝑝𝑝 s.e. p-val 

Variable (1) (2) (3) (4) (5) (6) (7) (8) (9) 
Nominal GDP (SPF) 0.48 0.22 0.03 -0.26 0.07 0.00 -0.30 0.06 0.00 
Real GDP (SPF) 0.45 0.25 0.07 -0.23 0.08 0.00 -0.21 0.06 0.00 
Real GDP (BC) 0.59 0.34 0.09 0.12 0.19 0.26 -0.02 0.17 0.93 
GDP Price Index Inflation (SPF) 1.21 0.21 0.00 -0.07 0.10 0.46 -0.16 0.07 0.03 
Real Consumption (SPF) 0.18 0.22 0.41 -0.34 0.11 0.00 -0.39 0.10 0.00 
Real Non-Residential Investment (SPF) 0.93 0.38 0.02 0.01 0.13 0.93 -0.03 0.12 0.82 
Real Residential Investment (SPF) 1.26 0.38 0.00 -0.02 0.10 0.82 -0.12 0.08 0.14 
Real Federal Government Consumption (SPF) -0.44 0.23 0.05 -0.62 0.07 0.00 -0.63 0.06 0.00 
Real State&Local Govt Consumption (SPF) -0.16 0.20 0.42 -0.71 0.14 0.00 -0.73 0.13 0.00 
Housing Start (SPF) 0.45 0.31 0.14 -0.25 0.09 0.01 -0.28 0.08 0.00 
Unemployment (SPF) 0.82 0.21 0.00 0.33 0.11 0.00 0.26 0.11 0.02 
Fed Funds Rate (BC) 0.61 0.23 0.01 0.15 0.09 0.11 0.12 0.09 0.19 
3M Treasury Rate (SPF) 0.71 0.26 0.01 0.24 0.09 0.01 0.19 0.09 0.04 
3M Treasury Rate (BC) 0.67 0.25 0.01 0.20 0.09 0.02 0.16 0.08 0.06 
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5Y Treasury Rate (BC) 0.05 0.22 0.84 -0.12 0.10 0.23 -0.19 0.10 0.05 
10Y Treasury Rate (SPF) -0.01 0.28 0.97 -0.18 0.10 0.06 -0.23 0.09 0.01 
10Y Treasury Rate (BC) -0.06 0.25 0.81 -0.17 0.12 0.14 -0.25 0.11 0.02 
AAA Corporate Bond Rate (SPF) -0.01 0.24 0.97 -0.21 0.08 0.00 -0.26 0.07 0.00 
AAA Corporate Bond Rate (BC) 0.21 0.21 0.31 -0.17 0.07 0.00 -0.22 0.06 0.00 
BAA Corporate Bond Rate (BC) -0.14 0.28 0.62 -0.28 0.10 0.00 -0.34 0.10 0.00 
 

 

To assess whether individual forecasters over- or under-react to their own information, we continue 

to follow the CG methodology, but perform the analysis at the individual analyst level. Here 𝐹𝐹𝑅𝑅𝑡𝑡,ℎ
𝑖𝑖 =

�𝑥𝑥𝑡𝑡+ℎ|𝑡𝑡
𝑖𝑖 − 𝑥𝑥𝑡𝑡+ℎ|𝑡𝑡−1

𝑖𝑖 � is the analyst-level revision, and the ℎ-periods ahead individual forecast error is 

𝑥𝑥𝑡𝑡+ℎ − 𝑥𝑥𝑡𝑡+ℎ|𝑡𝑡
𝑖𝑖 . For each variable, we then pool all analysts and estimate the regression: 

𝑥𝑥𝑡𝑡+ℎ − 𝑥𝑥𝑡𝑡+ℎ|𝑡𝑡
𝑖𝑖 = 𝛽𝛽0

𝑝𝑝 + 𝛽𝛽1
𝑝𝑝𝐹𝐹𝑅𝑅𝑡𝑡,ℎ

𝑖𝑖 + 𝜖𝜖𝑡𝑡,𝑡𝑡+ℎ
𝑖𝑖 .                                                         (2) 

Superscript 𝑝𝑝 in the coefficients recognizes that these are estimated by pooling individual level data. The 

logic, however, does not change: 𝛽𝛽1
𝑝𝑝 > 0  indicates that the average analyst insufficiently adjusts his 

forecast on the basis of his own information, while 𝛽𝛽1
𝑝𝑝 < 0 indicates that the average analyst over-reacts.8  

Columns (4) through (6) of Table 3 report the results of estimating Equation (2).  Surprisingly, the 

picture is essentially reversed from the consensus analysis: at the individual level, the average analyst 

appears to over-react to information, as measured by a negative 𝛽𝛽1
𝑝𝑝  coefficient. The estimated 𝛽𝛽1

𝑝𝑝  is 

negative for 14 out of the 20 series, and significantly negative for 9 series at the 5% confidence level, and 

for one other series at the 10% level. Except for short rates (Fed Funds and 3-months T-bill rate), all 

financial variables display over-reaction, consistent with Shiller’s evidence of excess volatility. But many 

macro variables also display over-reaction, including nominal GDP, real GDP (in SPF, not in Blue Chip), 

real consumption, real federal government expenditures, real state and local government expenditures.  

GDP price deflator inflation, real GDP in Blue Chip, and non-residential investment display neither over-

                                                           
8 The individual level coefficient 𝛽𝛽1

𝑝𝑝 can in principle be different from the consensus coefficient 𝛽𝛽1: to the extent that 
some information is forecaster specific, and that individuals do not react to information they do not possess, errors 
𝜖𝜖𝑡𝑡,𝑡𝑡+ℎ
𝑖𝑖  may be correlated across individuals over time.  In Section 4 we formalize this intuition. 
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nor under-reaction (𝛽𝛽1
𝑝𝑝 is close to zero). Only the 3-months T-bill rate and unemployment rate display 

individual level under-reaction with positive and statistically significant 𝛽𝛽1
𝑝𝑝. 

In columns (7) to (9), we also analyze regressions with forecaster-level dummies to account for 

possible time-invariant differences among analysts.  For example, some analysts may be consistently 

overly-optimistic or overly-pessimistic, perhaps due to differences in their prior beliefs. These tendencies 

could contribute to positive correlations between forecast errors and revisions. Specifically, the overly 

optimistic analysts systematically receive bad news, leading to negative revisions and negative forecast 

errors. Similarly, the overly pessimistic analysts systematically receive good news, leading to positive 

revisions and positive forecast errors. In the data, the results with and without forecaster fixed effects are 

similar. With forecaster fixed effects, the estimated 𝛽𝛽1
𝑝𝑝 is negative for 17 series, and significantly negative 

for 13 series at the 5% confidence level.  Overall, the broad message from Table 3 is clear: at the level of 

the individual forecaster, over-reaction is the norm.  

Taken together, a seemingly contradictory picture emerges from these CG tests.  At the consensus 

level, expectations typically under-react to information.  At the individual level, in contrast, they typically 

over-react.  We conclude this section with a number of robustness checks for these results.  In Section 4, 

we present a model capable of reconciling these patterns.  

 

3.1 Robustness Checks  

 Predictability of forecast errors might in principle arise from features of the data unrelated to 

individuals’ under- or overreaction to information.  In this section we show our results are robust to a 

variety of such confounds, including data limitations (forecaster heterogeneity, small sample bias, 

measurement error) as well as biases in reported forecasts (asymmetric loss functions, forecast smoothing).  

In Section 6, we use our model to make a simulation-based assessment of robustness with respect to non-

normal shocks. 

Heterogeneity among Forecasters. Coibion and Gorodnichenko (2015) point out that heterogeneity across 

forecasters, either in updating (e.g. heterogeneous signal to noise ratios) or in beliefs about long term 
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means, may affect the predictability of forecast errors.  They show that, under the appropriate econometric 

specifications, the predictability of errors from revisions of consensus forecasts continues to hold. To assess 

whether heterogeneity drives our results for individual level forecasts, we perform forecaster level 

regressions, focusing on forecasters with at least 10 observations. Table A1 in Appendix B compares the 

median coefficient from forecaster level regressions to the coefficients from pooled individual level 

regressions from Table 3.  These coefficients are very similar, suggesting that the observed over-reaction 

represents the median forecaster. On average across series, we estimate a negative 𝛽𝛽1
𝑝𝑝 for two thirds of 

forecasters.  In some series, nearly every forecaster overreacts while in other series the distribution of 𝛽𝛽1
𝑝𝑝s 

is more balanced.  It would be interesting to account for these patterns, but we do not try to do so here.   

 

Small Samples. We also check whether the finite sample for individual forecasters can bias our results.  

Finite-sample Stambaugh bias exists in time series regressions (Kendall 1954, Stambaugh 1999) and panel 

regressions with fixed effects (Nickell, 1981), but not in pooled panel regressions as they have a common 

intercept (Hjalmarsson 2008).  The baseline individual-level regressions in Table 3 do not have fixed 

effects; adding fixed effects does not change the results much, indicating the bias is not severe. Moreover, 

the finite sample biases are stronger when the predictor variables are persistent. The predictor variable in 

the CG regressions, forecast revision, has low persistence in the data (about zero for most variables at the 

individual level, and less than 0.5 at the consensus level).  Finally, the simulation analysis of Section 6 

suggests that, for the relevant parameters in our data, the coefficients are not biased.  

 

Measurement Error. Forecasts measured with noise can mechanically lead to negative predictability of 

forecast errors in Equation (2): a positive shock increases the measured forecast revision and decreases the 

forecast error. In our case, since professional forecasters directly report their forecasts, it is hard to think 

of literal “measurement error.”  Moreover, motivated by the fact that some series display an AR(2) 

structure, in Section 5 we regress the forecast error at 𝑡𝑡 + ℎ on revisions of forecasts for previous periods 

𝑡𝑡 + ℎ − 1 and 𝑡𝑡 + ℎ − 2 (Equation 13). In line with the predictions of the model (Proposition 3), but not 

with measurement error, we find strong predictability in these regressions as well (Table 6). 
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Asymmetric Loss Functions. An important issue for expectations data is that respondents might optimally 

report biased forecasts.  One source of such bias is captured by asymmetric loss functions. Specifically, 

under-predicting may be more costly than over-predicting, or vice versa. In these cases, the average forecast 

would be biased upward (if under-predicting is more costly) or downward (if over-predicting is more 

costly).  Such a bias might generate the predictability we document if combined with time varying volatility 

(Pesaran and Weale, 2006), but it would in any case generate an average forecast error.  However, in the 

data we do not find that forecasts are systematically upward or downward biased on average.  At the 

consensus level, the consensus forecast errors are both very small and insignificant (Table 2, panel A). At 

the individual level, we fail to reject that the average forecast error is different from zero for about 60% of 

forecasters for the macroeconomic variables.9   

  Another source of bias in reported expectations is that individuals may follow consensus forecasts 

(Morris and Shin 2002, Fuhrer 2017).  To assess its implications, let 𝑥𝑥�𝑡𝑡+ℎ|𝑡𝑡
𝑖𝑖 = 𝛼𝛼𝑥𝑥𝑡𝑡+ℎ|𝑡𝑡

𝑖𝑖 + (1 − 𝛼𝛼)𝑥𝑥�𝑡𝑡+ℎ|𝑡𝑡, 

where 𝑥𝑥𝑡𝑡+ℎ|𝑡𝑡
𝑖𝑖  is the individual optimal forecast and 𝑥𝑥�𝑡𝑡+ℎ|𝑡𝑡 is the average contemporaneous forecast under 

this bias (which coincides with the unbiased average).  Our benchmark model has 𝛼𝛼 = 1 but for 𝛼𝛼 < 1 

forecasters put weight on others’ signals at the expense of their own.  In this model, and according to 

intuition, following consensus forecasts leads to underreaction to own signals, contrary to our findings.10 

A related source of biased forecasts is forecast smoothing for reputational reasons.  In response to 

news at time 𝑡𝑡, forecasters may wish to minimize the path revisions in their forecasts about period 𝑡𝑡 + ℎ, 

taking into account the previous forecast 𝑥𝑥𝑡𝑡+ℎ|𝑡𝑡−1
𝑖𝑖  as well as the future path of forecasts 𝑥𝑥𝑡𝑡+ℎ|𝑡𝑡+𝑗𝑗

𝑖𝑖 . We 

assess the relevance of this mechanism in the data in two ways.  First, it is easy to show that forecast 

smoothing implies a positive autocorrelation in forecast revisions; in contrast, this autocorrelation is close 

to zero for the vast majority of analyst-series pairs.  Second, when revising forecasts for the current quarter 

                                                           
9 No clear pattern emerges among the forecasters whose average error is significantly different from zero, consistently 
with the fact that such errors average out in the population for most series. For interest rates, average forecast errors 
tend to be negative, but this reflects not an asymmetric loss function but rather a secular decline over the time period 
we examine. In other cases, individual average errors may be due to relatively short samples. 
10 Formally, denote 𝐹𝐹𝐹𝐹�𝑡𝑡+ℎ,𝑡𝑡

𝑖𝑖 = 𝑥𝑥𝑡𝑡+ℎ − 𝑥𝑥�𝑡𝑡+ℎ|𝑡𝑡
𝑖𝑖  the forecast error and 𝐹𝐹𝐹𝐹�𝑡𝑡+ℎ,𝑡𝑡

𝑖𝑖 = 𝑥𝑥�𝑡𝑡+ℎ|𝑡𝑡
𝑖𝑖 − 𝑥𝑥�𝑡𝑡+ℎ|𝑡𝑡−1

𝑖𝑖  the forecast revision.  
It follows that 𝐹𝐹𝐹𝐹�𝑡𝑡+ℎ,𝑡𝑡

𝑖𝑖 = 𝛼𝛼𝐹𝐹𝐹𝐹𝑡𝑡+ℎ,𝑡𝑡
𝑖𝑖 + (1 − 𝛼𝛼)𝐹𝐹𝐹𝐹𝑡𝑡+ℎ|𝑡𝑡  and similarly 𝐹𝐹𝐹𝐹�𝑡𝑡+ℎ,𝑡𝑡

𝑖𝑖 = 𝛼𝛼𝐹𝐹𝐹𝐹𝑡𝑡+ℎ,𝑡𝑡
𝑖𝑖 + (1 − 𝛼𝛼)𝐹𝐹𝐹𝐹𝑡𝑡+ℎ|𝑡𝑡 . Then  

𝑐𝑐𝑐𝑐𝑐𝑐�𝐹𝐹𝐹𝐹�𝑡𝑡+ℎ,𝑡𝑡
𝑖𝑖 ,𝐹𝐹𝐹𝐹�𝑡𝑡+ℎ,𝑡𝑡

𝑖𝑖 � > 0  follows from 𝑐𝑐𝑐𝑐𝑐𝑐�𝐹𝐹𝐹𝐹𝑡𝑡+ℎ,𝑡𝑡
𝑖𝑖 ,𝐹𝐹𝐹𝐹𝑡𝑡+ℎ,𝑡𝑡

𝑖𝑖 � = 0  and  𝑐𝑐𝑐𝑐𝑐𝑐�𝐹𝐹𝐹𝐹𝑡𝑡+ℎ|𝑡𝑡 ,𝐹𝐹𝐹𝐹𝑡𝑡+ℎ|𝑡𝑡� > 0  under noisy 
rational expectations, together with 𝑐𝑐𝑐𝑐𝑐𝑐�𝐹𝐹𝐹𝐹𝑡𝑡+ℎ,𝑡𝑡

𝑖𝑖 ,𝐹𝐹𝐹𝐹𝑡𝑡+ℎ|𝑡𝑡�, 𝑐𝑐𝑐𝑐𝑐𝑐�𝐹𝐹𝐹𝐹𝑡𝑡+ℎ|𝑡𝑡 ,𝐹𝐹𝐹𝐹𝑡𝑡+ℎ,𝑡𝑡
𝑖𝑖 � > 0. 
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(ℎ = 0), forecast smoothing reduces to minimizing the current revision alone. This leads to positive 

predictability of errors; in contrast, we find negative predictability even at this horizon (Table A2). 

 

4. Diagnostic Expectations 

We  present a model that reconciles underreaction of consensus expectations with overreaction of 

individual level expectations.  At each time 𝑡𝑡, forecasters forecast a certain variable 𝑥𝑥𝑡𝑡+ℎ, whose current 

value 𝑥𝑥𝑡𝑡 is not directly observed.  What is observed instead is a noisy signal 𝑠𝑠𝑡𝑡𝑖𝑖: 

𝑠𝑠𝑡𝑡𝑖𝑖 = 𝑥𝑥𝑡𝑡 + 𝜖𝜖𝑡𝑡𝑖𝑖,                                                                                  (3) 

where 𝜖𝜖𝑡𝑡𝑖𝑖 is analyst specific noise, which is i.i.d. normally distributed across forecasters and over time, with 

mean zero and variance 𝜎𝜎𝜖𝜖2. The hidden state 𝑥𝑥𝑡𝑡 evolves according to an AR(1) process with persistence 𝜌𝜌: 

𝑥𝑥𝑡𝑡 = 𝜌𝜌𝑥𝑥𝑡𝑡−1 + 𝑢𝑢𝑡𝑡 ,                                                                          (4) 

where 𝑢𝑢𝑡𝑡 is a normal shock with mean zero and variance 𝜎𝜎𝑢𝑢2. We consider the case in which fundamentals 

follow an AR(1) process (here and in Section 5) for two reasons.  First, AR(1) is a benchmark that was 

also considered by CG (2015), so it allows us to compare our model to theirs.  Second, AR(1) yields a 

closed form characterization of the model’s predictions. In particular, it allows us to study how expectations 

depend on the persistence parameter 𝜌𝜌.  In Section 6 we allow series to follow an AR(2) process and show 

that this has additional implications for our analysis.    

This setup accommodates several interpretations.  In CG (2015), the fact that 𝑥𝑥𝑡𝑡 is unobservable 

stems from rational inattention (Sims 2003, Woodford 2003).  Forecasters could in principle perfectly 

observe the true current value of 𝑥𝑥𝑡𝑡, say GDP, but doing so is too costly.  As a consequence, they observe 

a noisy proxy for it.  This version of rational inattention is called “Noisy Rational Expectations”, to reflect 

the fact that individuals rationally update on the basis of noisy signals.  It is a different formulation of 

rational inattention than, for example, sticky information models (Mankiw and Reis 2002), in which all 

forecasters observe the same information but only sporadically revise their predictions.  As shown by CG, 

these two versions of rational inattention have similar predictions on the relationship between consensus 
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forecast errors and consensus forecast revisions. For this reason, our model only considers Noisy Rational 

Expectations. When we discuss predictions, however, we refer more broadly to Rational Inattention. 

Another interpretation of Equations (3) and (4) is that the current realization of a variable, say 

GDP, is influenced by a persistent component 𝑥𝑥𝑡𝑡 and a transitory component. In predicting the future, 

forecasters must estimate the persistent component on the basis of the noisy signal 𝑠𝑠𝑡𝑡𝑖𝑖. In this interpretation, 

the forecaster specific shock 𝜖𝜖𝑡𝑡𝑖𝑖  captures the fact that different forecasters extract information using 

different models or pieces of evidence, and the variance 𝜎𝜎𝜖𝜖2 of this shock captures the difficulty of the 

information extraction problem (which is shaped by the availability of reliable models and/or evidence). 

For professional forecasters, the latter interpretation is perhaps more compelling, since their job is to look 

at, and predict, the variables in question, so they are very attentive to these variables. The problem they 

face, though, when looking at, say, GDP statistics, is to assess whether shocks are transitory or persistent.  

Under both interpretations, the predictions of the model depart from full information rational expectations 

because forecasters form their revisions through rational updating on the basis of noisy signals.  In this 

sense, it is not misleading to place both interpretations under the rubric of Noisy Rational Expectations.  

A Bayesian, or rational, forecaster enters period 𝑡𝑡 carrying from the previous period beliefs about 

the current persistent state 𝑥𝑥𝑡𝑡 summarized by a probability density 𝑓𝑓�𝑥𝑥𝑡𝑡|𝑆𝑆𝑡𝑡−1𝑖𝑖 �, where 𝑆𝑆𝑡𝑡−1𝑖𝑖  denotes the full 

history of signals observed by this forecaster.  In period 𝑡𝑡, the forecaster observes a new signal 𝑠𝑠𝑡𝑡𝑖𝑖.  In light 

of this evidence, he updates his estimate of the current state using Bayes’ rule: 

𝑓𝑓�𝑥𝑥𝑡𝑡|𝑆𝑆𝑡𝑡𝑖𝑖� =
𝑓𝑓�𝑠𝑠𝑡𝑡𝑖𝑖|𝑥𝑥𝑡𝑡�𝑓𝑓�𝑥𝑥𝑡𝑡|𝑆𝑆𝑡𝑡−1𝑖𝑖 �
∫ 𝑓𝑓�𝑠𝑠𝑡𝑡𝑖𝑖|𝑥𝑥�𝑓𝑓�𝑥𝑥|𝑆𝑆𝑡𝑡−1𝑖𝑖 �𝑑𝑑𝑑𝑑

.                                                         (5) 

 Equation (5) iteratively defines the forecaster’s beliefs. In the current setting with normal shocks, 

the distribution 𝑓𝑓�𝑥𝑥𝑡𝑡|𝑆𝑆𝑡𝑡𝑖𝑖� is described by the Kalman filter.  A rational forecaster should then estimate the 

current state to be 𝑥𝑥𝑡𝑡|𝑡𝑡
𝑖𝑖 = ∫𝑥𝑥𝑥𝑥�𝑥𝑥|𝑆𝑆𝑡𝑡𝑖𝑖�𝑑𝑑𝑑𝑑 and should forecast the economic series of interest by using the 

AR(1) structure of the state 𝑥𝑥𝑡𝑡, namely 𝑥𝑥𝑡𝑡+ℎ|𝑡𝑡
𝑖𝑖 = 𝜌𝜌ℎ𝑥𝑥𝑡𝑡|𝑡𝑡

𝑖𝑖 .        
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We allow beliefs to be distorted by Kahneman and Tverky’s representativeness heuristic, as in our 

model of Diagnostic Expectations. In line with BGLS (2017), which applied Diagnostic Expectations to a 

(diagnostic) Kalman Filter, we define the representativeness of a state 𝑥𝑥𝑡𝑡 at time 𝑡𝑡 as the likelihood ratio: 

𝑅𝑅𝑡𝑡(𝑥𝑥𝑡𝑡) =
𝑓𝑓�𝑥𝑥𝑡𝑡|𝑆𝑆𝑡𝑡𝑖𝑖�

𝑓𝑓�𝑥𝑥𝑡𝑡|𝑆𝑆𝑡𝑡−1𝑖𝑖 ∪ �𝑥𝑥𝑡𝑡|𝑡𝑡−1
𝑖𝑖 ��

.                                                                  (6) 

State 𝑥𝑥𝑡𝑡 is more representative at 𝑡𝑡 if the signal 𝑠𝑠𝑡𝑡𝑖𝑖 received in this period increases the probability of that 

state, relative to not receiving any news.  Receiving no news means observing a signal equal to the ex-ante 

forecast, 𝑠𝑠𝑡𝑡𝑖𝑖 = 𝑥𝑥𝑡𝑡|𝑡𝑡−1
𝑖𝑖 , as described in the denominator of equation (6). 

Intuitively, the most representative states are those whose likelihood has increased the most in light 

of recent data. The forecaster then overweighs representative states by using the distorted posterior: 

𝑓𝑓𝜃𝜃�𝑥𝑥𝑡𝑡|𝑆𝑆𝑡𝑡𝑖𝑖� = 𝑓𝑓�𝑥𝑥𝑡𝑡|𝑆𝑆𝑡𝑡𝑖𝑖�𝑅𝑅𝑡𝑡(𝑥𝑥𝑡𝑡)𝜃𝜃
1
𝑍𝑍𝑡𝑡

,                                                             (7) 

where 𝑍𝑍𝑡𝑡 is a normalization factor ensuring that 𝑓𝑓𝜃𝜃�𝑥𝑥𝑡𝑡|𝑆𝑆𝑡𝑡𝑖𝑖� integrates to one.  Parameter 𝜃𝜃 ≥ 0 denotes the 

extent to which beliefs are distorted by representativeness. For 𝜃𝜃 = 0 beliefs are rational, described by the 

Bayesian conditional distribution 𝑓𝑓�𝑥𝑥𝑡𝑡|𝑆𝑆𝑡𝑡𝑖𝑖� .  For 𝜃𝜃 > 0  the diagnostic density 𝑓𝑓𝜃𝜃�𝑥𝑥𝑡𝑡|𝑆𝑆𝑡𝑡𝑖𝑖�  inflates the 

probability of highly representative states and deflates the probability of unrepresentative states.  Mistakes 

occur because states that have become relatively more likely may still be unlikely in absolute terms.  

This formalization of representativeness as relative likelihood, and its distortive effect on 

probability assessments, has been shown to unify well-known biases in probability assessments such as 

base rate neglect, the conjunction fallacy, and the disjunction fallacy (Gennaioli and Shleifer 2010). It has 

also been used to explain phenomena such as stereotyping (BCGS 2016), self-confidence (BCGS 2017), 

and expectation formation in financial markets (BGS 2018, BGLS 2017). 

Equation (7) yields a very intuitive formalization of beliefs.        

Proposition 1 The distorted density 𝑓𝑓𝜃𝜃�𝑥𝑥𝑡𝑡|𝑆𝑆𝑡𝑡𝑖𝑖� is normal.  In the steady state it is characterized by a 

constant variance Σ and by a time varying mean 𝑥𝑥𝑡𝑡|𝑡𝑡
𝑖𝑖,𝜃𝜃 which are given by: 
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𝑥𝑥𝑡𝑡|𝑡𝑡
𝑖𝑖,𝜃𝜃 = 𝑥𝑥𝑡𝑡|𝑡𝑡−1

𝑖𝑖 + (1 + 𝜃𝜃)
Σ

Σ + 𝜎𝜎𝜖𝜖2
�𝑠𝑠𝑡𝑡𝑖𝑖 − 𝑥𝑥𝑡𝑡|𝑡𝑡−1

𝑖𝑖 �,                                                     (8) 

Σ =
−(1 − 𝜌𝜌2)𝜎𝜎𝜖𝜖2 + 𝜎𝜎𝑢𝑢2 + �[(1 − 𝜌𝜌2)𝜎𝜎𝜖𝜖2 − 𝜎𝜎𝑢𝑢2]2 + 4𝜎𝜎𝜖𝜖2𝜎𝜎𝑢𝑢2

2
.                                   (9) 

 

In equations (8) and (9), 𝑥𝑥𝑡𝑡|𝑡𝑡−1
𝑖𝑖  refers to the rational forecast of the hidden state implied by the 

Kalman Filter. Diagnostic beliefs resemble rational beliefs in several respects.  They have the same 

variance Σ, and their mean 𝑥𝑥𝑡𝑡|𝑡𝑡
𝑖𝑖,𝜃𝜃 updates past rational beliefs 𝑥𝑥𝑡𝑡|𝑡𝑡−1

𝑖𝑖  with “rational news” 𝑠𝑠𝑡𝑡𝑖𝑖 − 𝑥𝑥𝑡𝑡|𝑡𝑡−1
𝑖𝑖 , to an 

extent that increases in the signal to noise ratio Σ/𝜎𝜎𝜖𝜖2. 

The difference between diagnostic and rational expectations is that the former overweigh the 

impact of news by the multiplicative factor 𝜃𝜃  in Equation (8). That is, representativeness induces 

forecasters to behave as if news is more informative than it actually is, exaggerating updating.  As a 

consequence, the Diagnostic Kalman Filter generates over-reaction to information.  This stands in contrast 

to models of information rigidity or inattention, which generate under-reaction to information.11  Equation 

(8) highlights another important feature of diagnostic expectations: they display excess volatility.  In 

particular, the discrepancy between rational and diagnostic expectations arises only in the presence of 

rational news, namely when �𝑠𝑠𝑡𝑡𝑖𝑖 − 𝑥𝑥𝑡𝑡|𝑡𝑡−1
𝑖𝑖 � is non-zero. Since rational news are zero on average, diagnostic 

expectations over-react on impact but then systematically revert to rationality, creating excess volatility.  

In contrast to traditional departures from rationality such as adaptive expectations, diagnostic 

expectations are forward-looking in that they depend on parameters of the true data generating process.  

They are characterized by the “kernel of truth” property: they exaggerate true patterns in the data. Positive 

news are objectively associated with improvement, but representativeness causes excess focus on the right 

                                                           
11 Equation (8) is reminiscent of overconfidence, which is in fact often modeled as inflating the signal to noise ratio 
of private information. In our current setup, where 𝑠𝑠𝑡𝑡𝑖𝑖 is private to each forecaster, the Diagnostic Kalman Filter is 
equivalent to this formulation of overconfidence. In other settings it is possible to distinguish these mechanisms, 
which are psychologically very different. First, over-confidence refers only to private information, while 
representativeness causes over-reaction to all information, including the public one, as shown in BGLS (2017). 
Second, depending on the data generating process, representativeness and diagnostic expectations can cause 
distortions also in the variance and other moments. Finally, representativeness unifies distortions in expectations with 
a variety of errors in probabilistic judgments, including conjunction and disjunction fallacies, and also social 
stereotypes, which overconfidence cannot account for. 
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tail, generating excessive optimism. Likewise, expectation revisions should exaggerate the true properties 

of the underlying data generating process. If fundamentals are more persistent, kernel of truth implies that 

expectations should react more strongly to news.  As we show in Section 5.2, the kernel of truth further 

implies that expectations exaggerate autocorrelation features of time series, so that the impact of longer 

lags may be overstated. In sum, the kernel of truth yields distinctive predictions that can be tested against 

conventional mechanical models of extrapolation such as adaptive expectations. We revisit such cross 

sectional and time-series implications in Sections 5 and 6.  

Consider the implications of Diagnostic Expectations for forecasts and forecast errors. Section 3 

presented two seemingly contradictory findings: predominance of under-reaction in consensus forecasts, 

and of over-reaction in individual forecasts. Define the consensus diagnostic forecast of 𝑥𝑥𝑡𝑡+ℎ at time 𝑡𝑡 as  

𝑥𝑥𝑡𝑡+ℎ|𝑡𝑡
𝜃𝜃 = �𝑥𝑥𝑡𝑡+ℎ|𝑡𝑡

𝑖𝑖,𝜃𝜃 𝑑𝑑𝑑𝑑 = 𝜌𝜌ℎ �𝑥𝑥𝑡𝑡|𝑡𝑡
𝑖𝑖,𝜃𝜃𝑑𝑑𝑑𝑑, 

so that the Diagnostic forecast error and revision are respectively given by 𝑥𝑥𝑡𝑡+ℎ − 𝑥𝑥𝑡𝑡+ℎ|𝑡𝑡
𝜃𝜃  and 𝑥𝑥𝑡𝑡+ℎ|𝑡𝑡

𝜃𝜃 −

𝑥𝑥𝑡𝑡+ℎ|𝑡𝑡−1
𝜃𝜃 .  In the appendix, we prove the following result. 

Proposition 2 Under the Diagnostic Kalman Filter, the estimated coefficients of regression (2) at the 

consensus and individual level, 𝛽𝛽1 and 𝛽𝛽1
𝑝𝑝, are given by: 

𝑐𝑐𝑐𝑐𝑐𝑐�𝑥𝑥𝑡𝑡+ℎ − 𝑥𝑥𝑡𝑡+ℎ|𝑡𝑡
𝜃𝜃 ,𝑥𝑥𝑡𝑡+ℎ|𝑡𝑡

𝜃𝜃 − 𝑥𝑥𝑡𝑡+ℎ|𝑡𝑡−1
𝜃𝜃 �

𝑣𝑣𝑣𝑣𝑣𝑣�𝑥𝑥𝑡𝑡+ℎ|𝑡𝑡
𝜃𝜃 − 𝑥𝑥𝑡𝑡+ℎ|𝑡𝑡−1

𝜃𝜃 �
= (𝜎𝜎𝜖𝜖2 − 𝜃𝜃Σ)𝑔𝑔(𝜎𝜎𝜖𝜖2, Σ,𝜌𝜌,𝜃𝜃)                            (10) 

𝑐𝑐𝑐𝑐𝑐𝑐�𝑥𝑥𝑡𝑡+ℎ − 𝑥𝑥𝑡𝑡+ℎ|𝑡𝑡
𝑖𝑖,𝜃𝜃 ,𝑥𝑥𝑡𝑡+ℎ|𝑡𝑡

𝑖𝑖,𝜃𝜃 − 𝑥𝑥𝑡𝑡+ℎ|𝑡𝑡−1
𝑖𝑖,𝜃𝜃 �

𝑣𝑣𝑣𝑣𝑣𝑣 �𝑥𝑥𝑡𝑡+ℎ|𝑡𝑡
𝑖𝑖,𝜃𝜃 − 𝑥𝑥𝑡𝑡+ℎ|𝑡𝑡−1

𝑖𝑖,𝜃𝜃 �
= −

𝜃𝜃(1 + 𝜃𝜃)
(1 + 𝜃𝜃)2 + 𝜃𝜃2𝜌𝜌2

                                    (11) 

where 𝑔𝑔(𝜎𝜎𝜖𝜖2,Σ,𝜌𝜌,𝜃𝜃) > 0 is a function of parameters. As a result, for 𝜃𝜃 ∈ (0,𝜎𝜎𝜖𝜖2/Σ) the Diagnostic Kalman 

Filter entails a positive consensus coefficient 𝛽𝛽1 > 0, and a negative individual coefficient 𝛽𝛽1
𝑝𝑝 < 0.   

When representative types are not too overweighed, 𝜃𝜃 < 𝜎𝜎𝜖𝜖2/Σ, the Diagnostic Kalman Filter can 

reconcile positive consensus coefficients with negative individual level coefficients, consistent with the 

broad patterns of Section 3.  Intuitively, when individual analysts over-react to their own information, a 
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positive forecast revision by a given analyst is associated with excess optimism, while a negative revision 

is associated with his excess pessimism, which both imply 𝛽𝛽1
𝑝𝑝 < 0.  At the consensus level, however, 

matters are different.  Individual analysts over-react to their own information but they don’t react at all to 

the information received by the other analysts (which they do not observe). This is a force toward under-

reaction to average information, which is particularly strong if individual analysts receive very noisy 

information. In fact, when 𝜎𝜎𝜖𝜖2/Σ  is high, a forecaster’s neglect of the signals observed by the other 

forecasters entails a large loss of information.  As a result, when noise is large enough, each analyst severely 

under-reacts to the information held by all other forecasters, so the average analyst consequently under-

reacts to the average analyst information, even if each analyst over reacts to his own news.   

The condition on 𝜃𝜃 that reconciles individual level overreaction and aggregate under-reaction has 

an intuitive interpretation. In fact,  𝜃𝜃 < 𝜎𝜎𝜖𝜖2/Σ is equivalent to the diagnostic Kalman gain (1 + 𝜃𝜃) Σ
Σ+𝜎𝜎𝜖𝜖2

 

being smaller than 1.  This means that, as long as individual forecasters filter news to some extent, 

consensus forecasts exhibit underreaction, even if they discount information too little.  

Compared to Diagnostic Expectations, Noisy Rational Expectations (𝜃𝜃 = 0) can generate under-

reaction of consensus forecasts, 𝛽𝛽1 > 0, but not over-reaction of individual analysts, 𝛽𝛽1
𝑝𝑝 < 0. The reason 

is that in that model forecasters use the limited information at their disposal in an optimal, rational, way. 

As a result, their forecast error is uncorrelated with their own forecast revision. As evident from Equations 

(9) and (10), when 𝜃𝜃 = 0  there is under-reaction at the consensus level but no individual-level 

predictability. This prediction is inconsistent with the evidence of Section 3.     

Finally, Proposition 2 also illustrates the cross-sectional implications of the kernel of truth 

mentioned above: the predictability of forecast errors depends on the true features of the data generating 

process in the sense that the coefficients estimated at the pooled and individual analyst levels depend on 

the parameters characterizing the data generating process (𝜎𝜎𝜖𝜖2,Σ,𝜌𝜌,𝜃𝜃).  In particular, higher noise to signal 

ratio 𝜎𝜎𝜖𝜖2/Σ implies stronger consensus under-reaction (i.e. higher 𝛽𝛽1).   

Table 4 summarizes the predictions of three departures from rational expectations for the findings 

of Section 3. These include: Rational Inattention (which shares the broad predictions of Noisy Rational 
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Expectations), Diagnostic Expectations, and Mechanical Extrapolation (adaptive expectations). We 

evaluate these models according to three predictions: 1) consensus level predictability, 2) individual level 

predictability, and 3) dependence of forecast revisions on the true features of the data generating process.  

Table 4. 
Model Consensus  Individual  Updating 

Noisy Rational  Underreaction no predictability depends on 
fundamentals 

Diagnostic  consistent with 
underreaction overreaction  depends on 

fundamentals 
Mechanical / 

Adaptive Undetermined underreaction for 
persistent series 

does not depend 
on fundamentals 

 

Let us compare Rational Inattention to Diagnostic Expectations.  The broad pattern of Section 3 – 

the positive predictability of consensus forecast errors and the negative predictability of individual forecast 

errors for 9 or 10 out of 20 series -- is consistent with diagnostic expectations but not with rational 

inattention.  The evidence for 4 series out of 20 – the GDP price deflator, the investment variables, and the 

Federal Funds rate – is consistent with rational inattention, featuring 𝛽𝛽1 > 0  and 𝛽𝛽1
𝑝𝑝  statistically 

indistinguishable from zero. Finally, the results for the 3-month T-bill rate (in SPF and Blue Chip) and the 

unemployment rate are consistent with neither Rational Inattention nor Diagnostic Expectations because 

they exhibit under-reaction at both the consensus and individual level, 𝛽𝛽1,𝛽𝛽1
𝑝𝑝 > 0.  Perhaps the behavior 

of these latter series, as well as of other series, may be accounted for by individual under-reaction due to 

mechanical adaptive expectations. 

Overall, most of the evidence is consistent with Diagnostic Expectations, but Rational Inattention 

or Adaptive Expectations may play a role for some series. We further assess these models next. 

 

5. Kernel of Truth 

We run two sets of tests. The first is cross sectional, based on the persistence of the different series. 

By looking at how forecasts depend on persistence, we can check whether they are backward looking (as 

in Adaptive Expectations) or forward looking (as in Rational Inattention or Diagnostic Expectations) and, 
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if the latter, which model best accounts for the evidence. The second test is a time series test, assessing 

whether expectations display over-reaction to longer lags of the series in question.   

 

5.1 Persistence Tests 

Under both Noisy Rational Expectations and Diagnostic Expectations, the forecast revision made 

at 𝑡𝑡 about 𝑥𝑥𝑡𝑡+ℎ is given by: 

𝑥𝑥𝑡𝑡+ℎ|𝑡𝑡
𝑖𝑖 − 𝑥𝑥𝑡𝑡+ℎ|𝑡𝑡−1

𝑖𝑖 = 𝜌𝜌�𝑥𝑥𝑡𝑡+ℎ−1|𝑡𝑡
𝑖𝑖 − 𝑥𝑥𝑡𝑡+ℎ−1|𝑡𝑡−1

𝑖𝑖 �. 

The revision h periods ahead reflects the forecast revision about the same variable ℎ − 1 periods ahead, 

adjusted by the persistence 𝜌𝜌 of the series.  The idea is simple: when forecasts are forward looking, more 

persistent series should exhibit stronger news-based updating.  

Under adaptive expectations, in contrast, updating is mechanical and should not depend on the true 

persistence of the forecasted process.  Formally, in this case:   

𝑥𝑥𝑡𝑡+ℎ|𝑡𝑡
𝑖𝑖 − 𝑥𝑥𝑡𝑡+ℎ|𝑡𝑡−1

𝑖𝑖 = 𝜇𝜇�𝑥𝑥𝑡𝑡+ℎ−1|𝑡𝑡
𝑖𝑖 − 𝑥𝑥𝑡𝑡+ℎ−1|𝑡𝑡−1

𝑖𝑖 �, 

where 𝜇𝜇 is a positive constant independent of 𝜌𝜌 (we formally show this in the Appendix). 

To assess this prediction, we fit an AR(1) for the actuals of each series and estimate 𝜌𝜌. The actuals 

have the same format as the forecast variables,12 and we use the exact time period for which the forecasts 

are available.13   We estimate the following individual level regression: 

𝑥𝑥𝑡𝑡+3|𝑡𝑡
𝑖𝑖 − 𝑥𝑥𝑡𝑡+3|𝑡𝑡−1

𝑖𝑖 = 𝛾𝛾𝑜𝑜
𝑝𝑝 + 𝛾𝛾1

𝑝𝑝�𝑥𝑥𝑡𝑡+2|𝑡𝑡
𝑖𝑖 − 𝑥𝑥𝑡𝑡+2|𝑡𝑡−1

𝑖𝑖 �+ 𝜖𝜖𝑡𝑡+3𝑖𝑖  

                                                           
12 Here we follow CG and estimate persistence directly using autoregressions. Some of the series (e.g. interest rates) 
have time trends and are not stationary; in these cases we estimate persistence by fitting an ARIMA(1,1,0) process.  
13 Thus the properties of the actuals can be slightly different for the same variable from SPF and BlueChip (e.g. real 
GDP growth in SPF and Blue Chip), as these two datasets generally span different time periods. 
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We estimate the same regression at the consensus level, which yields coefficients estimates 𝛾𝛾0 and 𝛾𝛾1.  We 

then regress the slope coefficients 𝛾𝛾1
𝑝𝑝 and 𝛾𝛾1 on the estimated persistence 𝜌𝜌� of each series.  By integrating 

this equation, it is easy to see that consensus forecasts should satisfy the same condition.  

The results of the exercise are reported in Figure 1 Panel A.  At both the individual and the 

consensus level, the evidence shows that the more persistent series display larger forecast revisions. While 

we only have 20 series, the correlation is statistically different from zero with a p-value less than 0.001.14  

In line with forward-looking models, analysts take persistence into account when forming their forecasts. 

This evidence is inconsistent with adaptive expectations, where forecasters update mechanically, without 

taking into account the true properties of the data generating process, including persistence.  This result is 

also robust to a series having richer dynamics, as it depends only on the first autocorrelation lag.  The 

pattern is similar for consensus forecasts, as shown in Figure 1 Panel B. 

Figure 1. Properties of Forecast Revisions and Actuals 
 

In Panel A, the y-axis is the regression coefficient 𝛾𝛾1
𝑝𝑝 from regression 𝑥𝑥𝑡𝑡+3|𝑡𝑡

𝑖𝑖 − 𝑥𝑥𝑡𝑡+3|𝑡𝑡−1
𝑖𝑖 = 𝛾𝛾𝑜𝑜

𝑝𝑝 + 𝛾𝛾1
𝑝𝑝�𝑥𝑥𝑡𝑡+2|𝑡𝑡

𝑖𝑖 −
𝑥𝑥𝑡𝑡+2|𝑡𝑡−1
𝑖𝑖 � + 𝜖𝜖𝑡𝑡+3𝑖𝑖 . The x-axis is the persistence measured from an AR(1) regression of the actuals corresponding to 

the forecasts. For each variable, the AR(1) regression uses the same time period as when the forecast data is available. 
In Panel B, the y-axis is the regression coefficient from the parallel specification using consensus forecasts.  
 

Panel A. Individual Level Coefficients 
 

 

                                                           
14 The results in Figure 1 and 2 obtain also if we exclude the Blue Chip series that are also available in SPF (e.g. real 
GDP, 3-month Treasuries, 10-year Treasuries, AAA corporate bond rate). 
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Panel B. Consensus Coefficients 

 

Another strategy is to assess the correlation between the persistence of a series and the CG 

coefficient of reaction to news. For this test, Diagnostic Expectations do not have clear predictions at the 

consensus level.  Indeed, the coefficient (𝜎𝜎𝜖𝜖2 − 𝜃𝜃Σ)𝑔𝑔(𝜎𝜎𝜖𝜖2,Σ,𝜌𝜌,𝜃𝜃) in Equation (10) can be either decreasing 

or increasing in persistence 𝜌𝜌, depending on parameter values.  A more direct test is to check the correlation 

between the CG coefficient estimated at the individual level and the persistence of the series in question. 

In fact, Equation (11) predicts that the coefficient should increase, i.e. get closer to zero, as persistence 𝜌𝜌 

increases. The intuition is that when the series is more persistent, forecast revisions become more volatile, 

even if due to noise, which reduces their correlation with forecast errors.  Under Noisy Rational 

Expectations, on the other hand, individual coefficients should be zero, so they should be uncorrelated with 

the persistence of the series that forecasters are trying to predict.  

Figure 2 shows the correlation for the CG coefficient estimated from individual-level regressions. 

We find that the CG coefficient rises with persistence, which lends additional support for Diagnostic 

Expectations.  The correlation is statistically different from zero with a p-value of 0.035. 
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Figure 2. CG Regression Coefficients and Persistence of Actual 
 

Plots of individual level CG regression (forecast error on forecast revision) coefficients against the persistence of the 
actual variable (x-axis).  

 

 

 
 

5.2. Kernel of Truth in the Time Series 

We now analyze the possibility that some of the forecasted series may be influenced by longer 

lags, and in particular that may be better described by an AR(2) process. As discussed by Fuster, Laibson 

and Mendel (2010), several macroeconomic variables follow hump-shaped dynamics with short-term 

momentum and longer-term reversals. Considering this possibility is relevant for two reasons. 

First, under the kernel of truth, forecasters should exaggerate true features of the data generating 

process, including the presence of long-term reversals. Checking whether longer lags are exaggerated in 

expectations thus allows us to further distinguish Diagnostic Expectations from Rational Inattention. This 

also allows us to compare these approaches to Natural Expectations, a model proposed by Fuster, Laibson 

and Mendel (2010) in which agents forecast and AR(2) process “as if” it was AR(1) in changes. In a 

stationary setting, this means that agents exaggerate the short run persistence of the process while 

dampening long-run reversals. Second, long-term reversals may help us to better understand our basic 

results in Section 3. In particular, AR(2) dynamics may contaminate the evidence of over and under-

reaction to news documented in Section 3. We clarify this point below. 
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5.2.1 Diagnostic Expectations with AR(2) Processes 

Suppose that the state which agents seek to forecast follows an AR(2) process:   

𝑥𝑥𝑡𝑡+3 = 𝜌𝜌2𝑥𝑥𝑡𝑡+2 + 𝜌𝜌1𝑥𝑥𝑡𝑡+1 + 𝑢𝑢𝑡𝑡.                                                         (12) 

If 𝜌𝜌2 > 0 and 𝜌𝜌1 < 0, the variable displays short-term momentum and long-term reversal. Each agent now 

observes two signals, one about the current state 𝑠𝑠𝑡𝑡𝑖𝑖 = 𝑥𝑥𝑡𝑡 + 𝜖𝜖𝑡𝑡𝑖𝑖  and another about the past state 𝑠𝑠𝑡𝑡−1𝑖𝑖 =

𝑥𝑥𝑡𝑡−1 + 𝜖𝜖𝑡𝑡−1𝑖𝑖 . The optimal solution to this inference problem is again provided by the Kalman filter.   

Consider diagnostic expectations. Denote by 𝑥𝑥𝑡𝑡+𝑠𝑠|𝑡𝑡
𝑖𝑖,𝜃𝜃  the diagnostic expectation held by forecaster 𝑖𝑖 

about 𝑥𝑥𝑡𝑡+𝑠𝑠 at time 𝑡𝑡.  The diagnostic expectation of 𝑥𝑥𝑡𝑡+3 is then a linear combination of the diagnostic 

forecasts of 𝑥𝑥𝑡𝑡+2 and 𝑥𝑥𝑡𝑡+1 according to the autoregressive parameters 𝜌𝜌1 and 𝜌𝜌2: 

𝑥𝑥𝑡𝑡+3|𝑡𝑡
𝑖𝑖,𝜃𝜃 = 𝜌𝜌2𝑥𝑥𝑡𝑡+2|𝑡𝑡

𝑖𝑖,𝜃𝜃 + 𝜌𝜌1𝑥𝑥𝑡𝑡+1|𝑡𝑡
𝑖𝑖,𝜃𝜃 . 

In the appendix we show that the diagnostic forecasts about these intermediate outcomes take the 

form of a distorted Kalman filter in which the signal to noise ratio of each signal is exaggerated.  The 

Diagnostic forecast revision for 𝑡𝑡 + 3 at time 𝑡𝑡 is a linear combination of the current Diagnostic Forecast 

revisions about the intermediate states: 

𝑥𝑥𝑡𝑡+3|𝑡𝑡
𝑖𝑖,𝜃𝜃 − 𝑥𝑥𝑡𝑡+3|𝑡𝑡−1

𝑖𝑖,𝜃𝜃 = 𝜌𝜌2�𝑥𝑥𝑡𝑡+2|𝑡𝑡
𝑖𝑖,𝜃𝜃 − 𝑥𝑥𝑡𝑡+2|𝑡𝑡−1

𝑖𝑖,𝜃𝜃 � + 𝜌𝜌1�𝑥𝑥𝑡𝑡+1|𝑡𝑡
𝑖𝑖,𝜃𝜃 − 𝑥𝑥𝑡𝑡+1|𝑡𝑡−1

𝑖𝑖,𝜃𝜃 �.                           (13) 

This decomposition suggests a way to assess forecasters’ reaction to information in an AR(2) 

setting, generalizing Equation (2).  Denote by 𝐹𝐹𝐹𝐹𝑡𝑡,𝑡𝑡+1
𝑖𝑖  the forecast revision at 𝑡𝑡 about next period 𝑡𝑡 + 1. 

Likewise, denote by 𝐹𝐹𝐹𝐹𝑡𝑡,𝑡𝑡+2
𝑖𝑖  the forecast revision at 𝑡𝑡  about 𝑡𝑡 + 2 .  These forecast revisions are not 

indexed by 𝜃𝜃 because they represent data, not predictions of a diagnostic model. The forecasters’ reaction 

to information can then be assessed by running the regression:    

𝑥𝑥𝑡𝑡+3 − 𝑥𝑥𝑡𝑡+3|𝑡𝑡
𝑖𝑖 = 𝛿𝛿0

𝑝𝑝 + 𝛿𝛿2
𝑝𝑝𝐹𝐹𝐹𝐹𝑡𝑡,𝑡𝑡+2

𝑖𝑖 + 𝛿𝛿1
𝑝𝑝𝐹𝐹𝐹𝐹𝑡𝑡,𝑡𝑡+1

𝑖𝑖 + 𝜖𝜖𝑡𝑡,𝑡𝑡+ℎ .                                       (13) 

In other words the forecast error at 𝑡𝑡 + 3 is predicted from current forecast revisions about the short and 

medium term.  The Diagnostic Expectations model has the following implication. 
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Proposition 3. Under the Diagnostic Kalman filter, the estimated coefficients 𝛿𝛿1
𝑝𝑝 and 𝛿𝛿2

𝑝𝑝 in Equation (13) 

are proportional to the negative of the AR(2) coefficients: 

𝛿𝛿1
𝑝𝑝 ∝ −𝜌𝜌1𝜃𝜃,                                                                            (14) 

𝛿𝛿2
𝑝𝑝 ∝ −𝜌𝜌2𝜃𝜃.                                                                           (15) 

As in the case of AR(1), rational expectations (𝜃𝜃 = 0) imply that individual forecast errors cannot 

be predicted by any forecast revisions, including those on the right hand side of (13).  In contrast, diagnostic 

expectations imply that the coefficients should be non-zero, with flipped signs relative to the data 

generating process.  In line with the kernel of truth, this predictability reflects over-reaction to the effect of 

lags in the true process.  Suppose for instance that the process has short-term momentum, namely 𝜌𝜌2 > 0.  

Then, over-reaction means that upward forecast revisions about 𝑥𝑥𝑡𝑡+2 lead to exaggerated optimism about 

𝑥𝑥𝑡𝑡+3 and thus negative forecast errors.  This yields 𝛿𝛿2
𝑝𝑝 < 0 in Equation (15), reproducing the basic insight 

of Equation (2).  Suppose instead that the process has long-term reversal, namely 𝜌𝜌1 < 0. Then, over-

reaction to long-term reversal means that upward forecast revisions about 𝑥𝑥𝑡𝑡+1  lead to exaggerated 

pessimism about 𝑥𝑥𝑡𝑡+3 and thus positive forecast errors.  This yields in 𝛿𝛿1
𝑝𝑝 > 0 in Equation (14). 

Proposition 3 shows why assessing the AR(2) structure of our series is important to test the model. 

First, kernel of truth makes precise predictions for how forecast revisions should predict forecast errors on 

the basis of the data generating process. Diagnostic Expectations imply that forecast revisions about short 

and medium term conditions should predict forecast errors with a sign opposite to their true effects on 𝑥𝑥𝑡𝑡+3.    

Second, Proposition 3 implies that the tests of Section 3 may not reliably distinguish over- or under- 

reaction when lags have different signs. Indeed, suppose that the AR(2) process features short term 

momentum, 𝜌𝜌2 > 0, and long term reversals, 𝜌𝜌1 < 0. Positive news at 𝑡𝑡  may then trigger an upward 

revision of both the forecast of the short-term 𝑥𝑥𝑡𝑡+1 and of the medium-term 𝑥𝑥𝑡𝑡+2. The former creates 

excess pessimism, the latter excess optimism.  If the first effect is strong, it can reduce excess optimism 

after good news, making it harder to detect over-reaction using the specification of Section 3. 
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We can compare Diagnostic to Natural Expectations in this setting of the AR(2) process in 

Equation (12), which exhibits short term momentum and long term reversal.  Under Natural Expectations, 

agents form their forecasts by fitting an AR(1) process in changes (𝑥𝑥𝑡𝑡+1 − 𝑥𝑥𝑡𝑡) = 𝜑𝜑(𝑥𝑥𝑡𝑡 − 𝑥𝑥𝑡𝑡−1) + 𝑣𝑣𝑡𝑡+1.  

The resulting estimate for the autoregressive term is 𝜑𝜑 = (𝜌𝜌1 − 𝜌𝜌2 − 1)/2.  For a stationary process, this 

implies that Natural Expectations exaggerate the short run persistence of the series while dampening long-

term reversals.15 The overall comparison with Diagnostic Expectation is presented in Table 5.   

Table 5. 
Model Individual  𝛿𝛿2

𝑝𝑝 Individual  𝛿𝛿1
𝑝𝑝  

Noisy Rational  Zero Zero 

Diagnostic  Negative, due to overreaction to 
short term momentum 

Positive, due to over-reaction to 
long term reversal  

Natural 
Expectations 

Negative, due to overreaction to 
short term momentum 

Negative, due to under-reaction to 
long term reversal 

 

Diagnostic and Natural Expectations share the same prediction concerning the coefficient on 

forecast revision at 𝑡𝑡 + 2. In both models forecasters exaggerate short run persistence, predicting a negative 

𝛿𝛿2
𝑝𝑝. On the other hand, Diagnostic and Natural Expectations make opposite predictions about the coefficient 

on forecast revision at 𝑡𝑡 + 1. Diagnostic Expectations over-react to long term reversals, predicting 𝛿𝛿1
𝑝𝑝 >

0, while Natural Expectations under-react to long term reversals, predicting 𝛿𝛿1
𝑝𝑝 < 0.    

In the remainder of the section, we test the predictions of Proposition 3 about the term structure of 

expectations. Section 5.2.2 performs some tests to assess which of our 16 variables can be more accurately 

described by an AR(2) rather than an AR(1). We do not aim to find the unconstrained optimal ARMA(𝑘𝑘, 𝑞𝑞) 

specification, which is a notoriously difficult task. We only wish to capture the simplest longer lags and 

see whether expectations react to them as predicted by the model.  Section 5.2.3 then estimates Equation 

(13) for the variables that are found to be better approximated by an AR(2) process. 

 

 

                                                           
15 Indeed, the “intuitive” process under this model is 𝑥𝑥𝑡𝑡+1 = (1 + 𝜑𝜑)𝑥𝑥𝑡𝑡 − 𝜑𝜑𝑥𝑥𝑡𝑡−1 + 𝑣𝑣𝑡𝑡+1. The original AR(2) process 
is stationary if 𝜌𝜌1 − 𝜌𝜌2 < 1, 𝜌𝜌1 + 𝜌𝜌2 < 1 and |𝜌𝜌2| < 1.  This implies that 1 + 𝜑𝜑 > 𝜌𝜌1 and that 0 < 𝜑𝜑 < |𝜌𝜌2|. 
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5.2.2 AR(1) vs AR(2) Dynamics 

To assess whether some series are better described by an AR(2) model, we first fit a quarterly 

AR(2) process to our 20 series.16 Figure 4 below plots the estimates for the autocorrelation parameters 𝜌𝜌1 

and 𝜌𝜌2 for the relevant series. As before, the actuals have the same format as the forecast variables, and for 

each series the regression covers the time period when the forecast data is available.  

For all series, the sign of coefficients is indicative of positive momentum at short horizons (𝜌𝜌2 >

0) and long-run reversals (𝜌𝜌1 < 0).17  To assess which dynamics better describe the series, we compare the 

AR(2) estimates to the AR(1) estimates from Section 5.1. Table 5 below shows the Bayesian Information 

Criterion (BIC) score associated with each fit.  

For the majority of series, AR(2) dynamics are favored over AR(1). The tests favor AR(1) 

dynamics only for real consumption (SPF) and the BAA bond rate (BC), while for the 10-year Treasury 

rate series the tests are inconclusive.18 Indeed, the estimates for the long-run reversals are weakest for these 

series. Taken together, Table 6 and Figure 4 indicate that hump shaped dynamics are a key feature of 

several series, which should shape expectations under the hypothesis of kernel of truth. 

 

 

 

 

 

                                                           
16 Just like for the case of AR(1), for growth variables we run quarterly AR(2) regressions of growth from 𝑡𝑡 − 1 to 
𝑡𝑡 + 3.  For variables in levels, we run quarterly regressions in levels. We run separate regressions for the variables 
that occur both in SPF and BC, because they cover slightly different time periods. 
17 We check whether multicollinearity may affect our results in this Section, given that forecasts revisions at different 
horizons are often highly correlated. The standard issue with multicollinearity is the coefficients are imprecisely 
estimated, which we do not find to be the case. We also perform simulations to verify that the correlation among the 
right hand side variables by itself does not mechanically lead to the patterns we observe. 
18 The Akaike Information Criterion (AIC) yields similar results, except that it positively identifies the TN10Y series 
as AR(2).  To interpret the IC scores, recall that lower scores represent a better fit.  The likelihood ratio Pr(𝐴𝐴𝐴𝐴2)

Pr(𝐴𝐴𝐴𝐴1)
 is 

estimated as 𝑒𝑒𝑒𝑒𝑒𝑒 �− 𝐵𝐵𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴2−𝐵𝐵𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴1
2

�, so that ∆𝐵𝐵𝐵𝐵𝐵𝐵2−1 = −2 means the AR(2) model is 2.7 times more likely than the 
AR(1) model. We follow the standard usage of considering scores below -2 as evidence for AR(2) over AR(1).  
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Figure 4. AR(2) Coefficients of Actuals 
 

For each variable, the AR(2) regression uses the same time period as when the forecast data is available. The blue 
circles show the first lag and the red diamonds show the second lag. Standard errors are Newey-West, and the vertical 
bars show the 95% confidence intervals.  
 

  

Table 6. BIC of AR(1) and AR(2) Regressions of Actuals 
 

This table shows the BIC statistic corresponding to the AR(1) and AR(2) regressions of the actuals. The final 
column shows the specification that has a lower BIC (preferred).  
 

Variable BICAR1 BICAR2 ∆BIC2-1 model 
Nominal GDP (SPF) -1133.74 -1149.13 -15.39 AR(2) 
Real GDP (SPF) -1120.33 -1164.52 -44.19 AR(2) 
Real GDP (BC) -618.50 -626.83 -8.33 AR(2) 
GDP Price Index Inflation (SPF) -1423.70 -1456.90 -33.20 AR(2) 
Real Consumption (SPF) -924.47 -911.66 12.82 AR(1) 
Real Non-Residential Investment (SPF) -509.72 -524.37 -14.65 AR(2) 
Real Residential Investment (SPF) -375.81 -401.05 -25.25 AR(2) 
Real Federal Government Consumption (SPF) -560.97 -553.12 7.85 AR(1) 
Real State&Local Govt Consumption (SPF) -905.91 -896.23 9.68 AR(1) 
Housing Start (SPF) -250.88 -265.89 -15.01 AR(2) 
Unemployment (SPF)  168.69 111.57 -57.12 AR(2) 
Fed Funds Rate (BC) 191.89 149.87 -42.02 AR(2) 
3M Treasury Rate (SPF) 240.87 232.25 -8.62 AR(2) 
3M Treasury Rate (BC) 163.27 118.76 -44.51 AR(2) 
5Y Treasury Rate (BC) 126.30 123.51 -2.79 AR(2) 
10Y Treasury Rate (SPF) 89.66 89.91 0.25 AR(1) 
10Y Treasury Rate (BC) 86.54 84.80 -1.74 AR(2) 
AAA Corporate Bond Rate (SPF) 129.84 118.64 -11.20 AR(2) 
AAA Corporate Bond Rate (BC) 86.05 84.72 -1.32 AR(2) 
BAA Corporate Bond Rate (BC) 58.33 61.79 3.46 AR(1) 
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5.2.3 Empirical Tests of Over-Reaction with AR(2) dynamics   

We next restrict the analysis to the series for which AR(2) is favored, and test the prediction of 

Proposition 3 by estimating Equation (13). Given that all AR(2) series we consider exhibit short term 

momentum 𝜌𝜌2 > 0  and long-term reversals 𝜌𝜌1 < 0 , under Diagnostic Expectations the estimated 

coefficient on medium term forecast revision should be negative, 𝛿𝛿2
𝑝𝑝 < 0, while the estimated coefficient 

on short term forecast revision should be positive, 𝛿𝛿1
𝑝𝑝 > 0. To test this prediction, we run regressions on 

the pooled individual level data, as in Section 3.  

Figure 5 shows, for each relevant series, the forecast error regression coefficients 𝛿𝛿2
𝑝𝑝  and 𝛿𝛿1

𝑝𝑝 

estimated from Equation (13). Table 7 also displays these two coefficients, together with their 

corresponding standard errors and p-values. In line with the predictions of the model, the signs of the 

coefficients indicate that the short-term revision positively predicts forecast errors (𝛿𝛿1
𝑝𝑝 > 0 for all 15 series, 

10 of which are statistically significant at the 5% level) while the medium-term revision negatively predicts 

them (𝛿𝛿2
𝑝𝑝 < 0 for 12 out of 15 series, 8 of which are statistically significant at the 5% level).  To further 

assess the results, we perform a test of joint significance for 𝛿𝛿2
𝑝𝑝 < 0 , 𝛿𝛿1

𝑝𝑝 > 0.  We resample the data using 

block bootstrap, and calculate the fraction of times when  𝛿𝛿2
𝑝𝑝 < 0 , 𝛿𝛿1

𝑝𝑝 > 0 holds, as shown in the last 

column of Table 7. The probability is greater than 95% for 8 out of the 15 series. 
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Figure 5. Coefficients in CG Regression AR(2) Version 
 

This plot shows the coefficients 𝛿𝛿2
𝑝𝑝(blue circles) and 𝛿𝛿1

𝑝𝑝(red diamonds) from the regression in Equation (13). Standard 
errors are clustered by both forecaster and time, and the vertical bars shown the 95% confidence intervals. 

 
 

Table 7. Coefficients in CG Regression AR(2) Version 
 
Coefficients 𝛿𝛿2

𝑝𝑝and 𝛿𝛿1
𝑝𝑝 from the regression in Equation (13), together with the corresponding standard errors and p-

values. The final column resamples the data using block bootstrap and shows the probability of 𝛿𝛿2
𝑝𝑝 < 0 and  𝛿𝛿1

𝑝𝑝 > 0. 
 

Variable 𝛿𝛿2
𝑝𝑝 s.e. p-val 𝛿𝛿1

𝑝𝑝 s.e. p-val Prob 𝛿𝛿2
𝑝𝑝 < 0 

& 𝛿𝛿1
𝑝𝑝 > 0  

Nominal GDP (SPF) -0.37 0.12 0.00 0.33 0.15 0.03 0.99 
Real GDP (SPF) -0.21 0.16 0.19 0.23 0.18 0.22 0.86 
Real GDP (BC) -0.14 0.40 0.72 0.24 0.33 0.48 0.78 
GDP Price Index Inflation (SPF) -0.36 0.11 0.00 0.59 0.18 0.00 0.99 
Real Non-Residential Investment (SPF) 0.18 0.26 0.50 0.09 0.31 0.77 0.11 
Real Residential Investment (SPF) -0.48 0.22 0.03 0.88 0.25 0.00 1.00 
Housing Start (SPF) -0.31 0.11 0.01 0.85 0.14 0.00 1.00 
Unemployment (SPF) 0.23 0.18 0.22 0.23 0.20 0.26 0.03 
Fed Funds Rate (BC) 0.09 0.06 0.15 0.31 0.19 0.11 0.40 
3M Treasury Rate (SPF) -0.17 0.22 0.43 0.55 0.26 0.03 0.85 
3M Treasury Rate (BC) -0.17 0.13 0.20 0.62 0.16 0.00 0.92 
5Y Treasury Rate (BC) -0.40 0.11 0.00 0.46 0.14 0.00 1.00 
10Y Treasury Rate (BC) -0.72 0.12 0.00 0.71 0.18 0.00 1.00 
AAA Corporate Bond Rate (SPF) -0.60 0.12 0.00 0.51 0.18 0.01 1.00 
AAA Corporate Bond Rate (BC) -0.43 0.08 0.00 0.49 0.10 0.00 1.00 

 

The fact that short-term revisions negatively predict forecast errors conditional on longer-term 

revisions, and that they do so in different directions, is consistent with the idea that forecasters exaggerate 

true patterns in the data, including for longer-term dynamics.  In contrast, this finding is harder to reconcile 
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with Natural Expectations, where forecasters neglect longer lags (in the current setting, this means fitting 

an AR(1) model even for AR(2) series). 

Overall, the AR(2) analysis confirms and in fact strengthens the evidence for the prevalence of 

over-reaction in the data.  Indeed, four of the seven series (PGDP_SPF, RRESINV_SPF, TN5Y_BC and 

TN10Y_BC) for which individual level forecast errors seemed unpredictable (Table 3), and thus consistent 

with Noisy Rational Expectations, show evidence of over-reaction in the AR(2) setting.  In addition, the 

two series that seemed to display under-reaction at the individual level, unemployment and the 3-months 

T Bill rate, now show evidence of over-reaction to long-term reversals (𝛿𝛿1
𝑝𝑝 > 0), albeit not significantly.   

In all these cases, it is possible that over-reaction to long term reversals moved the individual level 

coefficient in Table 4 close to zero or above, giving the false impression of rationality or under-reaction.  

Only for the variable RGDP_SPF, which displayed significant over-reaction under the AR(1) specification 

loses its significance at conventional level under the more appropriate AR(2) case. Overall, the AR(2) 

specification strengthens the case for over-reaction.   

 

6. Calibration and Additional Robustness Checks  

 In this section, we simulate the model to assess the statistical properties of the Diagnostic Kalman 

filter and compare them to our regression results. This allows us to calibrate the diagnostic parameter 𝜃𝜃 

and to perform some additional robustness checks of our basic findings. 

[CALIBRATION] 

 

6.1 Robustness 

Non-Normal Shocks.  Our model in Section 4 assumes that shocks are normally distributed, so we can 

apply Kalman filtering techniques. In the data, macro shocks are not necessarily normally distributed, but 

commonly have fat tails.  One question is whether fat-tailed distributions of shocks generate biases in CG 

regression coefficients.   
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 When shocks are non-normal, the closed form Kalman filter is no longer an appropriate inference 

algorithm, and a numerical particle filter must be used instead. We find that the qualitative predictions of 

diagnostic expectations are unchanged when fundamental shocks and measurement noise are distributed 

according to t-distributions: forecasters over-react to news, and the CG regression coefficient is negative 

at the individual level. The coefficient can be positive in consensus regressions if the noise to signal ratio 

𝜎𝜎𝜖𝜖2/Σ is sufficiently large or the diagnostic parameter θ is close to zero.  Appendix C describes particle 

filtering in detail and presents the results. 

 

7. Conclusion 

 Using data from both the Blue Chip Survey and the Survey of Professional Forecasters, we have 

investigated how professional forecasters react to information using the methodology of Coibion and 

Gorodnichenko (2015).   We have found that, for individual forecasters, over-reaction to information is the 

norm, whereas for the consensus forecast the norm is under-reaction.  We then applied a psychologically 

founded model of belief formation, diagnostic expectations, to these data.  Diagnostic expectations generate 

over-reaction in individual data, but also yields many additional predictions, and showed that this model is 

consistent with individual forecast data for many series.  We further showed that because different 

forecasters see different information and use different models, the consensus forecast may theoretically 

exhibit under-reaction, as previously shown by Coibion-Gorodnichenko and confirmed in our data.   

 The ubiquity of over-reaction in individual macroeconomic forecasts helps reconcile distinctive 

evidence in finance and macroeconomics.  Financial economics has put together a lot of evidence of over-

reaction in individual markets, such as housing, credit, and equities.  It would be puzzling if 

macroeconomic forecasts were completely the opposite, but as we show this may be largely a consequence 

of aggregation. 

 We also find that individual forecasts are better described by diagnostic expectations than by 

mechanical models of extrapolation.  Adaptive expectations have been criticized by Lucas and others for 

assuming that people are entirely backward looking.  Because with diagnostic expectations, forecasters are 
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forward looking but their judgment is distorted by representativeness, this model is not vulnerable to the 

Lucas critique.  Of course, diagnostic expectations can serve as a micro-foundation of adaptive expectations 

and extrapolation at a crude level.  At the same time, the kernel of truth property of diagnostic expectations 

produces exact predictions on when we can see overreaction in forecasts, which becomes extremely 

important in some contexts, such as credit cycles (Bordalo, Gennaioli, and Shleifer 2018).   

 A final benefit of our approach is that it enables to reconcile diverse evidence that identified 

distinctive features of expectations.  At the most basic level, we sought to reconcile the evidence on 

individual and consensus forecasts.  Perhaps more subtly, diagnostic expectations when extended to the 

AR(2) context enable us to model expectations for hump shaped series.  In this setting, diagnostic 

expectations capture some features of Natural Expectations (Fuster et al. 2010), such as exaggeration of 

short term persistence, but also yield over-reaction to long term reversal, which seems to be an important 

feature of the data.  

 Our paper leaves at least two important problems to future work.  We have stressed over-reaction 

in individual time series, which seems to be the norm in our data, but other studies have also found some 

rigidity in expectations even in individual data.  For example, in their experimental study, Landier, Ma, 

and Thesmar (2017) find that beliefs of experimental subjects are best characterized by a mixture of 

anchoring to old forecasts and over-reaction to news. In this paper we have combined over-reaction with 

rigidity by incorporating representativeness in a noisy information setting.  The reconciliation of anchoring 

with over-reaction to information based on psychological foundations remains an open problem.  

 We have not addressed the basic theoretical question: do individual or consensus beliefs matter for 

macroeconomic outcomes?  For aggregate outcomes, what may matter is consensus expectations, so all 

one needs to know is that consensus expectations under-react. There are two problems in this view. First, 

over-reaction by individual forecasters can influence aggregate outcomes through dispersion in beliefs. 

Certain firms or sectors will over-invest, others will under-invest, creating aggregate misallocations.  

Second, in some circumstances news may be correlated across different agents, for instance when major 

innovations are introduced, or when repeated news in the same direction are highly informative of 

persistent changes.  In these cases, individual over-reaction will entail aggregate over-reaction. There is of 
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course evidence of aggregate over-reaction in the stock market going back to Shiller (1981), and in credit 

markets as well (Greenwood and Hanson 2013, Lopez-Salido et al. 2017).  Whether over-reaction can 

account for macroeconomic phenomena such as investment booms or business cycles is a key question in 

this research area.  
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Appendix 

A. Variable Definitions 

1. NGDP_SPF 
 

• Variable: Nominal GDP. Source: SPF. 
• Survey time: Around the 3rd week of the middle month in the quarter.  
• Survey question: The level of nominal GDP in the current quarter and the next 4 quarters. 
• Forecast variable: Nominal GDP growth from end of quarter t-1 to end of quarter t+3 

𝐹𝐹𝑡𝑡𝑥𝑥𝑡𝑡+3
𝑥𝑥𝑡𝑡−1

− 1 , where t is the quarter of forecast and x is the level of GDP in a given quarter; 

𝑥𝑥𝑡𝑡−1 uses the initial release of actual value in quarter t-1, which is available by the time of 
the forecast in quarter t.  

• Revision variable: 𝐹𝐹𝑡𝑡𝑥𝑥𝑡𝑡+3
𝑥𝑥𝑡𝑡−1

− 𝐹𝐹𝑡𝑡−1𝑥𝑥𝑡𝑡+3
𝐹𝐹𝑡𝑡−1𝑥𝑥𝑡𝑡−1

. 

• Actual variable: 𝑥𝑥𝑡𝑡+3
𝑥𝑥𝑡𝑡−1

− 1, using real time macro data: initial release of 𝑥𝑥𝑡𝑡+3. published in 

quarter t+4 and initial release of 𝑥𝑥𝑡𝑡−1 published in quarter t.  
 

2. RGDP_SPF 
 

• Variable: Real GDP. Source: SPF. 
• Survey time: Around the 3rd week of the middle month in the quarter.  
• Survey question: The level of real GDP in the current quarter and the next 4 quarters. 
• Forecast variable: Real GDP growth from end of quarter t-1 to end of quarter t+3 𝐹𝐹𝑡𝑡𝑥𝑥𝑡𝑡+3

𝑥𝑥𝑡𝑡−1
−

1 , where t is the quarter of forecast and x is the level of GDP in a given quarter; 𝑥𝑥𝑡𝑡−1 uses 
the initial release of actual value in quarter t-1, which is available by the time of the 
forecast in quarter t.  

• Revision variable: 𝐹𝐹𝑡𝑡𝑥𝑥𝑡𝑡+3
𝑥𝑥𝑡𝑡−1

− 𝐹𝐹𝑡𝑡−1𝑥𝑥𝑡𝑡+3
𝐹𝐹𝑡𝑡−1𝑥𝑥𝑡𝑡−1

. 

• Actual variable: 𝑥𝑥𝑡𝑡+3
𝑥𝑥𝑡𝑡−1

− 1, using real time macro data: initial realease of 𝑥𝑥𝑡𝑡+3 published in 

quarter t+4 and initial release of 𝑥𝑥𝑡𝑡−1 published in quarter t.  
 

3. RGDP_BC 
 

• Variable: Real GDP. Source: Blue Chip. 
• Survey time: End of the middle month in the quarter/beginning of the last month in the 

quarter.  
• Survey question: Real GDP growth (annualized rate) in the current quarter and the next 4 

to 5 quarters. 
• Forecast variable: Real GDP growth from end of quarter t-1 to end of quarter t+3 𝐹𝐹𝑡𝑡(𝑧𝑧𝑡𝑡 +

𝑧𝑧𝑡𝑡+1 + 𝑧𝑧𝑡𝑡+2 + 𝑧𝑧𝑡𝑡+3)/4, where t is the quarter of forecast and 𝑧𝑧𝑡𝑡 is the annualized quarterly 
GDP growth in quarter t. 

• Revision variable: 𝐹𝐹𝑡𝑡(𝑧𝑧𝑡𝑡+𝑧𝑧𝑡𝑡+1+𝑧𝑧𝑡𝑡+2+𝑧𝑧𝑡𝑡+3)
4

− 𝐹𝐹𝑡𝑡−1(𝑧𝑧𝑡𝑡+𝑧𝑧𝑡𝑡+1+𝑧𝑧𝑡𝑡+2+𝑧𝑧𝑡𝑡+3)
4

. 

• Actual variable: 𝑥𝑥𝑡𝑡+3
𝑥𝑥𝑡𝑡−1

− 1, using real time macro data: initial realease of 𝑥𝑥𝑡𝑡+3 published in 

quarter t+4 and initial release of 𝑥𝑥𝑡𝑡−1 published in quarter t.  
 

4. PGDP_SPF 
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• Variable: GDP price deflator. Source: SPF. 
• Survey time: Around the 3rd week of the middle month in the quarter.  
• Survey question: The level of GDP price deflator in the current quarter and the next 4 

quarters. 
• Forecast variable: GDP price deflator inflation from end of quarter t-1 to end of quarter 

t+3 𝐹𝐹𝑡𝑡𝑥𝑥𝑡𝑡+3
𝑥𝑥𝑡𝑡−1

− 1 , where t is the quarter of forecast and x is the level of GDP price deflator 

in a given quarter; 𝑥𝑥𝑡𝑡−1 uses the initial release of actual value in quarter t-1, which is 
available by the time of the forecast in quarter t.  

• Revision variable: 𝐹𝐹𝑡𝑡𝑥𝑥𝑡𝑡+3
𝑥𝑥𝑡𝑡−1

− 𝐹𝐹𝑡𝑡−1𝑥𝑥𝑡𝑡+3
𝐹𝐹𝑡𝑡−1𝑥𝑥𝑡𝑡−1

. 

• Actual variable: 𝑥𝑥𝑡𝑡+3
𝑥𝑥𝑡𝑡−1

− 1, using real time macro data: initial realease of 𝑥𝑥𝑡𝑡+3 published in 

quarter t+4 and initial release of 𝑥𝑥𝑡𝑡−1 published in quarter t.  
 

5. RCONSUM_SPF 
 

• Variable: Real consumption. Source: SPF. 
• Survey time: Around the 3rd week of the middle month in the quarter.  
• Survey question: The level of real consumption in the current quarter and the next 4 

quarters. 
• Forecast variable: Growth of real consumption from end of quarter t-1 to end of quarter 

t+3 𝐹𝐹𝑡𝑡𝑥𝑥𝑡𝑡+3
𝑥𝑥𝑡𝑡−1

− 1 , where t is the quarter of forecast and x is the level of real consumption in 

a given quarter; 𝑥𝑥𝑡𝑡−1  uses the initial release of actual value in quarter t-1, which is 
available by the time of the forecast in quarter t.  

• Revision variable: 𝐹𝐹𝑡𝑡𝑥𝑥𝑡𝑡+3
𝑥𝑥𝑡𝑡−1

− 𝐹𝐹𝑡𝑡−1𝑥𝑥𝑡𝑡+3
𝐹𝐹𝑡𝑡−1𝑥𝑥𝑡𝑡−1

. 

• Actual variable: 𝑥𝑥𝑡𝑡+3
𝑥𝑥𝑡𝑡−1

− 1, using real time macro data: initial realease of 𝑥𝑥𝑡𝑡+3 published in 

quarter t+4 and initial release of 𝑥𝑥𝑡𝑡−1 published in quarter t.  
 

6. RNRESIN_SPF 
 

• Variable: Real non-residential investment. Source: SPF. 
• Survey time: Around the 3rd week of the middle month in the quarter.  
• Survey question: The level of real non-residential investment in the current quarter and the 

next 4 quarters. 
• Forecast variable: Growth of real non-residential investment from end of quarter t-1 to end 

of quarter t+3 𝐹𝐹𝑡𝑡𝑥𝑥𝑡𝑡+3
𝑥𝑥𝑡𝑡−1

− 1 , where t is the quarter of forecast and x is the level of real non-

residential investment in a given quarter; 𝑥𝑥𝑡𝑡−1 uses the initial release of actual value in 
quarter t-1, which is available by the time of the forecast in quarter t.  

• Revision variable: 𝐹𝐹𝑡𝑡𝑥𝑥𝑡𝑡+3
𝑥𝑥𝑡𝑡−1

− 𝐹𝐹𝑡𝑡−1𝑥𝑥𝑡𝑡+3
𝐹𝐹𝑡𝑡−1𝑥𝑥𝑡𝑡−1

. 

• Actual variable: 𝑥𝑥𝑡𝑡+3
𝑥𝑥𝑡𝑡−1

− 1, using real time macro data: initial realease of 𝑥𝑥𝑡𝑡+3 published in 

quarter t+4 and initial release of 𝑥𝑥𝑡𝑡−1 published in quarter t.  
 

7. RRESIN_SPF 
 

• Variable: Real residential investment. Source: SPF. 
• Survey time: Around the 3rd week of the middle month in the quarter.  
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• Survey question: The level of real residential investment in the current quarter and the next 
4 quarters. 

• Forecast variable: Growth of real residential investment from end of quarter t-1 to end of 
quarter t+3 𝐹𝐹𝑡𝑡𝑥𝑥𝑡𝑡+3

𝑥𝑥𝑡𝑡−1
− 1 , where t is the quarter of forecast and x is the level of real residential 

investment in a given quarter; 𝑥𝑥𝑡𝑡−1 uses the initial release of actual value in quarter t-1, 
which is available by the time of the forecast in quarter t.  

• Revision variable: 𝐹𝐹𝑡𝑡𝑥𝑥𝑡𝑡+3
𝑥𝑥𝑡𝑡−1

− 𝐹𝐹𝑡𝑡−1𝑥𝑥𝑡𝑡+3
𝐹𝐹𝑡𝑡−1𝑥𝑥𝑡𝑡−1

. 

• Actual variable: 𝑥𝑥𝑡𝑡+3
𝑥𝑥𝑡𝑡−1

− 1, using real time macro data: initial realease of 𝑥𝑥𝑡𝑡+3 published in 

quarter t+4 and initial release of 𝑥𝑥𝑡𝑡−1 published in quarter t.  
 

8. RGF_SPF 
 

• Variable: Real federal government consumption. Source: SPF. 
• Survey time: Around the 3rd week of the middle month in the quarter.  
• Survey question: The level of real federal government consumption in the current quarter 

and the next 4 quarters. 
• Forecast variable: Growth of real federal government consumption from end of quarter t-

1 to end of quarter t+3 𝐹𝐹𝑡𝑡𝑥𝑥𝑡𝑡+3
𝑥𝑥𝑡𝑡−1

− 1 , where t is the quarter of forecast and x is the level of 

real federal government consumption in a given quarter; 𝑥𝑥𝑡𝑡−1 uses the initial release of 
actual value in quarter t-1, which is available by the time of the forecast in quarter t.  

• Revision variable: 𝐹𝐹𝑡𝑡𝑥𝑥𝑡𝑡+3
𝑥𝑥𝑡𝑡−1

− 𝐹𝐹𝑡𝑡−1𝑥𝑥𝑡𝑡+3
𝐹𝐹𝑡𝑡−1𝑥𝑥𝑡𝑡−1

. 

• Actual variable: 𝑥𝑥𝑡𝑡+3
𝑥𝑥𝑡𝑡−1

− 1, using real time macro data: initial realease of 𝑥𝑥𝑡𝑡+3 published in 

quarter t+4 and initial release of 𝑥𝑥𝑡𝑡−1 published in quarter t.  
 

9. RGSL_SPF 
 

• Variable: Real state and local government consumption. Source: SPF. 
• Survey time: Around the 3rd week of the middle month in the quarter.  
• Survey question: The level of real state and local government consumption in the current 

quarter and the next 4 quarters. 
• Forecast variable: Growth of real state and local government consumption from end of 

quarter t-1 to end of quarter t+3 𝐹𝐹𝑡𝑡𝑥𝑥𝑡𝑡+3
𝑥𝑥𝑡𝑡−1

− 1 , where t is the quarter of forecast and x is the 

level of real state and local government consumption in a given quarter; 𝑥𝑥𝑡𝑡−1 uses the 
initial release of actual value in quarter t-1, which is available by the time of the forecast 
in quarter t.  

• Revision variable: 𝐹𝐹𝑡𝑡𝑥𝑥𝑡𝑡+3
𝑥𝑥𝑡𝑡−1

− 𝐹𝐹𝑡𝑡−1𝑥𝑥𝑡𝑡+3
𝐹𝐹𝑡𝑡−1𝑥𝑥𝑡𝑡−1

. 

• Actual variable: 𝑥𝑥𝑡𝑡+3
𝑥𝑥𝑡𝑡−1

− 1, using real time macro data: initial realease of 𝑥𝑥𝑡𝑡+3 published in 

quarter t+4 and initial release of 𝑥𝑥𝑡𝑡−1 published in quarter t.  
 

10. UNEMP_SPF 
 

• Variable: Unemployment rate. Source: SPF. 
• Survey time: Around the 3rd week of the middle month in the quarter.  
• Survey question: The level of average unemployment rate in the current quarter and the 

next 4 quarters. 
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• Forecast variable: Average quarterly unemployment rate in quarter t+3 𝐹𝐹𝑡𝑡𝑥𝑥𝑡𝑡+3, where t is 
the quarter of forecast and x is the level of unemployment rate in a given quarter. 

• Revision variable: 𝐹𝐹𝑡𝑡𝑥𝑥𝑡𝑡+3 − 𝐹𝐹𝑡𝑡−1𝑥𝑥𝑡𝑡+3. 
• Actual variable: 𝑥𝑥𝑡𝑡+3, using real time macro data: initial realease of 𝑥𝑥𝑡𝑡+3 published in 

quarter t+4.  
 

11. HOUSING_SPF 
 

• Variable: Housing starts. Source: SPF. 
• Survey time: Around the 3rd week of the middle month in the quarter.  
• Survey question: The level of housing starts in the current quarter and the next 4 quarters. 
• Forecast variable: Growth of housing starts from quarter t-1 to quarter t+3 𝐹𝐹𝑡𝑡𝑥𝑥𝑡𝑡+3

𝑥𝑥𝑡𝑡−1
− 1 , 

where t is the quarter of forecast and x is the level of housing starts in a given quarter; 𝑥𝑥𝑡𝑡−1 
uses the initial release of actual value in quarter t-1, which is available by the time of the 
forecast in quarter t.  

• Revision variable: 𝐹𝐹𝑡𝑡𝑥𝑥𝑡𝑡+3
𝑥𝑥𝑡𝑡−1

− 𝐹𝐹𝑡𝑡−1𝑥𝑥𝑡𝑡+3
𝐹𝐹𝑡𝑡−1𝑥𝑥𝑡𝑡−1

. 

• Actual variable: 𝑥𝑥𝑡𝑡+3
𝑥𝑥𝑡𝑡−1

− 1, using real time macro data: initial realease of 𝑥𝑥𝑡𝑡+3 published in 

quarter t+4 and initial release of 𝑥𝑥𝑡𝑡−1 published in quarter t.  
 

12. FF_BC 
 

• Variable: Federal funds rate. Source: SPF. 
• Survey time: Around the 3rd week of the middle month in the quarter.  
• Survey question: The level of average federal funds rate in the current quarter and the next 

4 quarters. 
• Forecast variable: Average quarterly 3-month federal funds rate in quarter t+3 𝐹𝐹𝑡𝑡𝑥𝑥𝑡𝑡+3, 

where t is the quarter of forecast and x is the level of federal funds rate in a given quarter. 
• Revision variable: 𝐹𝐹𝑡𝑡𝑥𝑥𝑡𝑡+3 − 𝐹𝐹𝑡𝑡−1𝑥𝑥𝑡𝑡+3. 
• Actual variable: 𝑥𝑥𝑡𝑡+3. 

 
13. TB3M_SPF 

• Variable: 3-month Treasury rate. Source: SPF. 
• Survey time: Around the 3rd week of the middle month in the quarter.  
• Survey question: The level of average 3-month Treasury rate in the current quarter and the 

next 4 quarters. 
• Forecast variable: Average quarterly 3-month Treasury rate in quarter t+3 𝐹𝐹𝑡𝑡𝑥𝑥𝑡𝑡+3, where 

t is the quarter of forecast and x is the level of 3-month Treasury rate in a given quarter. 
• Revision variable: 𝐹𝐹𝑡𝑡𝑥𝑥𝑡𝑡+3 − 𝐹𝐹𝑡𝑡−1𝑥𝑥𝑡𝑡+3. 
• Actual variable: 𝑥𝑥𝑡𝑡+3. 

 
14. TB3M_BC 

 
• Variable: 3-month Treasury rate. Source: Blue Chip. 
• Survey time: Around the 3rd week of the middle month in the quarter.  
• Survey question: The level of average 3-month Treasury rate in the current quarter and the 

next 4 quarters. 
• Forecast variable: Average quarterly 3-month Treasury rate in quarter t+3 𝐹𝐹𝑡𝑡𝑥𝑥𝑡𝑡+3, where 

t is the quarter of forecast and x is the level of 3-month Treasury rate in a given quarter. 
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• Revision variable: 𝐹𝐹𝑡𝑡𝑥𝑥𝑡𝑡+3 − 𝐹𝐹𝑡𝑡−1𝑥𝑥𝑡𝑡+3. 
• Actual variable: 𝑥𝑥𝑡𝑡+3. 

 
15. TN5Y_BC 

 
• Variable: 5-year Treasury rate. Source: Blue Chip. 
• Survey time: Around the 3rd week of the middle month in the quarter.  
• Survey question: The level of average 5-year Treasury rate in the current quarter and the 

next 4 quarters. 
• Forecast variable: Average quarterly 5-year Treasury rate in quarter t+3 𝐹𝐹𝑡𝑡𝑥𝑥𝑡𝑡+3, where t is 

the quarter of forecast and x is the level of 5-year Treasury rate in a given quarter. 
• Revision variable: 𝐹𝐹𝑡𝑡𝑥𝑥𝑡𝑡+3 − 𝐹𝐹𝑡𝑡−1𝑥𝑥𝑡𝑡+3. 
• Actual variable: 𝑥𝑥𝑡𝑡+3. 

 
16. TN10Y_SPF 

 
• Variable: 10-year Treasury rate. Source: SPF. 
• Survey time: Around the 3rd week of the middle month in the quarter.  
• Survey question: The level of average 10-year Treasury rate in the current quarter and the 

next 4 quarters. 
• Forecast variable: Average quarterly 10-year Treasury rate in quarter t+3 𝐹𝐹𝑡𝑡𝑥𝑥𝑡𝑡+3, where t 

is the quarter of forecast and x is the level of 10-year Treasury rate in a given quarter. 
• Revision variable: 𝐹𝐹𝑡𝑡𝑥𝑥𝑡𝑡+3 − 𝐹𝐹𝑡𝑡−1𝑥𝑥𝑡𝑡+3. 
• Actual variable: 𝑥𝑥𝑡𝑡+3. 

 
17. TN10Y_BC 

 
• Variable: 10-year Treasury rate. Source: Blue Chip. 
• Survey time: Around the 3rd week of the middle month in the quarter.  
• Survey question: The level of average 10-year Treasury rate in the current quarter and the 

next 4 quarters. 
• Forecast variable: Average quarterly 10-year Treasury rate in quarter t+3 𝐹𝐹𝑡𝑡𝑥𝑥𝑡𝑡+3, where t 

is the quarter of forecast and x is the level of 10-year Treasury rate in a given quarter. 
• Revision variable: 𝐹𝐹𝑡𝑡𝑥𝑥𝑡𝑡+3 − 𝐹𝐹𝑡𝑡−1𝑥𝑥𝑡𝑡+3. 
• Actual variable: 𝑥𝑥𝑡𝑡+3. 

 

18. AAA_SPF 
 

• Variable: AAA corporate bond rate. Source: SPF. 
• Survey time: Around the 3rd week of the middle month in the quarter.  
• Survey question: The level of average AAA corporate bond rate in the current quarter and 

the next 4 quarters. 
• Forecast variable: Average quarterly AAA corporate bond rate in quarter t+3 𝐹𝐹𝑡𝑡𝑥𝑥𝑡𝑡+3 , 

where t is the quarter of forecast and x is the level of AAA corporate bond rate in a given 
quarter. 

• Revision variable: 𝐹𝐹𝑡𝑡𝑥𝑥𝑡𝑡+3 − 𝐹𝐹𝑡𝑡−1𝑥𝑥𝑡𝑡+3. 
• Actual variable: 𝑥𝑥𝑡𝑡+3. 
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19. AAA_BC 
 

• Variable: AAA corporate bond rate. Source: Blue Chip. 
• Survey time: Around the 3rd week of the middle month in the quarter.  
• Survey question: The level of average AAA corporate bond rate in the current quarter and 

the next 4 quarters. 
• Forecast variable: Average quarterly AAA corporate bond rate in quarter t+3 𝐹𝐹𝑡𝑡𝑥𝑥𝑡𝑡+3 , 

where t is the quarter of forecast and x is the level of AAA corporate bond rate in a given 
quarter. 

• Revision variable: 𝐹𝐹𝑡𝑡𝑥𝑥𝑡𝑡+3 − 𝐹𝐹𝑡𝑡−1𝑥𝑥𝑡𝑡+3. 
• Actual variable: 𝑥𝑥𝑡𝑡+3. 

 
20. BAA_BC 

 
• Variable: BAA corporate bond rate. Source: Blue Chip. 
• Survey time: Around the 3rd week of the middle month in the quarter.  
• Survey question: The level of average BAA corporate bond rate in the current quarter and 

the next 4 quarters. 
• Forecast variable: Average quarterly BAA corporate bond rate in quarter t+3 𝐹𝐹𝑡𝑡𝑥𝑥𝑡𝑡+3 , 

where t is the quarter of forecast and x is the level of BAA corporate bond rate in a given 
quarter. 

• Revision variable: 𝐹𝐹𝑡𝑡𝑥𝑥𝑡𝑡+3 − 𝐹𝐹𝑡𝑡−1𝑥𝑥𝑡𝑡+3. 
• Actual variable: 𝑥𝑥𝑡𝑡+3. 
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B. Robustness Checks 

Table A1. Forecaster-by-Forecaster CG Regressions 

Column “Pooled” shows the pooled panel CG regressions at the individual level (same as Table 3 column (4)). 
Column “By Forecaster (Median)” shows the median coefficient from forecaster-by-forecaster CG regressions; 
column “By Forecaster (%<0)” shows the fraction of forecasters where the coefficient is negative. For the forecaster-
by-forecaster coefficients, we restrict to forecasters with at least 10 forecasts available.  
 

Variable Pooled 
By Forecaster 

Median %<0 
Nominal GDP (SPF) -0.26 -0.14 0.63 
Real GDP (SPF) -0.23 -0.09 0.54 
Real GDP (BC) 0.12 0.00 0.50 
GDP Price Index Inflation (SPF) -0.07 -0.11 0.57 
Real Consumption (SPF) -0.34 -0.20 0.83 
Real Non-Residential 
Investment (SPF) 0.01 -0.20 0.58 

Real Residential 
Investment (SPF) -0.02 -0.32 0.64 

Real Federal Government 
Consumption (SPF) -0.62 -0.43 0.95 

Real State&Local Govt 
Consumption (SPF) -0.71 -0.50 0.91 

Housing Start (SPF) 0.33 0.24 0.35 
Unemployment (SPF) -0.25 -0.19 0.73 
Fed Funds Rate (BC) 0.15 0.21 0.27 
3M Treasury Rate (SPF) 0.24 -0.02 0.51 
3M Treasury Rate (BC) 0.20 0.20 0.28 
5Y Treasury Rate (BC) -0.12 -0.18 0.82 
10Y Treasury Rate (SPF) -0.18 -0.18 0.58 
10Y Treasury Rate (BC) -0.17 -0.29 0.86 
AAA Corporate Bond Rate (SPF) -0.21 -0.35 0.85 
AAA Corporate Bond Rate (BC) -0.17 -0.28 0.84 
BAA Corporate Bond Rate (BC) -0.28 -0.34 0.95 

 

Table A2. Last Forecast Revision 

The Table shows the pooled panel CG regressions at the consensus and individual levels (pooled panel regression) 
for horizon ℎ = 0 (same as Table 3 columns 1, 2, 4, and 5).  

Variable 𝛽𝛽1 t-stat 𝛽𝛽1
𝑝𝑝 t-stat 

Nominal GDP (SPF) -0.05 -1.03 -0.14 -2.35 
Real GDP (SPF) 0.06 1.01 -0.06 -1.15 
Real GDP (BC) 0.16 1.04 -0.05 -0.54 
GDP Price Index Inflation (SPF) -0.01 -0.14 -0.10 -2.14 
Real Consumption (SPF) -0.12 -1.62 -0.23 -3.59 
Real Non-Residential Investment (SPF) 0.03 0.50 -0.06 -0.85 
Real Residential Investment (SPF) 0.23 3.74 0.04 0.99 
Real Federal Government Consumption (SPF) -0.08 -0.74 -0.22 -3.58 
Real State&Local Govt Consumption (SPF) -0.18 -2.84 -0.26 -3.33 
Housing Start (SPF) 0.23 6.55 0.03 1.20 
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Unemployment (SPF) 0.42 5.95 0.09 2.09 
Fed Funds Rate (BC) -0.03 -0.89 -0.11 -2.25 
3M Treasury Rate (SPF) 0.17 7.30 0.00 0.21 
3M Treasury Rate (BC) 0.01 0.40 -0.18 -2.01 
5Y Treasury Rate (BC) 0.12 3.27 0.00 0.04 
10Y Treasury Rate (SPF) 0.15 3.34 -0.05 -1.86 
10Y Treasury Rate (BC) 0.04 1.50 -0.01 -0.52 
AAA Corporate Bond Rate (SPF) 0.07 1.29 -0.10 -2.15 
AAA Corporate Bond Rate (BC) -0.10 -2.46 -0.16 -4.74 
BAA Corporate Bond Rate (BC) 0.04 1.26 -0.09 -3.43 
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C. Non-Normal Shocks and Particle Filtering 

In the main text, we assume that both the innovations of the latent process, 𝑢𝑢𝑡𝑡, and the measurement 

error for each expert, 𝜖𝜖𝑡𝑡,  follow normal distributions. In this case, as all the posterior distributions are 

normal, the Kalman filter provides the closed form expression for the posterior densities. However, many 

processes for macro and financial variables may have heavy tails and more closely follow, for example, a 

𝑡𝑡-distribution. In this case, while the point estimates of the Kalman filter still minimize mean-squared error 

(MSE), the mean and covariance estimates of the filter are no longer sufficient to determine the posterior 

distribution. Given that our formulation of diagnostic expectations involves a reweighting of the likelihood 

function, we require more than the posterior mean and variance to properly compute the diagnostic 

expectation distribution. In the following, we relax the normality assumption and verify the model 

predictions with a fat-tailed t-distribution.  

C.1 Particle Filtering: Motivation and Set-Up 

 We start with the processes in Equations (3) and (4):  

𝑠𝑠𝑡𝑡𝑖𝑖 = 𝑥𝑥𝑡𝑡 + 𝜖𝜖𝑡𝑡𝑖𝑖,    𝑥𝑥𝑡𝑡 = 𝜌𝜌𝑥𝑥𝑡𝑡−1 + 𝑢𝑢𝑡𝑡     

where 𝑥𝑥𝑡𝑡 is the fundamental process and 𝑠𝑠𝑡𝑡𝑖𝑖 is forecaster 𝑖𝑖’s noisy signal. In Section 3, the shocks to these 

processes are assumed to be normal. In the following, we analyze the case where 𝑢𝑢𝑡𝑡 follows a t-distribution.  

Since the 𝑡𝑡-distribution is no longer conjugate to normal noise, one can no longer get closed form 

solutions. Instead, we draw from the posterior distribution in a Monte Carlo approach using the particle 

filter, a popular algorithm for simulating Bayesian inference on Hidden Markov Models (Doucet and 

Johansen 2011). We first briefly describe this approach, then formulate the application to diagnostic 

expectations, and finally show the simulation results for the CG forecast error on forecast revision 

regressions.  

Particle filtering builds on the idea of importance sampling. Specifically, suppose we wish to 

estimate the expectation of 𝑓𝑓(𝑥𝑥), where 𝑥𝑥 is distributed according to 𝑝𝑝; we are not able to sample from 𝑝𝑝, 

or in general unable to compute its precise density, but can compute 𝑝𝑝 up to a proportionality constant: 



53 
 

𝑝𝑝(𝑥𝑥)  =  1
𝑍𝑍
𝑝𝑝�(𝑥𝑥), where 𝑍𝑍 =  ∫𝑝𝑝�(𝑥𝑥) 𝑑𝑑𝑑𝑑 is the (unknown) normalizing constant. If we can sample from an 

arbitrary density 𝑞𝑞, we can use the following importance sampling mechanism to indirectly sample from 

𝑝𝑝 : for each sample from 𝑞𝑞 , 𝑥𝑥𝑛𝑛 , compute the importance weight 𝑤𝑤𝑛𝑛 =  𝑝𝑝�(𝑥𝑥𝑛𝑛)
𝑞𝑞(𝑥𝑥𝑛𝑛)

 and resample from 

𝑥𝑥𝑛𝑛according to probability proportional to the weights. It is easy to see that the average of the weights 

estimates the proportionality factor 𝑍𝑍 : 1
𝑁𝑁
∑ 𝑤𝑤(𝑥𝑥𝑛𝑛)𝑁𝑁
𝑛𝑛=1  → ∫𝑝𝑝�(𝑥𝑥)

𝑞𝑞(𝑥𝑥)
⋅ 𝑞𝑞(𝑥𝑥)𝑑𝑑𝑑𝑑  =  ∫𝑝𝑝�(𝑥𝑥) 𝑑𝑑𝑑𝑑  =  𝑍𝑍 . 

Consequently, one can easily derive that the resampled 𝑥𝑥𝑛𝑛 converge in distribution to 𝑝𝑝 : given any 

measurable function 𝜙𝜙, the expectation of 𝜙𝜙(𝑥𝑥)for the resampled 𝑥𝑥 converges to 𝐸𝐸𝑃𝑃𝜙𝜙: 

∫∑ 𝜙𝜙(𝑥𝑥𝑖𝑖) 𝑤𝑤(𝑥𝑥𝑖𝑖)
𝑁𝑁

𝑁𝑁
𝑖𝑖=1

𝑞𝑞(𝑥𝑥1:𝑁𝑁)
𝑍𝑍

 𝑑𝑑𝑥𝑥1:𝑁𝑁  = 1
𝑍𝑍
1
𝑁𝑁
∑ ∫𝜙𝜙(𝑥𝑥𝑖𝑖) 𝑝𝑝�(𝑥𝑥𝑖𝑖)

𝑞𝑞(𝑥𝑥𝑖𝑖)
𝑞𝑞(𝑥𝑥𝑖𝑖)𝑞𝑞(𝑥𝑥−𝑖𝑖) 𝑑𝑑𝑥𝑥1:𝑁𝑁

𝑁𝑁
𝑖𝑖 = 1  =  1

𝑁𝑁
∑ 𝐸𝐸𝑝𝑝[𝜙𝜙(𝑥𝑥)]𝑁𝑁
𝑖𝑖 =1  =

 𝐸𝐸𝑝𝑝𝜙𝜙    

The algorithm above, called the sample-importance resample (SIR) algorithm, can be summarized in the 

following steps: 

1. Sample 𝑁𝑁 particles from 𝑞𝑞,  denoted as 𝑥𝑥1:𝑁𝑁 

2. For each 𝑥𝑥𝑖𝑖, compute𝑤𝑤𝑖𝑖 =  𝑝𝑝�(𝑥𝑥𝑖𝑖)
𝑞𝑞(𝑥𝑥𝑖𝑖)

. 

3. Resample according to probability ∝ 𝑤𝑤𝑖𝑖 

For the hidden Markov Process model, the above idea generalizes to give us a quick algorithm to 

sample from the filtering density 𝑝𝑝(𝑥𝑥𝑛𝑛|𝑠𝑠1:𝑛𝑛). Like the Kalman filter, the idea is to proceed inductively, 

using the following forward equation: 

𝑝𝑝(𝑥𝑥𝑛𝑛|𝑠𝑠1:𝑛𝑛)  =  
𝑔𝑔(𝑠𝑠𝑛𝑛|𝑥𝑥𝑛𝑛) 𝑝𝑝(𝑥𝑥𝑛𝑛|𝑠𝑠1:𝑛𝑛−1)

𝑝𝑝(𝑠𝑠𝑛𝑛| 𝑠𝑠1:𝑛𝑛−1)
 =  

∫𝑔𝑔(𝑠𝑠𝑛𝑛|𝑥𝑥𝑛𝑛) 𝑓𝑓(𝑥𝑥𝑛𝑛|𝑥𝑥𝑛𝑛−1) 𝑝𝑝(𝑥𝑥𝑛𝑛−1|𝑠𝑠1:𝑛𝑛−1)𝑑𝑑𝑠𝑠1:𝑛𝑛−1𝑑𝑑𝑥𝑥𝑛𝑛−1
𝑝𝑝(𝑠𝑠𝑛𝑛|𝑠𝑠1:𝑛𝑛−1)

 

By induction, suppose that we have samples from the previous filtered distribution 𝑝𝑝(𝑥𝑥𝑛𝑛−1|𝑠𝑠1:𝑛𝑛−1). Now, 

given a (conditional) proposal 𝑞𝑞(𝑥𝑥𝑛𝑛|𝑥𝑥𝑛𝑛−1, 𝑠𝑠1:𝑛𝑛)for each sample, the recursive equality above suggests the 

resampling weights: 𝑤𝑤(𝑥𝑥𝑛𝑛 | 𝑥𝑥𝑛𝑛−1)  =  𝑔𝑔(𝑠𝑠𝑛𝑛|𝑥𝑥𝑛𝑛)𝑓𝑓(𝑥𝑥𝑛𝑛|𝑥𝑥𝑛𝑛−1)
𝑞𝑞(𝑥𝑥𝑛𝑛 | 𝑥𝑥𝑛𝑛−1,𝑠𝑠1:𝑛𝑛)

.  For the base case, where we have only seen the 

data point 𝑠𝑠1, our filtered density 𝑝𝑝(𝑥𝑥1|𝑠𝑠1)is the standard Bayesian posterior, which can be sampled via 

importance sampling.  
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The particle filter algorithm refers to this extension of the SIR algorithm to the sequential setting: 

1. At time n = 1, generate 𝑁𝑁i.i.d. samples from a default proposal 𝑞𝑞. 

2. Compute for each sample the weights 𝑤𝑤(𝑥𝑥𝑖𝑖)  =  𝜇𝜇(𝑥𝑥𝑖𝑖) 𝑔𝑔(𝑠𝑠1 | 𝑥𝑥𝑖𝑖) 
𝑞𝑞(𝑥𝑥𝑖𝑖)

 

3. Resample according to the weights, and store the sample. 

4. For 𝑛𝑛 ≥ 2: for each 𝑥𝑥𝑛𝑛−1𝑖𝑖  in the sample, propose 𝑥𝑥𝑛𝑛𝑖𝑖  according to 𝑞𝑞(𝑥𝑥𝑛𝑛|𝑥𝑥𝑛𝑛−1 = 𝑥𝑥𝑖𝑖𝑛𝑛−1, 𝑠𝑠1:𝑛𝑛) 

5. Compute for each 𝑥𝑥𝑛𝑛𝑖𝑖  the weights 𝑤𝑤(𝑥𝑥𝑛𝑛𝑖𝑖)  =  𝑔𝑔(𝑠𝑠𝑛𝑛|𝑥𝑥𝑛𝑛𝑖𝑖) 𝑓𝑓(𝑥𝑥𝑛𝑛𝑖𝑖|𝑥𝑥𝑛𝑛−1𝑖𝑖)
𝑞𝑞(𝑥𝑥𝑛𝑛|𝑥𝑥𝑛𝑛−1=𝑥𝑥𝑖𝑖𝑛𝑛−1,𝑠𝑠1:𝑛𝑛)

 

6. Resample according to the weights, save as 𝑥𝑥𝑛𝑛𝑖𝑖 . 

Finally, we need to specify the proposal density 𝑞𝑞(𝑥𝑥𝑛𝑛|𝑥𝑥𝑛𝑛−1 = 𝑥𝑥𝑖𝑖𝑛𝑛−1, 𝑠𝑠1:𝑛𝑛). It is well-known that the 

optimal proposal density should be the conditional distribution 𝑝𝑝(𝑥𝑥𝑛𝑛|𝑥𝑥𝑛𝑛−1 = 𝑥𝑥𝑖𝑖𝑛𝑛−1, 𝑠𝑠𝑛𝑛). If the latent 

Markov process is a simple AR(1) process with normal innovation, one can analytically derive the 

optimal proposal density 𝑝𝑝(𝑥𝑥𝑛𝑛|𝑥𝑥𝑛𝑛−1 = 𝑥𝑥𝑖𝑖𝑛𝑛−1, 𝑠𝑠𝑛𝑛).  

𝑥𝑥𝑛𝑛|𝑥𝑥𝑛𝑛−1, 𝑠𝑠𝑛𝑛  ∼ 𝑁𝑁(
𝜎𝜎𝜖𝜖2

𝜎𝜎𝜖𝜖2 + 𝜎𝜎𝑢𝑢2
𝜌𝜌 𝑥𝑥𝑛𝑛−1  +

𝜎𝜎𝑢𝑢2

𝜎𝜎𝜖𝜖2 + 𝜎𝜎𝑢𝑢2
 𝑠𝑠𝑛𝑛,

𝜎𝜎𝜖𝜖2 𝜎𝜎𝑢𝑢2

𝜎𝜎𝜖𝜖2 + 𝜎𝜎𝑢𝑢2
)  =  𝑁𝑁(𝜇̄𝜇, 𝛴̄𝛴) 

While this result is only precise for normal processes, we shall still use 𝜇̄𝜇, 𝛴̄𝛴as location and scale 

parameters for our proposal, which is now 𝑡𝑡-distributed. If the original innovations have 𝑑𝑑degrees of 

freedom, our proposal will have 𝑑𝑑+2
2

degrees of freedom, which have much thicker tails. 

C.2 Application to Diagnostic Expectations 

To analyze the case of diagnostic expectations, we only need to re-adjust the resampling weights 

by a simple likelihood ratio, as given by the following proposition: 

Proposition A1 Let 𝑠𝑠∗(𝑠𝑠1:𝑛𝑛−1)be the predictive expectation of 𝑠𝑠𝑛𝑛 given 𝑠𝑠1:𝑛𝑛−1. The representativeness  

𝑅𝑅(𝑥𝑥𝑛𝑛|𝑠𝑠1:𝑛𝑛)  =  𝑝𝑝(𝑥𝑥𝑛𝑛| 𝑠𝑠1:𝑛𝑛)
𝑝𝑝(𝑥𝑥𝑛𝑛| 𝑠𝑠1:𝑛𝑛−1,𝑠𝑠∗)

can be simplified to the likelihood ratio𝑔𝑔(𝑠𝑠𝑛𝑛|𝑥𝑥𝑛𝑛)
𝑔𝑔(𝑠𝑠∗|𝑥𝑥𝑛𝑛)

, up to a proportionality 

constant independent of 𝑥𝑥𝑛𝑛.  
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Proof.  By Bayes’ rule: 𝑅𝑅(𝑥𝑥𝑛𝑛|𝑠𝑠1:𝑛𝑛)  = 𝑝𝑝(𝑥𝑥𝑛𝑛| 𝑠𝑠1:𝑛𝑛)
𝑝𝑝(𝑥𝑥𝑛𝑛| 𝑠𝑠1:𝑛𝑛−1,𝑠𝑠∗)

 =  𝑝𝑝(𝑠𝑠𝑛𝑛|𝑠𝑠1:𝑛𝑛−1,𝑥𝑥𝑛𝑛) ⋅𝑝𝑝(𝑥𝑥𝑛𝑛| 𝑠𝑠1:𝑛𝑛−1)
𝑝𝑝(𝑠𝑠𝑛𝑛 | 𝑠𝑠1:𝑛𝑛−1)

⋅

(𝑝𝑝(𝑠𝑠∗ | 𝑠𝑠1:𝑛𝑛−1) ⋅𝑝𝑝(𝑥𝑥𝑛𝑛| 𝑠𝑠1:𝑛𝑛−1)
𝑝𝑝(𝑠𝑠∗| 𝑠𝑠1:𝑛𝑛−1)

)−1. 

Due to the Markov property, 𝑝𝑝(𝑠𝑠𝑛𝑛|𝑠𝑠1:𝑛𝑛−1,𝑥𝑥𝑛𝑛)  =  𝑔𝑔(𝑠𝑠𝑛𝑛|𝑥𝑥𝑛𝑛) and 𝑝𝑝(𝑠𝑠𝑛𝑛 =  𝑠𝑠∗ |𝑠𝑠1:𝑛𝑛−1,𝑥𝑥𝑛𝑛)  =  𝑔𝑔(𝑠𝑠∗|𝑥𝑥𝑛𝑛). 

Plugging this in, we obtain:  

𝑅𝑅(𝑥𝑥𝑛𝑛 |𝑠𝑠1:𝑛𝑛)  =  
𝑔𝑔(𝑠𝑠𝑛𝑛 | 𝑥𝑥𝑛𝑛) ⋅ 𝑝𝑝(𝑥𝑥𝑛𝑛|𝑠𝑠1:𝑛𝑛−1)

𝑝𝑝(𝑠𝑠𝑛𝑛|𝑠𝑠1:𝑛𝑛−1)
⋅ (
𝑔𝑔(𝑠𝑠∗|𝑥𝑥𝑛𝑛) ⋅ 𝑝𝑝(𝑥𝑥𝑛𝑛 | 𝑠𝑠1:𝑛𝑛−1)

𝑝𝑝(𝑠𝑠∗|𝑠𝑠1:𝑛𝑛−1)
)−1  =

𝑔𝑔(𝑠𝑠𝑛𝑛|𝑥𝑥𝑛𝑛)
𝑔𝑔(𝑠𝑠∗ |𝑥𝑥𝑛𝑛)

⋅
𝑝𝑝(𝑠𝑠∗|𝑠𝑠1:𝑛𝑛−1)
𝑝𝑝(𝑠𝑠𝑛𝑛|𝑠𝑠1:𝑛𝑛−1)

  

The latter term 𝑝𝑝(𝑠𝑠∗|𝑠𝑠1:𝑛𝑛−1)
𝑝𝑝(𝑠𝑠𝑛𝑛|𝑠𝑠1:𝑛𝑛−1)

 is constant with respect to 𝑥𝑥𝑛𝑛, as desired. 

 As we have assumed that 𝑔𝑔 is a normal density, the likelihood ratio simplifies to:  

𝑅𝑅(𝑥𝑥𝑛𝑛|𝑠𝑠1:𝑛𝑛)  ∝ 𝑒𝑒𝑒𝑒𝑒𝑒(−
(𝑥𝑥𝑛𝑛 − 𝑠𝑠𝑛𝑛)2

2𝜎𝜎𝜖𝜖2
 + 

(𝑥𝑥𝑛𝑛 − 𝑠𝑠∗ )2

2𝜎𝜎𝜖𝜖2
 )  =  𝑒𝑒𝑒𝑒𝑒𝑒(

(𝑠𝑠𝑛𝑛 −  𝑠𝑠∗)𝑥𝑥𝑛𝑛
𝜎𝜎𝜖𝜖2

)  

Hence, if the observed signal 𝑠𝑠𝑛𝑛 is greater than 𝑠𝑠∗(a positive news), the forecaster puts an exponentially 

heavier weight on larger values of 𝑥𝑥𝑛𝑛, and for negative news, he overweights smaller values of 𝑥𝑥𝑛𝑛, which 

is in line with over-reaction to most recent news. 

 With the particle filter, we get the exponential reweighting by multiplying to the original weights 

𝑤𝑤(𝑥𝑥𝑛𝑛𝑖𝑖)  =  𝑔𝑔(𝑠𝑠𝑛𝑛|𝑥𝑥𝑛𝑛𝑖𝑖) 𝑓𝑓(𝑥𝑥𝑛𝑛𝑖𝑖|𝑥𝑥𝑛𝑛−1𝑖𝑖)
𝑞𝑞(𝑥𝑥𝑛𝑛|𝑥𝑥𝑛𝑛−1=𝑥𝑥𝑖𝑖𝑛𝑛−1,𝑠𝑠1:𝑛𝑛)

  with the extra exponential factor 𝑒𝑒𝑒𝑒𝑒𝑒((𝑠𝑠𝑛𝑛 − 𝑠𝑠∗)𝑥𝑥𝑛𝑛
𝜎𝜎𝜖𝜖2

). As with the basic 

particle filter algorithm discussed above, we need to specify our proposal density 𝑞𝑞 to target regions of 

high density. We would like to target 𝑞𝑞� ∝ 𝑒𝑒𝑒𝑒𝑒𝑒((𝑠𝑠𝑛𝑛 − 𝑠𝑠∗)𝑥𝑥𝑛𝑛
𝜎𝜎𝜖𝜖2

)𝑝𝑝(𝑥𝑥𝑛𝑛|𝑥𝑥𝑛𝑛−1,𝑠𝑠𝑛𝑛), which we estimate by first 

assuming the normal model. Given that 𝑥𝑥𝑛𝑛|𝑥𝑥𝑛𝑛−1, 𝑠𝑠𝑛𝑛  ∼  𝑁𝑁(𝜇̄𝜇, 𝛴̄𝛴) in the normal model, the diagnostic 

expectations is given by a shift of the posterior density by 𝜃𝜃⋅𝛴̄𝛴⋅(𝑠𝑠𝑛𝑛− 𝑠𝑠∗)
𝜎𝜎𝜖𝜖2

. Thus we set the location and scale 

parameter of our proposals as 𝜇𝜇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =  𝜇̄𝜇 + 𝜃𝜃⋅𝛴̄𝛴(𝑠𝑠𝑛𝑛− 𝑠𝑠∗)
𝜎𝜎𝜖𝜖2

, 𝛴𝛴𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =  𝛴̄𝛴, where 𝜇̄𝜇, 𝛴̄𝛴 are the location and scale 

parameters for our original proposal. As before, we have 𝑑𝑑𝑓𝑓𝑞𝑞 =  𝑑𝑑𝑑𝑑 + 2
2

 to ensure that our proposal has 

heavier tails than the target distribution. To summarize, the algorithm is as follows: 



56 
 

1. From the original particle filter, estimate 𝑠𝑠∗  =  𝜌𝜌𝜇𝜇𝑛𝑛−1, with 𝜇𝜇𝑛𝑛−1 our predictive mean 

𝐸𝐸[𝑥𝑥𝑛𝑛−1| 𝑠𝑠1:𝑛𝑛−1], estimated by the mean of our particles 𝑥𝑥𝑖𝑖𝑛𝑛−1. 

2. Propose according to a 𝑡𝑡-distribution with location parameter  𝜇𝜇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =  𝜇̄𝜇 + 𝜃𝜃⋅𝛴̄𝛴(𝑠𝑠𝑛𝑛− 𝑠𝑠∗)
𝜎𝜎𝜖𝜖2

, 𝛴𝛴𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =

 𝛴̄𝛴,    𝑑𝑑𝑓𝑓𝑞𝑞 =  𝑑𝑑𝑑𝑑 + 2
2

. 

3. For each proposal, resample with weights𝑤𝑤𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥𝑛𝑛|𝑥𝑥𝑛𝑛−1,𝑠𝑠𝑛𝑛)  =

 𝑔𝑔(𝑠𝑠𝑛𝑛|𝑥𝑥𝑛𝑛𝑖𝑖) 𝑓𝑓(𝑥𝑥𝑛𝑛𝑖𝑖|𝑥𝑥𝑛𝑛−1𝑖𝑖)
𝑞𝑞(𝑥𝑥𝑛𝑛|𝑥𝑥𝑛𝑛−1=𝑥𝑥𝑖𝑖𝑛𝑛−1,𝑠𝑠1:𝑛𝑛)

𝑒𝑒𝑒𝑒𝑒𝑒((𝑠𝑠𝑛𝑛 − 𝑠𝑠∗)𝑥𝑥𝑛𝑛
𝜎𝜎𝜖𝜖2

) 

 

C.3 Results   

In the simulations below, we set 𝜌𝜌 =  0.9,𝜎𝜎𝑢𝑢 = 0.2,𝜎𝜎𝜖𝜖 = 0.2, and 0 ≤ 𝜃𝜃 ≤ 1.5. We find that the 

basic qualitative characteristics of diagnostic expectations are robust to heavy tails. As Figure A1 shows, 

the diagnostic expectations overreacts to news, relative to the rational benchmark. 

Figure A1. Response to News under Rational and Diagnostic Expectations 

This plot shows the belief distribution in reponse to news. The black line plots the distribution with no news. The 
dashed red line plots the distribution in response to news with rational expectations. The dotted blue line plots the 
distribution in reponse to news with diagnostic expectations.  
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We then check the results of the CG forecast error on forecast revision regressions. Figure A2 

shows the distribution of bootstrapped regression coefficients. Panel A first checks the case with normal 

shocks, the particle filter simulation agrees with the predicted coefficients − 𝜃𝜃(1+𝜃𝜃)
(1+𝜃𝜃)2+ 𝜃𝜃2 𝜌𝜌2

 using the 

Kalman filter. Panel B then shows the case where the shocks are heavy-tailed. We see that the 

coefficients for the heavy-tailed shocks are more negative compared to the predicted values. 

Figure A2. Individual CG Coefficients with Normal and Fat-Tailed Shocks 

This plot shows the distribution of coefficients from individual level (pooled panel) CG regressions. Panel A analyzes 
the case for normal shocks and Panel B analyzes the case for fat-tailed shocks, both using the particle filter. Each 
simulation has 80 time periods and each plot shows the coefficients from 300 simulations. The dashed vertical line 
indicates − 𝜃𝜃(1+𝜃𝜃)

(1+𝜃𝜃)2+ 𝜃𝜃2 𝜌𝜌2
, which is the coefficient predicted by normal shocks and Kalman filtering.  

Panel A. Normal Shocks 
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Panel B. Heavy-Tailed Shocks, df = 2.5 

 

for the normal case. Specifically, as the rational posterior exhibits heavier tail, the exponential 

reweighting of the diagnostic expectation results in greater mass located on the extreme values of the 

exponential weight, and hence greater shift in the diagnostic expectation. This effect is only present for 

diagnostic expectations — for rational expectations i.e. 𝜃𝜃 =  0, we do not observe a divergence between 

normal and fat-tailed distributions. 

 Finally, Figure A3 replicates the results for the contrast between regressions using individual and 

consensus forecasts. The general qualitative result is that there is much less overreaction in consensus 

opinion, or even underreaction for some cases. Underreaction occurs when the noise 𝜎𝜎𝜖𝜖2is sufficiently 

high and individual overreaction parameter 𝜃𝜃 is sufficiently low. Figure A3 plots the case where 𝜎𝜎𝜖𝜖 =

1,𝜃𝜃 =  0.1, which shows robustly positive consensus regression coefficients for 20 forecasters. 
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Figure A3. Individual vs. Consensus Diagnostic Expectations 

This plot shows the distribution of coefficients from individual level (pooled panel) and consensus CG regressions, 
using fat-tailed shocks and particle filtering. The left panel shows the coefficients from pooled individual level 
regressions, and the right panel shows the coefficients from consensus regressions. Each draw has 40 forecasters and 
80 time periods; there are 300 draws.  

  

 

 


