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ABSTRACT

As scientists’ careers unfold, mobility can allow researchers to find environments where they are more
productive and more effectively contribute to the generation of new knowledge. In this paper, we examine
the determinants of mobility of elite academics within the life sciences, including individual productivity
measures and for the first time, measures of the peer environment and family factors. Using a unique
data set compiled from the career histories of 10,004 elite life scientists in the U.S., we paint a nuanced
picture of mobility. Prolific scientists are more likely to move, but this impulse is constrained by recent
NIH funding. The quality of peer environments both near and far is an additional factor that influences
mobility decisions. Interestingly, we also identify a significant role for family structure. Scientists
appear to be unwilling to move when their children are between the ages of 14-17, which is when US
children are typically enrolled in middle school or high school. This suggests that even elite scientists
find it costly to disrupt the social networks of their children and take these costs into account when
making career decisions.
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I. Introduction 
 
A central tenant of modern theories of labor markets is that worker mobility enhances economic 
productivity by allowing workers to find environments where their skills are put to greatest use. 
In scientific fields, where team efforts are particularly important, mobility may well increase the 
production of scientific knowledge (e.g. Hoisl, 2007; Agrawal, McHale, & Oettl, 2014; Ejermo 
and Ahlin, 2015). Yet, we know surprisingly little about what drives scientists to move in the 
first place.  
 
Is mobility, in fact, driven largely by efforts to improve employer-employee match quality? 
What are the constraints to realizing these matches? After all, mobility can generate significant 
costs, even if only temporary, as a result of professional and personal dislocation. In this paper, 
we examine both the professional and more personal factors that influence the mobility of elite 
life scientists. Since many personal factors can influence productivity and vice versa, including 
both in the same analysis allows us to minimize concerns about statistical confounding and thus 
develop the most credible measures of each influence to date. 
 
Our analysis builds upon earlier work that has shown the important role played by own-
productivity in the propensity to move (e.g. Zucker, Darby & Torero, 2002; Hoisl, 2007; Crespi, 
Geuna & Nesta, 2007; Lenzi, 2009) to also examine the role played by the quality of the 
scientific environment more broadly. Science is increasingly a collaborative “team sport” 
(Wuchty, Jones & Uzzi, 2007), and we exploit novel measures of the quality of peers at local and 
distant institutions to provide the first systematic analysis of this influence on the decision to 
relocate.  
 
Our analysis also extends beyond the professional to examine the role of children in shaping 
mobility decisions. Demographic research has shown that the presence of children in a household 
can limit scientific mobility (Shauman & Xie, 1996). Moreover, the social psychology literature 
suggests that it may be particularly costly to move children during secondary school (hereafter 
“high school” as it is called in the U.S.), when social bonds are strongest and thus the potential 
for social disruption is greatest (e.g. Fowler, Henry, & Marcal, 2014 and 2015). As such, our 
analyses will examine how both the number and age of children influences scientist mobility.  
 
The mobility of elite life scientists is of interest for a number of reasons. First, these scientists are 
largely responsible for pushing the boundaries of the knowledge frontier in their field. Work 
environments that enhance the returns to their human capital and potential knowledge spillovers 
to their colleagues can generate sizable social returns by accelerating biomedical innovation and 
improving human health. Second, the conduct of research in the life sciences is a team effort that 
often involves expensive and highly specialized equipment, some of which is financed by 
external sources that are tied to institutions rather than researchers. As such, mobility may be 
particularly constrained in this population. Finally, the notoriety of this elite group and the public 
nature of their careers facilitate the collection of data on family structure that is largely 
unobtainable in other study populations.  
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We use a unique data set compiled from the career histories of over 10,000 elite life scientists to 
understand why and when scientists make decisions to move to new locations.1 Our analysis 
confirms the importance of scientist productivity as a positive predictor of moves (Zucker, Darby 
and Torero, 2002; Coupé, Smeets & Warzynski, 2006; Lenzi, 2009; Ganguli, 2015). It also 
highlights several new professional factors that influence the propensity to move. In particular, 
we find that recent NIH funding serves as a deterrent to moving, likely due, in part, to the 
significant transaction costs associated with transferring federal research between institutions 
(Bernstein, 2014). We also find that the peer environment exerts a significant influence on 
mobility. Scientists are less likely to move when the quality of the peer environment near their 
home institution is high and more likely to move when the quality of the peer environment at 
distant institutions is high. 
 
Turning to the non-professional side, our results reveal an important influence of family structure 
on mobility. We find a sizable drop in non-local mobility when scientists have children of high 
school age. Interestingly, scientists appear to anticipate these constraints by increasing moves 
just before their oldest child enters high school. Mobility accelerates once again when their 
youngest child is beyond high school age. Additional analyses suggest that the nature of the 
move – whether it generates a substantial upward or downward change in institutional rank – has 
little impact on the role played by these professional and personal factors in shaping scientific 
mobility.  
 
The remainder of the paper is organized as follows. Section 2 describes our data and descriptive 
statistics. Section 3 lays out our empirical approach. Results are presented in Section 4, while 
Section 5 concludes. 
 
II. Data and Descriptive Statistics 
 
As described earlier, our analysis will focus on how both professional and personal factors 
impact the movement of elite life scientists across academic institutions. In this section, we begin 
with details on the construction of our scientist sample, including our measures of individual 
productivity. We then describe our measures of the productivity of a scientist’s peer environment 
as well as the sources of data on the children of the elite scientists in our sample. 
 
II.A. Scientist Sample 
 
Our elite academic life scientist sample includes 12,935 individuals, which corresponds to 
roughly 5 percent of the entire relevant labor market. In our framework, a scientist is deemed 
elite if they satisfy at least one of the following criteria for cumulative scientific achievement: (1) 
highly funded scientists; (2) highly cited scientists; (3) top patenters; or (4) members of the 
National Academy of Sciences. Since these four criteria are based on extraordinary achievement 
over an entire scientific career, we add additional criteria to capture individuals who show great 
promise at the early and middle stages of their scientific careers, whether or not these episodes of 

                                                        
1 We are primarily focused on understanding the determinants of the timing of employer changes. Because we do not 
observe the set of academic institutions to which a scientist could have potentially moved, our results speak to the 
preferences and constraints that shape the decision to leave one’s current institution. We cannot say much about the 
choice of a specific destination.  
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productivity endure for long periods of time. These include: (5) NIH MERIT awardees; (6) 
Howard Hughes Medical Investigators; or (7) early career prize winners.2 Additional details on 
this sample construction can be found in Appendix A.  
 
For each scientist in the sample, we reconstruct their career from the time they obtained their 
first position as independent investigators (typically after a postdoctoral fellowship) until 2006. 
We do so through a combination of curriculum vitae, NIH biosketches, “Who’s Who” profiles, 
accolades/obituaries in medical journals, National Academy of Sciences biographical memoirs, 
and Google searches. Our dataset includes employment history, degree held, date of degree, 
gender, and up to three departmental affiliations as well as complete list of publications, patents 
and NIH funding obtained in each year by each scientist. Publication counts come from the open 
source software PublicationHarvester. This software downloads from PubMed – an online 
bibliographic resource from the National Library of Medicine – the entire set of English-
language articles for an elite scientist, provided they are not letters to the editor, comments, or 
other “atypical” articles (Azoulay, Stellman, and Graff Zivin, 2006).3 Funding data are obtained 
from the Consolidated Grant/Applicant File (CGAF) from the U.S. National Institutes of Health 
(NIH), which records information about grants awarded to extramural researchers funded by the 
NIH since 1938. Patent data come from the US Patent and Trademark Office (USPTO) historical 
patent data files.  
 
Our mobility data is extracted precisely from biographical records, rather than inferred from 
affiliation information in papers or patents (e.g. Agrawal et al. 2014) or from self-reported data 
(Bäker 2015). As such, we observe the exact timing of professional transitions even in the cases 
in which a scientist has ceased to be active in research, for example because s/he has moved into 
an administrative position.  
 
Since our analytic approach requires carefully constructed measures of the quality of the research 
environment (as detailed below) at origin and destination institutions, we exclude all scientists 
who transition from academic positions to jobs in industry or to foreign academic institutions. 
This exclusion yields a sample of 10,004 scientists on which our study is based. Our core 
analysis is focused transitions that are at least 50 miles apart (based on distance between the zip 
codes of the institutions) to increase the likelihood that this career change leads the scientists to 
change their place of residence, and thus distance them from their local professional networks 
and disrupt the social networks of their children. We also compare our main results to the effects 
for scientists who are local movers (moves within the 50 mile radius).4 The distribution of 
distances between institutions for those scientists that move is shown in Figure 1. 
 
Table 1 presents summary statistics for the scientists in the sample who experience at least 1 
professional transition (move) over their career and those who do not. The movers represent 
about 35% of the sample. Movers and stayers look similar in terms of degree type (MD or PhD). 
Movers are older by approximately 1 year of career age and slightly less likely to be female. 

                                                        
2 We also cross-reference our list of stars with alternative measures of scientific eminence. For example, the elite 
subsample contains every U.S.-based Nobel Prize winner in Medicine and Physiology since 1975, and a plurality of 
the Nobel Prize winners in Chemistry over the same time period. 
3 More details on the assignment of publications to scientists can be found in Appendix B. 
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(13% vs. 16%). While we only obtain information on children for a subsample of our elite 
scientist population (as detailed below), the share of scientists with child information and the 
number of children they have is similar across the mover and stayer samples. Movers are also 
slightly more productive than their more static counterparts – 10 additional career publications, 
or roughly 7% more, on average. When accounting for the quality of publications using Journal 
Impact Factor (JIF)-weighted publications, movers have approximately 22 additional 
publications on average. 
 
II.B. Quality of the Scientific Environment 
 
The quality of one’s peers near and far is presumably an important determinant of scientific 
mobility. As such, we need measures of both peers and their quality. For the latter, we follow 
conventions within the literature and use counts of publications and NIH funding (e.g. Azoulay, 
Graff Zivin, & Wang, 2010). Constructing a measure of the former is far more challenging 
because the set of scholars that influence the work of a scientist can take many forms. As such, 
we construct two distinct measures of peers, those defined by direct collaboration as coauthors 
and those who work in similar fields but who have not directly collaborated.  
 
Collaborators: To identify collaborators, we use two open-source software programs: 
PublicationHarvester, described earlier, and the Stars/Colleagues Generator (S/CGen).5 In the 
first step, the PublicationHarvester downloads from PubMED the entire set of English-language 
articles for an elite scientist. From this set of publications, the S/CGen strips out the list of 
coauthors, eliminates duplicate names, matches each coauthor with the Faculty Roster of the 
Association of American Medical Colleges (AAMC),6 and stores the identifier of every coauthor 
for whom a match is found. The software then queries PubMed for each validated coauthor, and 
generates publication counts for each collaborator scientist in each year.7  
 
Non-Collaborator Peers: Our measure of non-collaborating researchers that are intellectually 
close to the scientist of interest requires a method to delineate the boundaries of research fields. 
To construct such a measure, we employ a novel approach that groups scientific articles into 
subfields based on their intellectual content using very detailed keyword information as well as 
the relative frequencies of these keywords in the scientific corpus (Azoulay, Fons-Rosen, and 
Graff Zivin, 2015). Specifically, we use the PubMed Related Citations Algorithm (PMRA), 
which relies heavily on Medical Subject Headings (MeSH). The Medical Subject Headings 
(MeSH) thesaurus is a controlled vocabulary of 24,767 terms arranged in a hierarchical structure. 
The National Library of Medicine staff use it to tag all of the articles indexed by the MEDLINE 

                                                        
5 PublicationHarvester and S/CGen are publicly available and can be found, along with user manuals, at 
http://www.stellman-greene.com/PublicationHarvester/ and http://www.stellman-greene.com/ScientificDistance/, 
respectively.  
6 The roster is an annual census of all U.S. medical school faculty, where each faculty is linked across yearly cross-
sections by a unique identifier. We have licensed access to the AAMC data for the years 1975 through 2006. 
7 See the online appendix from Azoulay et al. (2010) for details on the matching procedure, preventing inclusion of 
spurious coauthors, and the approach to addressing measurement error when tallying the publication output of 
coauthors with common names.  
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database.8 The “Related Articles” function in PubMed is use to harvest journal articles that are 
intellectually proximate to the elite scientists’ own papers.9 The authors of those articles are then 
classified as non-collaborating peers if they have never coauthored with the elite scientist of 
interest. More details on this approach can be found in Appendix C. 
 
Geography: Our measure of elite scientist location is based on the detailed biographical 
information we have for this sample, as detailed above. Collaborating and non-collaborating 
peers are mapped in physical space using affiliation data from the aforementioned Faculty Roster 
of the Association of American Medical Colleges (AAMC). Our measure of geography 
distinguishes between peers that are geographically close (less than 50 miles apart) and those that 
are distant (more than 50 miles apart).  
 
In Table 2, we present descriptive statistics comparing the peer environment for scientists in the 
sample who experience at least one professional transition (move) over their career to those who 
do not. The collaboration networks appear to be quite important. Movers have fewer and less 
accomplished local collaborators and greater and more accomplished distant collaborators than 
those that do not move. Interestingly, the quantity and quality of non-collaborating peers is lower 
for movers than stayers, regardless of whether they are local or distant.  

 
II.C. Age of children 
 
For each scientist in our sample, we hand-collected information on the number of children they 
had, each child’s gender, and most importantly, each child’s year of birth. To find this 
information, we obtained the names of the scientist’s children from their “Who’s Who” profile 
and in some cases from obituaries for the deceased. Using this data along with location 
information, we obtained the age of these children by cross-referencing information gathered 
from web-searches and online databases of public records (e.g. People Search Now). In the end, 
this yielded a subsample of slightly more than 3,000 elite scientists for whom age of children 
information is available.  
  
Table 3 compares the sample of scientists for whom we have obtained information about their 
children to those for whom we have not. The former group is significantly older than the latter, 
an artifact of our reliance on public records to obtain age of children, much of which comes from 
databases of public records, such as state driver’s license records, which necessarily oversamples 
scientists old enough to have kids that make them eligible to appear in these public records. 
While these older scientists have more publications and career NIH funding, normalizing by age 
suggests that they are statistically indistinguishable. The higher level of female scientists in the 
sample without children information may also be a reflection of this age difference across 
samples, as female entry into STEM fields has steadily climbed in recent decades (Ceci, Ginther, 
Kahn, and Williams, 2015). Interestingly, the composition of the sample without children 

                                                        
8 The National Library of Medicine’s explicit statement of purpose for these MeSH terms is to “…provide a 
reproducible partition of concepts relevant to biomedicine for the purpose of organizing knowledge and 
information.”  
9To facilitate the harvesting of PubMed-related records on a large scale, we have developed an open-source software 
tool that queries PubMed and PMRA and stores the retrieved data in a MySQL database. The software is available 
for download at http://www.stellman-greene.com/FindRelated/. 
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information is more heavily skewed toward PhDs. While all the analyses that follow will control 
for these demographic characteristics, caution should, nonetheless, be exercised when 
generalizing our findings across different populations of scientists. 
 
III. Empirical Approach 
 
Estimating the determinants of faculty mobility behavior requires a statistical framework that 
accommodates the discrete nature of the event. Since our interest lies in analyzing the dynamics 
associated with the timing of mobility in scientific careers, we employ discrete-time hazard rate 
models (Myers, Hanky and Mantel 1973, Alison 1982). The use of discrete-time models (as 
opposed to continuous-time models such as the Cox) is motivated by the fact that our failure time 
variable displays multiple events within each time period. For a researcher i during experience 
interval t, let the discrete time hazard rate of moving to a new academic position located at least 
50 miles away be pit = Pr[Ti=t | Ti ≥ t, Xit], where Ti is the time at which researcher i experiences 
an event and Xit a vector of covariates. We use a logistic regression function to link the hazard 
rate with time and the explanatory covariates: 
 

𝐿𝑛 �
𝑝𝑖𝑡

1 − 𝑝𝑖𝑡
� = 𝛿𝑡 + 𝛽′𝑋𝑖𝑡 

 
where δt is a set of experience interval dummies (in actual fact, a full suite of calendar year 
indicator variables). In practice, we estimate a simple logit of the decision to change employer, 
where the observations corresponding to years subsequent to the mobility event have been 
dropped from the estimation sample.10 Specifically, the vector X above is specified as: 
 

𝑋𝑖𝑡 = 𝛽0 + 𝛽1𝑃𝑅𝑂𝐷𝑖𝑡−1 + 𝛽2𝑃𝐸𝐸𝑅𝑖𝑡−1 + 𝛽3𝐴𝐺𝐸𝐾𝐼𝐷𝑖𝑡−1 + 𝛽4𝑍𝑖 + 𝑓(𝐴𝐺𝐸𝑖𝑡) 
 
Note that approximately ten percent of scientists in our sample experience multiple moves during 
their career. For these scientists, we analyze each job spell separately, such that the move is 
considered an absorbing state for a given mobility spell.11 As such, our dependent variable is a 
binary variable equal to 1 if a scientist moves in a given year and 0 for all years prior to that 
move within the same spell. Because the overwhelming majority of mobility events take place in 
the summer, we adopt the following convention: a scientist is said to move from institution A to 
institution B in calendar year t whenever the actual timing of his move coincided with the 
summer of year t-1.12 
 
The vector PROD includes measures of the productivity of the focal superstar scientist, including 
the stock and recent flow of their publications and NIH funding levels. The vector PEER 
                                                        
10 Appendix D replicates this analysis using a standard ordinary least squares (OLS) framework. One advantage of 
the OLS framework is that we are able to include scientist-spell fixed effects, which allows us to isolate the effects 
of within spell changes in covariates on the likelihood of moving, while controlling for all time invariant 
characteristics of scientists (see discussion in Wooldridge, 2010). It is noteworthy that all of our results are very 
similar under this linear specification, with or without fixed effects. 
11 The most itinerant star in our sample has 4 unique job spells during our study period. 
12 This convention is adopted since most academic moves occur during the summer. Moreover, this ensures that our 
measure of the timing of professional transitions corresponds to the timing of the school year for children in our 
sample. 
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includes similar measures for both collaborating and non-collaborating peers as defined above. 
The term f(AGE) corresponds to a flexible function of the elite scientist’s career age in order to 
capture life-cycle changes in the propensity to move that are not driven by the age of one’s 
children. We also include demographic controls (Z) for gender and degree type (MD or PhD).  
All models include vintage fixed effects to account for differences across cohorts and a full set of 
year effects. Since we have 1,051 scientists in the sample with multiple moves, and each job 
spell is included in the sample separately, we cluster the standard errors at the scientist level.  
 
Given our interest in the high social costs of moving children of high school age, we employ a 
variety of measures of AGEKID to probe this effect. In particular, we create variables that 
correspond to the case where one’s oldest child is 12 or 13 years old and where one’s youngest 
child is 18 or 19 years old. The former corresponds to the last window for a scientist to move 
before they have a child in high school. The latter corresponds to an ‘empty nest’ period in which 
all children should have graduated high school, regardless of whether they actually leave the 
nest. Alternative specifications include a simple measure of the number of children in high 
school and an indicator for having at least one child in high school.  
 
Figures 2 and 3 underscore the important, and previously unmeasured, role that children play in 
scientist mobility. Figure 2 reveals a sizable spike in distant moves just before children in the 
household enter high school. Figure 3 reveals a similar spike just after all children in the 
household have completed high school. In both figures, the relationship between age of children 
and local moves is remarkably flat, suggesting that this is not simply a story about scientist age. 
The robustness of this relationship to more sophisticated statistical scrutiny that addresses 
potential confounders as well as the role of professional factors in shaping moves is examined in 
the next section. 
 
IV. Results 
 
Our core results on the demographic and professional factors that influence the mobility of 
scientists are presented in Table 4. Consistent with related work in the literature (Zucker, Darby 
and Torero, 2002; Coupé, Smeets and Warzynski, 2006; Lenzi, 2009; Ganguli, 2015), we find 
that scientists who are more productive in terms of publications are more likely to move. 
Interesting, we find that recent NIH funding serves as a deterrent to moving. This comports with 
popular accounts of the high transaction costs associated with moving federal funding across 
institutions (Berstein, 2014). As expected, scientists are less likely to move when the quality of 
the peer environment near their home institution is high and more likely to move when the 
quality of the peer environment at distant institutions is high. Importantly, given the focus on 
family factors later in the analysis, all results are nearly identical when we restrict our attention 
to the sample of scientists with available age of children information.  
 
Table 5 repeats our analysis of the professional determinants of moving from Table 4, but for 
local moves (those within a 50 mile radius of the origin institution). The predictors of mobility 
are largely similar across samples, with two notable exceptions. First, female scientists are more 
likely to make local moves. Second, own-productivity plays a far more limited role in shaping 
local moves than it did in distant ones.  
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Our results based on an analysis of the family determinants of moving begins in Table 6. This 
table confirms the descriptive relationship illustrated in Figures 1 and 2. In Column 1 we see that 
having a child who is finishing middle school (12 or 13 years old) increases the likelihood of 
moving by 0.8 percentage points. In column 2, we see that when the youngest child has just 
completed high school, the propensity to move also increases, in this case also by 0.8 percentage 
points. Our results are very similar when we include both of these measures in the same 
regression. Using a simple indicator variable for having a child in school or the number of 
children in school illustrates the opposite side of this picture. Having children in high school 
constrains the mobility of scientists.  
 
Table 7 presents results for the same regression as those in Table 6, but for local movers only 
(moves within the 50 mile radius). The picture here is very different. Having children in high 
school has no effect on moving and thus we see no corresponding bump in moves when the 
youngest child in the household is beyond high school age. While we do see a small and 
marginally significant effect when the oldest child in the household is of middle-school age, it is 
one-third the size of the effect we see for distant moves and in the opposite direction. Overall, 
these results are consistent with the notion that a move to an institution within 50 miles can avoid 
major disruptions to children’s social networks and school choices.  
 
Taken as a whole, the results in Tables 6 and 7 suggest that scientists, and in this case even elite 
superstar scientists, find it costly to disrupt the social networks of their children. They either 
postpone professional moves until after children leave high school or interestingly, anticipate 
these constraints by increasing moves just before their oldest child enters high school.  
  
All of the analyses thus far have treated all moves as equivalent, but heterogeneity in the rank of 
institutions may mask important insights about the determinants of mobility. The drivers of 
moves to higher-ranked institutions may be very different than those that contribute to lateral or 
lesser-ranked institutions. In Tables 8 and 9 we examine how professional and family factors 
differentially affect mobility across different types of moves. To examine this, we categorize 
moves based on the differences between the quality of their origin and destination institutions, 
where our measure of quality is based on an institutions rank in percentiles of total NIH funding 
received (per grantee) in a given year. We define scientists as moving “up” if they moved to an 
institution that was at least 10 percentiles higher in the ranking of NIH funding than their prior 
institution. A move “down” is symmetrically defined as one where the new institution was at 
least 10 percentiles lower in the ranking. 
 
Table 8 presents our results for the professional determinants of moves separately for those 
moving up (columns 1 and 3) and those moving down (columns 2 and 4). Note that in these 
regressions, scientists who moved to an institution that was less than 10 percentiles different (i.e. 
lateral movers) and scientist who moved the ‘other way’ are excluded from the regression such 
that the comparison is relative to stayers. We also include the percentile of the origin institution 
as a control since the direction of moves for those beginning at either end of the quality ladder 
will be partially constrained. The results suggest that the professional drivers of scientific 
mobility are insensitive to the type of move, lending support to the notion that all moves in this 
sample of elite scientists are ‘voluntary’ and driven by a desire to locate near higher quality 
peers, irrespective of broader institutional quality. 
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In Table 9, we repeat the analysis from the previous table with a focus on the family 
determinants of moves. Here we see that children constrain mobility for both types of moves, but 
the effect of having at least one child in high school is somewhat larger for downward moves. 
Thus, it appears that the greater reward from moving to a better institution partially offsets the 
social costs associated with uprooting one’s family.  
 
Appendix D repeats the analysis corresponding to Tables 4-9 using a linear probability (OLS) 
and fixed effects (where appropriate) framework. Reassuringly, we find that all key results are 
largely unchanged. 
 
VI. Conclusion 
 
In this paper, we examine the factors that shape the mobility of elite academics within the life 
sciences, including individual productivity measures and for the first time, measures of the peer 
environment and family determinants. As in previous literature, we find that prolific scientists 
are more likely to move, a likely reflection of the ‘demand’ for these scientists. We also provide 
new evidence on the ‘supply’ side, demonstrating that moves are driven in part by the scope for 
improvement in the quality of one’s peers as a result of the move. We also highlight two 
significant constraints on moving. Elite scientists are less likely to move when they have recently 
received NIH funding, perhaps due to the high costs of transferring funds, equipment, and 
personnel to a new institution. Strikingly, we show that family structure is also important. 
Scientists appear to be unwilling to move when their children are in high school, suggesting that 
even elite scientists find it costly to disrupt the social networks of their children and take these 
costs into account when making career decisions.  
 
Economists have long worried that labor market frictions can lead to job lock and foregone 
opportunities to increase social welfare. Set against that backdrop, the impacts of NIH funding 
on mobility are particularly interesting. If the purported benefit of federal research support is to 
generate new discoveries and push the frontiers of science, it is ironic that it also appears to limit 
scientists’ ability to locate themselves in environments where that is most likely to happen. This 
is a particularly germane concern in the life sciences where public funding is the lifeblood of 
academic life scientists. Thus, it appears that the designation of policies and guidelines that 
increase the portability of research funding support can help further the mission of the NIH, and 
perhaps other public research funding agencies as well.  
 
Our novel findings regarding the role of peer productivity in shaping mobility illustrate the 
challenges inherent in developing causal estimates of the impacts of mobility on knowledge 
production. Since mobility decisions depend upon the quality of scholars at old and new 
institutions, it is exceedingly difficult to infer the impacts that a scholar exerts on the 
productivity of his or her newly joined colleagues or those left behind. Departures may be a sign 
of intellectual decay even before the moving scientist left. Those s/he joined may have already 
been destined for greatness. In this context, our age of children results may contain a silver 
lining. Since scientists are reluctant to move when they have children in high school, and it is 
hard to imagine that they anticipate these costs more than a decade earlier when they decide to 
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conceive, age of children offers a potential instrumental variable for studying the causal impacts 
of moving. This is an area ripe for exploration in future work. 
 
The analysis in this paper has raised as many questions as it has answered. What underlies the 
surprising funding results? Is mobility constrained by something inherent in the contract between 
the NIH and the scientist’s institution or might the movement of personnel and equipment be the 
larger concern? On family factors, what else matters for moving? Are women, too few in our 
elite sample to study, more impacted by those factors than men? How should all of this change 
the design of institutional incentives, particularly those that explicitly grant promotion and tenure 
based on funding histories? Together, these questions comprise a future research agenda.  
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Table 1. Summary Statistics of Stayers and Movers: Demographic and Individual Productivity 
     
 Stayers 

Mean 
 

Std. Dev. 
Movers 
Mean 

 
Std. Dev. 

Female 0.156 0.363 0.132 0.338 
MD 0.335 0.472 0.335 0.472 
PhD 0.566 0.496 0.570 0.495 
MD/PhD 0.098 0.297 0.094 0.292 
Career Age 32.854 9.770 33.917 8.444 
With Kids info 0.305 0.461 0.334 0.472 
 No. of Kids 2.484 1.120 2.512 1.108 
School NIH Funding 138,992,401 115,394,909 127,110,155 107,733,856 
Individual Productivity     
 Career Publications 137.051 104.468 147.302 106.705 
 Career JIF-Weighted 
Pubs 

591.85 537.92 614.53 544.05 

 Career Patents 1.982 6.688 1.771 5.052 
 Career NIH Amount 14,968,044 21,276,284 15,715,106 17,598,271 
Observations 6,545  3,459  
Notes: For each scientist in the sample, we reconstruct their career from the time they obtained their first position as independent investigators 
(typically after a postdoctoral fellowship) until 2006. The numbers presented in this table are based on the final year the scientist appears in the 
dataset. See section IIA for more information about the sample construction and sources of data. We identify movers by extracting information on 
institutions from biographical records and then calculate geographic distance between the zip codes of the institutions. The stayers include 
scientists who do not move or only move locally (within 50 miles). We limit our empirical attention to transitions that are at least 50 miles apart to 
ensure that the career transition led the scientists to change their place of residence. Stars in the last column indicate the results of t-tests for the 
equality of means, ** p < 0.05, *** p < 0.01. 
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Table 2. Summary Statistics of Stayers and Movers: Peers Measures 
     
 Stayers 

Mean 
 

Std. Dev. 
Movers 
Mean 

 
Std. Dev. 

Collaborators, Number     
 Nb. of Peers, Colocated 5.374 5.858 3.037 4.081 
 Nb. of Peers, Close 3.748 5.608 2.032 3.565 
 Nb. of Peers, Distant 11.949 10.732 13.214 11.906 
Non-collaborating Peers, Number     
 Nb. of Peers, Colocated 3.208 4.046 2.500 3.612 
 Nb. of Peers, Close 7.875 10.272 5.922 8.656 
 Nb. of Peers, Distant 122.645 88.328 107.232 78.410 
Collaborators’ Productivity     
 Pubs, Colocated 23.264 32.175 12.267 21.639 
 Pubs, Close 14.876 30.786 6.958 16.667 
 Pubs, Distant 57.206 70.084 58.299 69.843 
Non-collaborating Peers Prod.     
 Pubs, Colocated 14.888 23.895 11.126 21.263 
 Pubs, Close 32.775 49.253 23.642 40.791 
 Pubs, Distant 494.192 372.864 408.378 324.952 
Observations 6,545  3,459  
Notes: The numbers presented in this table are based on the final year the scientist appears in the dataset. See section IIB for more information 
about the measures of the peer environment and the sources of data. We identify movers by extracting information on institutions from 
biographical records and then calculate geographic distance between the zip codes of the institutions. The stayers include scientists who do not 
move or only move locally (within 50 miles). We limit our empirical attention to transitions that are at least 50 miles apart to ensure that the career 
transition led the scientists to change their place of residence. Stars in the last column indicate the results of t-tests for the equality of means, *** p 
< 0.01. 
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Table 3. Summary Statistics: Stars with and without Kids Info 
      
 No Kids Info 

Mean 
 

Std. Dev. 
Kids Info 

Mean 
 

Std. Dev. 
Difference 

Female 0.168 0.374 0.102 0.303 0.066*** 
MD 0.297 0.457 0.418 0.493 -0.121*** 
PhD 0.607 0.489 0.483 0.500 0.124*** 
MD/PhD 0.096 0.294 0.098 0.298 -0.002 
Career Age 31.227 9.346 37.553 7.744 -6.326*** 
Career Publications 133.012 98.487 157.065 117.250 -24.053*** 
Career NIH Amount 14,143,602 19,867,100 17,577,908 20,350,240 -3,434,305*** 
Career Pubs/Age 4.363 3.018 4.294 3.203 0.069 
Career NIH/Age 446,756 614,629 467,250 527,525 -20,494 
Observations 6,850  3,154   
Notes: The numbers presented in this table are based on the final year the scientist appears in the dataset. See section IIC for details on how the 
information on children was collected. Section IIA provides more information about the construction of the demographic and productivity 
measures presented. Stars in the last column indicate the results of t-tests for the equality of means, *** p < 0.01. 
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Table 4. Determinants of Mobility: Demographic, Productivity & Peer Measures 
  Movers + 

Stayers  
   Subsample 

w/Kid Info  
 (1) (2) (3) (4) (5) 
Demographics      
 Female -0.001 

(0.001) 
-0.001 
(0.001) 

-0.000 
(0.001) 

-0.000 
(0.001) 

-0.004 
(0.003) 

 PhD (MD omitted) -0.001 
(0.001) 

-0.004** 
(0.001) 

-0.007** 
(0.001) 

-0.007** 
(0.001) 

-0.009** 
(0.002) 

 MD/PhD -0.001 
(0.002) 

-0.005** 
(0.002) 

-0.006** 
(0.002) 

-0.005** 
(0.002) 

-0.005+ 
(0.003) 

Productivity Measures      
 Ln(Pubs_t-1)  

 
-0.001 
(0.001) 

0.001 
(0.001) 

0.000 
(0.001) 

-0.001 
(0.001) 

 Ln(Stock Pubs_t-2)  
 

0.003** 
(0.001) 

0.005** 
(0.001) 

0.004** 
(0.001) 

0.006** 
(0.001) 

 Ln(NIH Funding_t-1)  
 

-0.001** 
(0.000) 

-0.001** 
(0.000) 

-0.001** 
(0.000) 

-0.001** 
(0.000) 

 Ln(Stock NIH  
 Funding_t-2) 

 
 

0.001** 
(0.000) 

0.001** 
(0.000) 

0.001** 
(0.000) 

0.000+ 
(0.000) 

Collaborators      
 Ln(Pubs), Colocated   

 
 
 

-0.004** 
(0.000) 

-0.002** 
(0.000) 

-0.001* 
(0.001) 

 Ln(Pubs), Close   
 

 
 

-0.002** 
(0.000) 

-0.002** 
(0.000) 

-0.002* 
(0.001) 

 Ln(Pubs), Distant   
 

 
 

0.001** 
(0.000) 

0.001** 
(0.000) 

0.001+ 
(0.001) 

Non-collaborating Peers      
 Ln(Pubs), Colocated  

 
 
 

 
 

-0.007** 
(0.000) 

-0.006** 
(0.001) 

 Ln(Pubs), Close  
 

 
 

 
 

 
 

-0.000 
(0.000) 

-0.000 
(0.000) 

 Ln(Pubs), Distant  
 

 
 

 
 

 
 

0.005** 
(0.001) 

0.004** 
(0.001) 

Nb. of Observations 190,266 174,502 174,465 174,465 61,907 
Nb. of Job Transitions 10,289 10,289 10,289 10,289 3,298 
Nb. of Scientists 9,389 9,389 9,389 9,389 2,960 
Notes: The dependent variable is a binary variable that takes on a value one in the year we observe the 
elite scientist moving to a new academic position located at least 50 miles away. Estimation is by logit 
and marginal effects are reported. All specifications include full age, vintage category, and year fixed 
effects. Robust standard errors are in parentheses, clustered at the individual level. See Section II for a full 
description of how the sample and variables were constructed. + p < 0.10, * p < 0.05, ** p < 0.01 
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Table 5. Determinants of LOCAL Mobility: Demographic, Productivity & Peer Measures 
 Local 

Movers + 
Stayers  

  
 

 Subsample 
w/Kid Info  

 (1) (2) (3) (4) (5) 
Demographics      
 Female 0.003** 

(0.001) 
0.003** 
(0.001) 

0.003** 
(0.001) 

0.002** 
(0.001) 

0.002+ 
(0.001) 

 PhD (MD omitted) -0.002** 
(0.000) 

-0.002** 
(0.001) 

-0.002** 
(0.001) 

-0.002** 
(0.001) 

-0.003** 
(0.001) 

 MD/PhD -0.002+ 
(0.001) 

-0.002* 
(0.001) 

-0.002* 
(0.001) 

-0.002* 
(0.001) 

-0.002 
(0.002) 

Productivity Measures      
 Ln(Pubs_t-1)  

 
-0.000 
(0.000) 

-0.000 
(0.000) 

-0.000 
(0.000) 

0.001 
(0.001) 

 Ln(Stock Pubs_t-2)  
 

0.000 
(0.000) 

0.000 
(0.000) 

0.001 
(0.000) 

0.002* 
(0.001) 

 Ln(NIH Funding_t-1)  
 

-0.000* 
(0.000) 

-0.000* 
(0.000) 

-0.000* 
(0.000) 

-0.000** 
(0.000) 

 Ln(Stock NIH  
 Funding_t-2) 

 
 

0.000 
(0.000) 

0.000 
(0.000) 

0.000 
(0.000) 

-0.000 
(0.000) 

Collaborators      
 Ln(Pubs), Colocated   

 
 
 

-0.001** 
(0.000) 

-0.001** 
(0.000) 

-0.001 
(0.000) 

 Ln(Pubs), Close   
 

 
 

0.002** 
(0.000) 

0.000+ 
(0.000) 

0.001* 
(0.000) 

 Ln(Pubs), Distant   
 

 
 

-0.000+ 
(0.000) 

-0.000 
(0.000) 

-0.001* 
(0.000) 

Non-collaborating 
Peers 

     

 Ln(Pubs), Colocated  
 

 
 

 
 

-0.002** 
(0.000) 

-0.002** 
(0.000) 

 Ln(Pubs), Close  
 

 
 

 
 

 
 

0.003** 
(0.000) 

0.003** 
(0.000) 

 Ln(Pubs), Distant  
 

 
 

 
 

 
 

-0.001** 
(0.000) 

-0.002** 
(0.001) 

Nb. of Observations 154,057 144,113 144,079 144,079 50,161 
Nb. of Job Transitions 6,722 6,722 6,722 6,722 2,061 
Nb. of Scientists 6,637 6,637 6,637 6,637 2,025 
Notes: The dependent variable is a binary variable that takes on a value one in the year we observe the 
elite scientist moving to a new academic position located within 50 miles. Distant movers (scientists 
moving more than 50 miles away) are excluded from this analysis. Estimation is by logit and marginal 
effects are reported. All specifications include full age, vintage category, and year fixed effects. Robust 
standard errors are in parentheses, clustered at the individual level. See Section II for a full description of 
how the sample and variables were constructed. + p < 0.10, * p < 0.05, ** p < 0.01 
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Table 6. Determinants of Mobility: Child Age 
 (1) (2) (3) (4) (5) 
      
Oldest kid 12 or 13 0.008** 

(0.002) 
 
 

0.008** 
(0.002) 

 
 

 
 

Youngest kid 18 or 19  
 

0.008** 
(0.002) 

0.009** 
(0.002) 

 
 

 
 

Number of kids in high school  
 

 
 

 
 

-0.007** 
(0.001) 

 
 

At least one kid in high school  
 

 
 

 
 

 
 

-0.011** 
(0.002) 

Nb. of Observations 61,907 61,907 61,907 61,907 61,907 
Nb. of Job Transitions 3,298 3,298 3,298 3,298 3,298 
Nb. of Scientists 2,960 2,960 2,960 2,960 2,960 
Notes: The dependent variable is a binary variable that takes on a value one in the year we observe the elite scientist moving to a new academic 
position located at least 50 miles away. Estimation is by logit and marginal effects are reported. All specifications include individual productivity 
and peer variables, as well as full age, vintage category, and year fixed effects. Robust standard errors are in parentheses, clustered at the 
individual level. See Section II for a full description of how the sample and variables were constructed. + p < 0.10, * p < 0.05, ** p < 0.01. 
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Table 7. Determinants of LOCAL Mobility: Child Age 
 (1) (2) (3) (4) (5) 
      
Oldest kid 11, 12, or 13 -0.003+ 

(0.001) 
 
 

-0.003+ 
(0.001) 

 
 

 
 

Youngest kid 18, 19, or 20  
 

0.001 
(0.001) 

0.000 
(0.001) 

 
 

 
 

Number of kids in high school  
 

 
 

 
 

0.001 
(0.001) 

 
 

At least one kid in high school  
 

 
 

 
 

 
 

0.001 
(0.001) 

Nb. of Observations 50,161 50,161 50,161 50,161 50,161 
Nb. of Job Transitions 2,061 2,061 2,061 2,061 2,061 
Nb. of Scientists 2,025 2,025 2,025 2,025 2,025 
Notes: The dependent variable is a binary variable that takes on a value one in the year we observe the elite scientist moving to a new academic 
position located within 50 miles. Distant movers (scientists moving more than 50 miles away) are excluded from this analysis. Estimation is by 
logit and marginal effects are reported. All specifications include individual productivity and peer variables, as well as full age, vintage category, 
and year fixed effects. Robust standard errors are in parentheses, clustered at the individual level. See Section II for a full description of how the 
sample and variables were constructed. + p < 0.10, * p < 0.05, ** p < 0.01. 
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Table 8. Moves Up vs. Down: Demographic, Professional Factors 
  
 Moves Up Moves Down 
 (1) (2) 
Demographics   
Female -0.001 

(0.002) 
-0.002 
(0.002) 

PhD -0.004** 
(0.001) 

-0.005** 
(0.001) 

MD/PhD -0.004* 
(0.002) 

-0.002 
(0.002) 

Productivity Measures      
Ln(Pubs_t-1) 0.001 

(0.001) 
0.001 

(0.001) 
Ln(Stk Pubs_t-2) -0.000 

(0.001) 
0.003** 
(0.001) 

Ln(NIH Funding_t-1) -0.000 
(0.000) 

-0.000+ 
(0.000) 

Ln(Stk NIH Funding_t-2) 0.000 
(0.000) 

0.000 
(0.000) 

Collaborators   
 Ln(Pubs), Colocated  -0.001 

(0.000) 
-0.001+ 
(0.000) 

 Ln(Pubs), Close  -0.000 
(0.000) 

-0.001 
(0.000) 

 Ln(Pubs), Distant  0.001 
(0.000) 

-0.000 
(0.000) 

Non-collaborating Peers   
 Ln(Pubs), Colocated -0.002** 

(0.000) 
-0.002** 
(0.000) 

 Ln(Pubs), Close  
 

-0.000 
(0.000) 

-0.000 
(0.000) 

 Ln(Pubs), Distant  
 

0.002** 
(0.001) 

0.002+ 
(0.001) 

Nb. of Observations 38,615 39,415 
Nb. of Job Transitions 1,775 1,947 
Nb. of Scientists 1,773 1,937 
Note: The dependent variable is a binary variable that takes on a value one in the year we observe the elite scientist moving to a 
new academic position located within 50 miles. Moves up or down are based on a ranking of institutions by percentiles of total 
NIH funding received (per grantee). The sample includes scientists who moved to an institution that was 10 percentiles or more 
higher (lower) in the ranking of NIH funding and scientists who did not move. This means that scientists who moved to an 
institution that was less than 10 percentiles different (i.e. lateral movers) and scientists who moved down (up) are excluded. 
Estimation is by logit and marginal effects are reported. All regressions include full age, vintage category, and year fixed effects 
and controls for percentile of origin institution. Robust standard errors are in parentheses, clustered at the individual level. See 
Section II for a full description of how the sample and variables were constructed. + p < 0.10, * p < 0.05, ** p < 0.01 
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Table 9. Moves Up vs. Down: Child Age 
 Moves Up Moves Down 
 (1) (2) (3) (4) 
     
Number of kids in high school -0.0017* 

(0.0007) 
 
 

-0.0020* 
(0.0010) 

 
 

At least one kid in high school  
 

-0.0024* 
(0.0010) 

 
 

-0.0040** 
(0.0012) 

Percentile of Origin Institution -0.0004** 
(0.0000) 

-0.0004** 
(0.0000) 

0.0004** 
(0.0001) 

0.0004** 
(0.0001) 

Nb. of Observations 38,615 38,615 39,415 39,415 
Nb. of Job Transitions 1,775 1,775 1,947 1,947 
Nb. of Scientists 1,773 1,773 1,937 1,937 
Note: The dependent variable is a binary variable that takes on a value one in the year we observe the elite scientist moving to a new academic 
position located within 50 miles. Moves up or down are based on a ranking of institutions by percentiles of total NIH funding received (per 
grantee). The sample includes scientists who moved to an institution that was 10 percentiles or more higher (lower) in the ranking of NIH funding 
and scientists who did not move. This means that scientists who moved to an institution that was less than 10 percentiles different (i.e. lateral 
movers) and scientists who moved down (up) are excluded. Estimation is by logit and marginal effects are reported. All regressions include full 
age, vintage category, and year fixed effects and controls for percentile of origin institution. Robust standard errors are in parentheses, clustered at 
the individual level. See Section II for a full description of how the sample and variables were constructed. + p < 0.10, * p < 0.05, ** p < 0.01 
 
 
 
 
 
 
 



Figure 1. Distance of Moves by Elite Scientists

 
 
Notes: We determine moves by extracting information on institutions from biographical records and then 
calculate geographic distance between the zip codes of the institutions. We limit our empirical attention to 
transitions that are at least 50 miles apart to ensure that the career transition led the scientists to change 
their place of residence. Section II for a full description of how the sample and variables were 
constructed. 
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Figure 2. Age of Children and Mobility: Age of Oldest 

 
Notes: See section IIC for details on how the information on children was collected.  
 
 
Figure 3. Age of Children and Mobility: Age of Youngest

 
Notes: See section IIC for details on how the information on children was collected.  
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Appendix A: Defining Elite Life Scientists  
 
Highly Funded Scientists: Our first data source is the Consolidated Grant/Applicant File 
(CGAF) from the U.S. National Institutes of Health (NIH). This dataset records information 
about grants awarded to extramural researchers funded by the NIH since 1938. Using the 
CGAF and focusing only on direct costs associated with research grants, we compute 
individual cumulative totals for the decades 1977-1986, 1987-1996, and 1997-2006, deflating 
the earlier years by the Biomedical Research Producer Price Index. We also re-compute these 
totals excluding large center grants that usually fund groups of investigators (M01 and P01 
grants). Scientists whose totals lie above the 95th percentile of either distribution constitute our 
first group of elite life scientists. In this group, the least well-funded investigator garnered 
$10.5 million in career NIH funding and the most well-funded received $462.6 million.13 
 
Highly Cited Scientists: Despite the preeminent role of the NIH in the funding of public 
biomedical research, the above indicator of “superstardom” biases the sample towards 
scientists conducting relatively expensive research. We complement this first group with a 
second composed of highly cited scientists identified by the Institute for Scientific Information. 
A Highly Cited listing means that an individual was among the 250 most cited researchers for 
their published articles between 1981 and 1999, within a broad scientific field.14  
 
Top Patenters: We add to these groups academic life scientists who belong in the top 
percentile of the patent distribution among academics – those who were granted 17 patents or 
more between 1976 and 2004.  
 
Members of the National Academy of Science and of the Institute of Medicine: We add to 
these groups academic life scientists who were elected to the National Academy of Science or 
the Institute of Medicine between 1970 and 2013.  
 
MERIT Awardees of the NIH: Initiated in the mid-1980s, the MERIT Award program 
extends funding for up to 5 years (but typically 3 years) to a select number of NIH-funded 
investigators …”who have demonstrated superior competence, outstanding productivity during 
their previous research endeavors and are leaders in their field with paradigm-shifting ideas.” 
The specific details governing selection vary across the component institutes of the NIH, but 
the essential feature of the program is that only researchers holding an R01 grant in its second 
or later cycle are eligible. Further, the application must be scored in the top percentile in a 
given funding cycle.  
 
Former and Current Howard Hughes Medical Investigators (HHMIs): Every three years, 
the Howard Hughes Medical Institute selects a small cohort of mid-career biomedical scientists 

                                                        
13 We perform a similar exercise for scientists employed by the intramural campus of the NIH. These scientists 
are not eligible to receive extramural funds, but the NIH keeps records of the number of “internal projects" each 
intramural scientist leads. We include in the elite sample the top five percentiles of intramural scientists according 
to this metric.  
14 The relevant scientific fields in the life sciences are microbiology, biochemistry, psychiatry/psychology, 
neuroscience, molecular biology & genetics, immunology, pharmacology, and clinical medicine.  
 



 26 

with the potential to revolutionize their respective subfields. Once selected, HHMIs continue to 
be based at their institutions, typically leading a research group of 10 to 25 students, 
postdoctoral associates and technicians. Their appointment is reviewed every five years, based 
solely on their most important contributions during the cycle.15  
 
Early Career Prize Winners: We also included winners of the Pew, Searle, Beckman, Rita 
Allen, and Packard scholarships for the years 1981 through 2000. Every year, these charitable 
foundations provide seed funding to between 20 and 40 young academic life scientists. These 
scholarships are the most prestigious accolades that young researchers can receive in the first 
two years of their careers as independent investigators.  
 

                                                        
15 See Azoulay et al. (2011) for more details and an evaluation of this program.  
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Appendix B: Measuring Publication Data  
 
The source of our publication data is PubMed, a bibliographic database maintained by the U.S. 
National Library of Medicine that is searchable on the web at no cost.16 PubMed contains over 
14 million citations from 4,800 journals published in the United States and more than 70 other 
countries from 1950 to the present. The subject scope of this database is biomedicine and 
health, broadly defined to encompass those areas of the life sciences, behavioral sciences, 
chemical sciences, and bioengineering that inform research in health-related fields. In order to 
effectively mine this publicly available data source, we designed PubHarvester, an open-source 
software tool that automates the process of gathering publication information for individual life 
scientists (see Azoulay et al. 2006 for a complete description of the software). PubHarvester is 
fast, simple to use, and reliable. Its output consists of a series of reports that can be easily 
imported by statistical software packages.  
 
This software tool does not obviate the two challenges faced by empirical researchers when 
attempting to accurately link individual scientists with their published output. The first relates 
to what one might term “Type I Error,” whereby we mistakenly attribute to a scientist a journal 
article actually authored by a namesake; The second relates to “Type II Error,” whereby we 
conservatively exclude from a scientist’s publication roster legitimate articles:  
 
Namesakes and Popular Names: PubMed does not assign unique identifiers to the authors of 
the publications they index. They identify authors simply by their last name, up to two initials, 
and an optional suffix. This makes it difficult to unambiguously assign publication output to 
individual scientists, especially when their last name is relatively common.  
 
Inconsistent Publication Names: The opposite danger, that of recording too few publications, 
also looms large, since scientists are often inconsistent in the choice of names they choose to 
publish under. By far the most common source of error is the haphazard use of a middle initial. 
Other errors stem from inconsistent use of suffxes (Jr., Sr., 2nd, etc.), or from multiple 
patronyms due to changes in spousal status.  
 
To deal with these serious measurement problems, we opted for a labor-intensive approach: the 
design of individual search queries that relies on relevant scientific keywords, the names of 
frequent collaborators, journal names, as well as institutional affiliations. We are aided in the 
time-consuming process of query design by the availability of a reliable archival data source, 
namely, these scientists’ CVs and biosketches. PubHarvester provides the option to use such 
custom queries in lieu of a completely generic query (e.g, “azoulay p”[au] or “graff zivin 
js”[au]).  
 
As an example, one can examine the publications of Scott A. Waldman, an eminent 
pharmacologist located in Philadelphia, PA at Thomas Jefferson University. Waldman is a 
relatively frequent name in the United States (with 208 researchers with an identical patronym 
in the AAMC Faculty Roster); the combination “waldman s” is common to 3 researchers in the 
same database. A simple search query for “waldman sa”[au] OR “waldman s”[au] returns 377 

                                                        
16 http://pubmed.gov/ 
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publications at the time of this writing. However, a more refined query, based on Professor 
Waldman’s biosketch returns only 256 publications.17  
 
The above example also makes clear how we deal with the issue of inconsistent publication 
names. PubHarvester gives the end-user the option to choose up to four PubMed-formatted 
names under which publications can be found for a given researcher. For example, Louis J. 
Tobian, Jr. publishes under “tobian l”, “tobian l jr”, and “tobian lj”, and all three names need to 
be provided as inputs to generate a complete publication listing. Furthermore, even though 
Tobian is a relatively rare name, the search query needs to be modified to account for these 
name variations, as in (“tobian l”[au] OR “tobian lj”[au]).  
 

                                                        
17 (((("waldman sa"[au] NOT (ether OR anesthesia)) OR ("waldman s"[au] AND (murad OR philadelphia[ad] OR 
west point[ad] OR wong p[au] OR lasseter kc[au] OR colorectal))) AND 1980:2013[dp]) 
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Appendix C: Defining Peers - PubMed Related Citations Algorithm [PMRA]  
 
Traditionally, it has been very difficult to assign to individual scientists, or articles, a fixed 
address in “idea space,” but such a measure is critical in order to meaningfully assess the 
quality of peer environments at origin and potential destination institutions and thus the push 
and pull of match quality as a driver of moving. 
 
This challenge is met here by the use of the PubMed Related Citations Algorithm [PMRA], a 
probabilistic, topic-based model for content similarity that underlies the \related articles” 
search feature in PubMed. This database feature is designed to help a typical user search 
through the literature by presenting a set of records topically related to any article returned by a 
PubMed search query.18 To assess the degree of intellectual similarity between any two 
PubMed records, PMRA relies crucially on MeSH keywords. MeSH is the National Library of 
Medicine’s [NLM] controlled vocabulary thesaurus. It consists of sets of terms arranged in a 
hierarchical structure that permit searching at various levels of specificity. There are 27,149 
descriptors in the 2013 MeSH edition. Almost every publication in PubMed is tagged with a 
set of MeSH terms (between 1 and 103 in the current edition of PubMed, with both the mean 
and median approximately equal to 11). NLM’s professional indexers are trained to select 
indexing terms from MeSH according to a specific protocol, and consider each article in the 
context of the entire collection (Bachrach and Charen 1978; Neveol et al. 2010). What is key 
for our purposes is that the subjectivity inherent in any indexing task is confined to the MeSH 
term assignment process and does not involve the articles’ authors.19  
 
Using the MeSH keywords as input, PMRA essentially defines a distance concept in idea space 
such that the proximity between a source article and any other PubMed-indexed publication 
can be assessed. The following paragraphs were extracted from a brief description of PMRA:  
 
The neighbors of a document are those documents in the database that are the most similar to 
it. The similarity between documents is measured by the words they have in common, with 
some adjustment for document lengths. To carry out such a program, one must first define 
what a word is. For us, a word is basically an unbroken string of letters and numerals with at 
least one letter of the alphabet in it. Words end at hyphens, spaces, new lines, and punctuation. 
A list of 310 common, but uninformative, words (also known as stopwords) are eliminated from 
processing at this stage. Next, a limited amount of stemming of words is done, but no thesaurus 
is used in processing. Words from the abstract of a document are classified as text words. 
Words from titles are also classified as text words, but words from titles are added in a second 
time to give them a small advantage in the local weighting scheme. MeSH terms are placed in 
a third category, and a MeSH term with a subheading qualifier is entered twice, once without 
the qualifier and once with it. If a MeSH term is starred (indicating a major concept in a 
document), the star is ignored. These three categories of words (or phrases in the case of 

                                                        
18 Lin and Wilbur (2007) report that one fifth of “non-trivial” browser sessions in PubMed involve at least one 
invocation of PMRA. 
19 This is a slight exaggeration: PMRA also makes use of title and abstract words to determine the proximity of 
any two pairs of articles in the intellectual space. These inputs are obviously selected by authors, rather than by 
NLM staff. However, neither the choice of MeSH keywords nor the algorithm depends on cited references 
contained in publications. 
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MeSH) comprise the representation of a document. No other fields, such as Author or Journal, 
enter into the calculations.  
 
Having obtained the set of terms that represent each document, the next step is to recognize 
that not all words are of equal value. Each time a word is used, it is assigned a numerical 
weight. This numerical weight is based on information that the computer can obtain by 
automatic processing. Automatic processing is important because the number of different 
terms that have to be assigned weights is close to two million for this system. The weight or 
value of a term is dependent on three types of information: 1) the number of different 
documents in the database that contain the term; 2) the number of times the term occurs in a 
particular document; and 3) the number of term occurrences in the document. The first of these 
pieces of information is used to produce a number called the global weight of the term.  
 
The global weight is used in weighting the term throughout the database. The second and third 
pieces of information pertain only to a particular document and are used to produce a number 
called the local weight of the term in that specific document. When a word occurs in two 
documents, its weight is computed as the product of the global weight times the two local 
weights (one pertaining to each of the documents). The global weight of a term is greater for 
the less frequent terms. This is reasonable because the presence of a term that occurred in 
most of the documents would really tell one very little about a document. On the other hand, a 
term that occurred in only 100 documents of one million would be very helpful in limiting the 
set of documents of interest. A word that occurred in only 10 documents is likely to be even 
more informative and will receive an even higher weight.  
 
The local weight of a term is the measure of its importance in a particular document. 
Generally, the more frequent a term is within a document, the more important it is in 
representing the content of that document. However, this relationship is saturating, i.e., as the 
frequency continues to go up, the importance of the word increases less rapidly and finally 
comes to a finite limit. In addition, we do not want a longer document to be considered more 
important just because it is longer; therefore, a length correction is applied.  
 
The similarity between two documents is computed by adding up the weights of all of the terms 
the two documents have in common. Once the similarity score of a document in relation to 
each of the other documents in the database has been computed, that document’s neighbors 
are identified as the most similar (highest scoring) documents found. These closely related 
documents are pre-computed for each document in PubMed so that when one selects Related 
Articles, the system has only to retrieve this list. This enables a fast response time for such 
queries.20 
 
The algorithm uses a cut-off rule to determine the number of related citations associated with a 
given source article. First, the 100 most related records by similarity score are returned. 
Second, a reciprocity rule is applied to this list of 100 records: if Publication A is related to 

                                                        
20 Available at http://ii.nlm.nih.gov/MTI/related.shtml 
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Publication B, Publication B must also be related to publication A. As a result, the set of 
related citations for a given source article may contain many more than 100 publications.21 
 
Given our set of source articles, we delineate the scientific fields to which they belong by 
focusing on the set of articles returned by PMRA that satisfy three additional constraints: (i) 
they are original articles (as opposed to editorials, comments, reviews, etc.); (ii) they were 
published in or before 2006 (the end of our observation period); and (iii) they appear in 
journals indexed by the Web of Science (so that follow-on citation information can be 
collected).  
 
To summarize, PMRA is a modern implementation of co-word analysis, a content analysis 
technique that uses patterns of co-occurrence of pairs of items (i.e., title words or phrases, or 
keywords) in a corpus of texts to identify the relationships between ideas within the subject 
areas presented in these texts (Callon et al. 1989; He 1999). One long-standing concern among 
practitioners of this technique has been the “indexer effect” (Whittaker 1989). Clustering 
algorithms such as PMRA assume that the scientific corpus has been correctly indexed. But 
what if the indexers who chose the keywords brought their own “conceptual baggage” to the 
indexing task, so that the pictures that emerge from this process are more akin to their 
conceptualization than to those of the scientists whose work it was intended to study?  
 
Indexer effects could manifest themselves in three distinct ways. First, indexers may have 
available a lexicon of permitted keywords which is itself out of date. Second, there is an 
inevitable delay between the publication of an article and the appearance of an entry in 
PubMed. Third, indexers, in their efforts to be helpful to users of the database, may use 
combinations of keywords that reflect the conventional views of the field. The first two 
concerns are legitimate, but probably have only a limited impact on the accuracy of the 
relationships between articles that PMRA deems related. This is because the NLM continually 
revises and updates the MeSH vocabulary, precisely in an attempt to neutralize keyword 
vintage effects. Moreover, the time elapsed between an article’s publication and the indexing 
task has shrunk dramatically, though time lag issues might have been a first-order challenge 
when MeSH was created, back in 1963. The last concern strikes us as being potentially more 
serious; a few studies have asked authors to validate ex post the quality of the keywords 
selected by independent indexers, with generally encouraging results (Law and Whittaker 
1992). Inter-indexer reliability is also very high (Wilbur 1998).  

 

                                                        
21 The effective number of related articles returned by PMRA varies between 58 and 2,097 in the sample of 3,074 
source articles published by the 452 star scientists in the five years preceding their death. The mean is 185 related 
articles, and the median 141. 



32 

Appendix D: OLS and Fixed Effect Results 
 
In this Appendix, we reproduce all of our main results using a linear probability (OLS) and fixed 
effects (where appropriate) framework as described in Section III. They are labeled Tables A4 – 
A9 to mirror those labeled Tables 4 – 9 in the main body of the paper. 
 
Table A4. Determinants of Mobility: Demographic, Productivity & Peer Measures (OLS) 
  Movers + 

Stayers 
[N=9,389] 

   Subsample 
w/Kid Info 
[N=2,960] 

 (1) (2) (3) (4) (5) 
Demographics      
 Female -0.001 

(0.001) 
-0.001 
(0.001) 

-0.000 
(0.001) 

-0.000 
(0.001) 

-0.004 
(0.002) 

 PhD (MD omitted) -0.001 
(0.001) 

-0.004** 
(0.001) 

-0.006** 
(0.001) 

-0.006** 
(0.001) 

-0.007** 
(0.002) 

 MD/PhD -0.001 
(0.001) 

-0.004** 
(0.002) 

-0.005** 
(0.002) 

-0.004* 
(0.002) 

-0.004 
(0.003) 

Productivity Measures      
 Ln(Pubs_t-1)  

 
-0.000 
(0.001) 

0.001 
(0.001) 

0.001 
(0.001) 

-0.000 
(0.001) 

 Ln(Stock Pubs_t-2)  
 

0.003** 
(0.001) 

0.005** 
(0.001) 

0.004** 
(0.001) 

0.005** 
(0.001) 

 Ln(NIH Funding_t-1)  
 

-0.001** 
(0.000) 

-0.001** 
(0.000) 

-0.001** 
(0.000) 

-0.001** 
(0.000) 

 Ln(Stock NIH  
 Funding_t-2) 

 
 

0.001** 
(0.000) 

0.001** 
(0.000) 

0.000** 
(0.000) 

0.000 
(0.000) 

Collaborators      
 Ln(Pubs), Colocated   

 
 
 

-0.004** 
(0.000) 

-0.002** 
(0.000) 

-0.001* 
(0.001) 

 Ln(Pubs), Close   
 

 
 

-0.002** 
(0.000) 

-0.002** 
(0.000) 

-0.001* 
(0.001) 

 Ln(Pubs), Distant   
 

 
 

0.002** 
(0.000) 

0.001** 
(0.000) 

0.001* 
(0.001) 

Non-collaborating Peers      
 Ln(Pubs), Colocated  

 
 
 

 
 

-0.007** 
(0.000) 

-0.006** 
(0.001) 

 Ln(Pubs), Close  
 

 
 

 
 

 
 

-0.000 
(0.000) 

-0.000 
(0.000) 

 Ln(Pubs), Distant  
 

 
 

 
 

 
 

0.005** 
(0.001) 

0.004** 
(0.001) 

Nb. of Observations 211,161 190,583 190,541 190,541 66,462 
Nb. of Job Transitions 10,289 10,289 10,289 10,289 3,298 
Nb. of Scientists 9,389 9,389 9,389 9,389 2,960 
R2 0.006 0.007 0.008 0.011 0.011 
Notes: The dependent variable is a binary variable that takes on a value one in the year we observe the 
elite scientist moving to a new academic position located at least 50 miles away. Estimation is by 
Ordinary Least Squares (OLS). All specifications include full age, vintage category, and year fixed 
effects. Robust standard errors are in parentheses, clustered at the individual level. See Section II for a full 
description of how the sample and variables were constructed. + p < 0.10, * p < 0.05, ** p < 0.01 
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Table A5. Determinants of LOCAL Mobility: Demographic, Productivity & Peer Measures 
(OLS) 
 Local 

Movers + 
Stayers 

[N=6,637] 

   Subsample 
w/Kid Info 
[N=2,025] 

 (1) (2) (3) (4) (5) 
Demographics      
 Female 0.003** 

(0.001) 
0.003** 
(0.001) 

0.003** 
(0.001) 

0.003** 
(0.001) 

0.002 
(0.001) 

 PhD (MD omitted) -0.002** 
(0.000) 

-0.002** 
(0.000) 

-0.002** 
(0.001) 

-0.002** 
(0.001) 

-0.003** 
(0.001) 

 MD/PhD -0.002* 
(0.001) 

-0.002** 
(0.001) 

-0.002* 
(0.001) 

-0.002* 
(0.001) 

-0.002 
(0.002) 

Productivity Measures      
 Ln(Pubs_t-1)  

 
-0.000 
(0.000) 

-0.000 
(0.000) 

0.000 
(0.000) 

0.001 
(0.001) 

 Ln(Stock Pubs_t-2)  
 

0.000 
(0.000) 

0.000 
(0.000) 

0.001 
(0.000) 

0.002* 
(0.001) 

 Ln(NIH Funding_t-1)  
 

-0.000* 
(0.000) 

-0.000* 
(0.000) 

-0.000* 
(0.000) 

-0.000* 
(0.000) 

 Ln(Stock NIH  
 Funding_t-2) 

 
 

0.000 
(0.000) 

0.000 
(0.000) 

-0.000 
(0.000) 

-0.000 
(0.000) 

Collaborators      
 Ln(Pubs), Colocated   

 
 
 

-0.001** 
(0.000) 

-0.001** 
(0.000) 

-0.000 
(0.000) 

 Ln(Pubs), Close   
 

 
 

0.002** 
(0.000) 

0.000+ 
(0.000) 

0.001* 
(0.000) 

 Ln(Pubs), Distant   
 

 
 

-0.000+ 
(0.000) 

-0.000 
(0.000) 

-0.001+ 
(0.000) 

Non-collaborating 
Peers 

     

 Ln(Pubs), Colocated  
 

 
 

 
 

-0.002** 
(0.000) 

-0.002** 
(0.000) 

 Ln(Pubs), Close  
 

 
 

 
 

 
 

0.002** 
(0.000) 

0.002** 
(0.000) 

 Ln(Pubs), Distant  
 

 
 

 
 

 
 

-0.000 
(0.000) 

-0.001 
(0.001) 

Nb. of Observations 173,120 159,676 159,638 159,638 55,286 
Nb. of Job Transitions 6,722 6,722 6,722 6,722 2,061 
Nb. of Scientists 6,637 6,637 6,637 6,637 2,025 
R2 0.002 0.002 0.003 0.006 0.007 
Notes: The dependent variable is a binary variable that takes on a value one in the year we observe the 
elite scientist moving to a new academic position located within 50 miles. Distant movers (scientists 
moving more than 50 miles away) are excluded from this analysis. Estimation is by Ordinary Least 
Squares (OLS). All specifications include full age, vintage category, and year fixed effects. Robust 
standard errors are in parentheses, clustered at the individual level. See Section II for a full description of 
how the sample and variables were constructed. + p < 0.10, * p < 0.05, ** p < 0.01 
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Table A6. Determinants of Mobility: Child Age (OLS and OLS with Fixed Effects) 
 (1) (2) (3) (4) (5) 
A. OLS      
Oldest kid 12 or 13 0.013** 

(0.003) 
 
 

0.013** 
(0.003) 

 
 

 
 

Youngest kid 18 or 19  
 

0.010** 
(0.003) 

0.010** 
(0.003) 

 
 

 
 

Number of kids in high school  
 

 
 

 
 

-0.007** 
(0.001) 

 
 

At least one kid in high school  
 

 
 

 
 

 
 

-0.011** 
(0.002) 

B. OLS with Fixed Effects      
Oldest kid 12 or 13 0.017** 

(0.003) 
 
 

0.018** 
(0.003) 

 
 

 
 

Youngest kid 18 or 19  
 

0.009** 
(0.003) 

0.009** 
(0.003) 

 
 

 
 

Number of kids in high school  
 

 
 

 
 

-0.007** 
(0.001) 

 
 

At least one kid in high school  
 

 
 

 
 

 
 

-0.010** 
(0.002) 

Nb. of Observations 66,462 66,462 66,462 66,462 66,462 
Nb. of Job Transitions 3,298 3,298 3,298 3,298 3,298 
Nb. of Scientists 2,960 2,960 2,960 2,960 2,960 
Notes: The dependent variable is a binary variable that takes on a value one in the year we observe the elite scientist moving to a new academic 
position located at least 50 miles away. Estimation is by Ordinary Least Squares (OLS). All specifications include individual productivity and peer 
variables, as well as full age, vintage category, and year fixed effects. Robust standard errors are in parentheses, clustered at the individual level. 
Panel B regressions include scientist-spell fixed effects. See Section II for a full description of how the sample and variables were constructed. + p 
< 0.10, * p < 0.05, ** p < 0.01 
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Table A7. Determinants of LOCAL Mobility: Child Age (OLS and OLS with Fixed Effects) 
 (1) (2) (3) (4) (5) 
A. OLS      
Oldest kid 11, 12, or 13 -0.002+ 

(0.001) 
 
 

-0.002+ 
(0.001) 

 
 

 
 

Youngest kid 18, 19, or 20  
 

0.001 
(0.001) 

0.000 
(0.001) 

 
 

 
 

Number of kids in high school  
 

 
 

 
 

0.001 
(0.001) 

 
 

At least one kid in high school  
 

 
 

 
 

 
 

0.001 
(0.001) 

B. OLS with Fixed Effects      
Oldest kid 11, 12, or 13 -0.003** 

(0.001) 
 
 

-0.003** 
(0.001) 

 
 

 
 

Youngest kid 18, 19, or 20  
 

0.001 
(0.001) 

0.000 
(0.001) 

 
 

 
 

Number of kids in high school  
 

 
 

 
 

0.000 
(0.001) 

 
 

At least one kid in high school  
 

 
 

 
 

 
 

0.001 
(0.001) 

Nb. of Observations 55,286 55,286 55,286 55,286 55,286 
Nb. of Job Transitions 2,061 2,061 2,061 2,061 2,061 
Nb. of Scientists 2,025 2,025 2,025 2,025 2,025 
Notes: The dependent variable is a binary variable that takes on a value one in the year we observe the elite scientist moving to a new academic 
position located within 50 miles. Distant movers (scientists moving more than 50 miles away) are excluded from this analysis. Estimation is by 
Ordinary Least Squares (OLS). All specifications include individual productivity and peer variables, as well as full age, vintage category, and year 
fixed effects. Panel B regressions include scientist-spell fixed effects. Robust standard errors are in parentheses, clustered at the individual level. 
See Section II for a full description of how the sample and variables were constructed. + p < 0.10, * p < 0.05, ** p < 0.01 
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Table A8. Moves Up vs. Down: Demographic, Professional Factors 
 OLS OLS w/FE 
 Moves Up Moves Down Moves Up Moves Down 
 (1) (2) (3) (4) 
Demographics     
Female -0.001 

(0.001) 
-0.002 
(0.001) 

 
 

 
 

PhD -0.003** 
(0.001) 

-0.003** 
(0.001) 

 
 

 
 

MD/PhD -0.003* 
(0.001) 

-0.001 
(0.002) 

 
 

 
 

Productivity Measures        
Ln(Pubs_t-1) 0.000 

(0.001) 
0.001 

(0.001) 
0.000 

(0.001) 
0.000 

(0.001) 
Ln(Stk Pubs_t-2) -0.001 

(0.001) 
0.003** 
(0.001) 

0.003* 
(0.001) 

0.006** 
(0.001) 

Ln(NIH Funding_t-1) -0.000* 
(0.000) 

-0.000+ 
(0.000) 

-0.000 
(0.000) 

-0.000 
(0.000) 

Ln(Stk NIH Funding_t-2) -0.000 
(0.000) 

0.000 
(0.000) 

0.000 
(0.000) 

0.000** 
(0.000) 

Collaborators     
 Ln(Pubs), Colocated  -0.001+ 

(0.000) 
-0.001+ 
(0.000) 

-0.001* 
(0.000) 

-0.000 
(0.001) 

 Ln(Pubs), Close  0.000 
(0.000) 

-0.000 
(0.000) 

-0.000 
(0.000) 

0.000 
(0.001) 

 Ln(Pubs), Distant  0.001+ 
(0.000) 

-0.000 
(0.000) 

-0.000 
(0.000) 

-0.000 
(0.001) 

Non-collaborating Peers     
 Ln(Pubs), Colocated -0.002** 

(0.000) 
-0.002** 
(0.000) 

-0.002** 
(0.000) 

-0.001* 
(0.001) 

 Ln(Pubs), Close  
 

-0.000 
(0.000) 

-0.000 
(0.000) 

-0.002** 
(0.001) 

-0.002** 
(0.001) 

 Ln(Pubs), Distant  
 

0.002** 
(0.001) 

0.001+ 
(0.001) 

-0.001 
(0.001) 

-0.004** 
(0.001) 

 Ln(Pubs), Colocated -0.002** 
(0.000) 

-0.002** 
(0.000) 

-0.002** 
(0.000) 

-0.001* 
(0.001) 

Nb. of Observations 47,625 48,779 47,625 48,779 
Nb. of Job Transitions 1,815 1,953 1,815 1,953 
Nb. of Scientists 1,813 1,943 1,813 1,943 
R2 0.017 0.007 0.179 0.183 
Note: The dependent variable is a binary variable that takes on a value one in the year we observe the elite scientist moving to a 
new academic position located within 50 miles. Moves up or down are based on a ranking of institutions by percentiles of total 
NIH funding received (per grantee). The sample includes scientists who moved to an institution that was 10 percentiles or more 
higher (lower) in the ranking of NIH funding and scientists who did not move. This means that scientists who moved to an 
institution that was less than 10 percentiles different (i.e. lateral movers) and scientists who moved down (up) are excluded. 
Estimation is by Ordinary Least Squares (OLS). All regressions include full age, vintage category, and year fixed effects and 
controls for percentile of origin institution. Columns 3 and 4 include scientist-spell fixed effects. Robust standard errors are in 
parentheses, clustered at the individual level. See Section II for a full description of how the sample and variables were 
constructed. + p < 0.10, * p < 0.05, ** p < 0.01 



Table A9. Moves Up vs. Down: Child Age 
 Moves Up Moves Down 
 (1) (2) (3) (4) 
A. OLS     
Number of kids in high school -0.0016* 

(0.0007) 
 
 

-0.0018* 
(0.0008) 

 
 

At least one kid in high school  
 

-0.0024* 
(0.0010) 

 
 

-0.0036** 
(0.0010) 

Percentile of Origin Institution -0.0006** 
(0.0001) 

-0.0006** 
(0.0001) 

0.0003** 
(0.0000) 

0.0003** 
(0.0000) 

B. OLS with Fixed Effects     
Number of kids in high school -0.0010 

(0.0007) 
 
 

-0.0014+ 
(0.0008) 

 
 

At least one kid in high school  
 

-0.0014 
(0.0010) 

 
 

-0.0029** 
(0.0011) 

Percentile of Origin Institution 0.0000 
(0.0001) 

0.0000 
(0.0001) 

0.0002** 
(0.0001) 

0.0002** 
(0.0001) 

Nb. of Observations 47,625 47,625 48,779 48,779 
Nb. of Job Transitions 1,815 1,815 1,953 1,953 
Nb. of Scientists 1,813 1,813 1,943 1,943 
Note: The dependent variable is a binary variable that takes on a value one in the year we observe the elite 
scientist moving to a new academic position located within 50 miles. Moves up or down are based on a 
ranking of institutions by percentiles of total NIH funding received (per grantee). The sample includes 
scientists who moved to an institution that was 10 percentiles or more higher (lower) in the ranking of 
NIH funding and scientists who did not move. This means that scientists who moved to an institution that 
was less than 10 percentiles different (i.e. lateral movers) and scientists who moved down (up) are 
excluded. Estimation is by Ordinary Least Squares (OLS). All regressions include full age, vintage 
category, and year fixed effects and controls for percentile of origin institution. Panel B regressions 
include scientist-spell fixed effects. Robust standard errors are in parentheses, clustered at the individual 
level. See Section II for a full description of how the sample and variables were constructed. + p < 0.10, * 
p < 0.05, ** p < 0.01 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 




