Lecture 4: I) Producing Scientific Knowledge: papers; power laws

Economists model production functions as a relation between inputs and outputs: Y= AF(K,L), where K=
capital; L=labor; and A measures shift in productivity due to increased knowledge or something. The most common
form is the Cobb-Douglas, which is In-linear with constant returns to scale: In Y = (1-O) In K+ © In L, where 1- ©
is often taken to be labor's share of output. Another common form is fixed coefficient function used in input-output
analysis. L/Y and K/Y are constant. If we measure output as papers, and researchers writes 3 papers/year, the model
would be Papers = 3 Researcher. In fact the distribution of papers is a power law, not C-D or fixed coefficient.

The output from a scientific investigation is a scientific paper. Published papers in peer reviewed journals
meet one market test — some expert reviewer thought paper worth appearing in print — sort of like a start-up firm that
raised some capital and produced something that we can count. But a paper is a unique amalgam of information —
new ideas, old ideas, new facts, old facts — that is a distinct product, and may have different values over time and for
different people. Some papers will be path-breaking; some ordinary; and some will be valueless — need measure of
quality of paper — a price in the market.

Since everyone who reads a paper pays a time price, one measure of value could be number of downloads x
average time spent reading x wage of people who read it. This would be an “expenditure measure” of the value, just
as number of people who buy soup at restaurant x price of soup measures value of soup in national income accounts
(but if it takes longer/shorter to do restaurant soup than home soup, must do time account also)

Most widely used measure of quality of paper is citations. Paper with 10 citations is presumably more
valuable than paper with one citation. Citers only read the paper (in principle) but also found something useful in it
so citations have a price-type indicator (citations measure quantity of use and the price is set at numeraire 1.).

BUT AT ANY GIVEN TIME - SAY 2 YEARS COVERED USED IN MEASURING IMPACT FACTOR
OF JOURNAL, LOTS OF PAPERS GET NO CITES
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Math has huge number of 0-cited articles in 2 year window. Proceedings, which publishes shorter articles has impact
factor of 0.434, while Transactions has impact factor of 0.846. But wide dispersion of cites in both cases.

Why so many 0-cited papers? Math papers give fewer citations/norm so greater chance of none. There may be
deeper reasons, knowledge changes more slowly so no need to cite new things?
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For math citations see R Adler, J Ewing and P Taylor 2009 Citation Statistics A Report from International
Mathematical Union (IMU) in Cooperation with the International Council of Industrial and Applied Mathematics
(ICTAM) and the Institute of Mathematical Statistics (IMS) Statistical Science 2009, Vol. 24, No. 1, 1-14

But while publication is current event; citations are a future measure that follows a “life cycle” time pattern. Papers
get few citations 1-2 years out, more around 5-7 years out, and then fewer citations except for “runaways” — paper
that got few citations but suddenly got lots of attention.

Alternative way to see life cycle of citations is through REFERENCES. References in articles published in 2003
have effectively 0 for 2003 increasing number over next serveral years and tail off late. Math has smaller number of
references and flatter curve.
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Fic. 1. The age of citations from articles published in 2003 covering four different fields. Citations to articles published
in 2001-2002 are those contributing to the impact factor; all other citations are irrelevant to the impact factor. Data from

To assess “true impact paper need citations over some extended period of time. But not very helpful for decisions
today. Researchers ignored your great 2000 paper on the coming collapse of Wall Street so university fired you as
useless ... until suddenly Wall Street collapsed and the paper got widely cited, but then it was too late.

Is there a more immediate indicator of the value? Take the journal which publishes paper. Journal metric is
IMPACT FACTOR — which Thomson-Reuters measures as the average number of citations received per paper
published in journal during the two preceding years.

A =# times that articles published in 2006 and 2007 were cited by indexed journals during 2008.

B =# "citable items" published by that journal in 2006 and 2007.

2008 impact factor = A/B.

No particular reason for 2 year metric. Initially Eugene Garfield (founder of Institute for Scientific
Information (ISI predecessor to T-R) used one year and five years as example. Could determine earliest number of
years of citations that correlates highly with some measure of “lifetime citations”. If impact factors highly correlated
by year, measure picks out journals which are highly cited regularly and thus which may have higher quality papers.
May be better to take acceptance ratio = accepted articles/submitted articles as measure of journal standards?

Would assume impact factor would be negatively correlated with acceptance ratio: greater chance of being accepted
implies fewer submissions and less quality competition. Anyone for a model that would predict submission
behavior in response to impact factor leading to some equilibrium sorting?.

Another alternative to impact factor would be to see if early citations — say from first year or two — give a
good prediction of future/lifetime citations. This says estimate ) C = f (C,). Could compare to ) C = {(IMPACT
FACTOR). Is it better to have 5 early cites in a journal with impact factor 2 than 1 cite in a journal with impact
factor 3?7 Power laws are scale free so that if you know something about one part of the distribution, shape
generalizes. There is some disagreement about predictive power of early cites on later career (Allison, Long,
Krauze, 1982, American Sociology Review pp 615-625), but NO studies that contrast early cites vs Impact factors.

Allison and Long (Departmental effects on scientific productivity American sociological review,1990 469-
47) ask whether top departments hire people who are gaining lots of citations or whether being hired at top
department produces lots of citations. They conclude it is more the latter than the former. Good paper would be to
use larger data set//statistical model to see if their conclusion is correct.



In Oct 2013, Wang, Song, Barabasi (“Quantifying Long-Term Scientific Impact” Science 4 Oct, pp 127-132
claimed that they had a powerful predictor for future citations from early citations that would go a long way to
resolving the problem of assessing research based on early citations, a longterm decay factor, and a fitness measure
and claim great success from 5 years of citation for future citations based on the mean and standard deviation of the
first five years citation data.

PREDICTING THE FUTURE
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But Wang, Mei and Hicks (“Comment on ..., Science vol 345 11 July 2014 report that the prediction power is
horrid, “even worse than simply using short-term citations to approximate long-term citations”

Table 1. Prediction power evaluation.

WSB Naive WSB-with-prior 1 WSB Naive
Ttrrain =5 All papers (N = 1973) u*< 5 (N =1682)
Mean absolute percentage error 6.71 x 10303t 056 0.75 1.98 = 10%7 0.54
Spearman correlation 0.51 074 064 0.58 076
Percentage of correctly 2374 58.29 59.60 31.95 5799
identified top 10% papers
T1rain = 10 All papers (N = 1973) u* < 5(N=1942)
Mean absolute percentage error 1.91 x 107 0.34 0.27 0.38 0.34
Spearman correlation 0.90 0.91 0.91 0.90 0.91
Percentage of correctly 67.68 76.41 74.75 71.28 75.90

identified top 10% papers

tConservative estimations. The largest number our software can handle is 1.797693 = 10°°%, so numbers larger than this threshold will be treated as +eo. In our
calculations, we truncate these larger numbers and only record them as 1.797693 x 103°8, so the actual prediction error is even larger than reported here. FWith
Train = 5, WSB-with-prior failed to find finite values of « and p for optimal solutions, so we adopt the four sets of « and p values reported by Shen et al. (4) and report
their best evaluation statistics. These four sets of (u, B) are (4.237,4.061), (4.759, 4.440), (6.130, 4.924), and (10.706, 5.379). Among them, the smallest MAPE (0.75)
is yielded by (4.759, 4.440), the highest Spearman correlation (0.64) is yielded by (4.237, 4.061), and the highest percentage of correctly identified top 10% papers
(59.60%) is yielded by (6.130, 4.924).

Moreover, model cannot deal with late blooming papers, such as superconductivity papers after the discovery of
high-temperature superconductivity in the 1980s, or delayed impact, like the explosion of citations to Erdds and
Rényi’s work 4 decades after their publication, following the emergence of network science .
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Another refinement on citations: two people cite my paper — me and Albert E. Self-cites often eliminated as not as
meaningful as cites by others. If Albert E cites my paper, wow! But we can generalize from self-cites: how about
my co-author cites my paper; my students; people in my network, etc. Sifan Zhou finds that men cite men more and
women cite women more, so there is a gender bias in cites. Saving grace to all this is that a very highly cited paper
has to break out of all the network connections.

“Sociological network issues” involved with journal publications. I bet that QJE (Harvard edited ec journal)
publishes many papers with Harvard-MIT-Cambridge connections while JPE (Chicago edited ec journal) published
lots of papers with Chicago connections? Does Science do more US based and Nature more UK/EU based papers?

How about weighting citations by the citations of paper citing us? Per Google pagerank algorithm.

2.KEY FINDING IS POWER LAW best represents data. This is an empirical relation between variable Y and
variable S in which Y= S*, where the relation is determined by fixed power a or -a, aka as the scaling parameter.
Power law is log linear per Cobb-Douglas but with coefficient that makes it different from Cobb-Douglas relation.

The term power reflects the dependence of Y on S by powers: a could be 2 in which case we have a
quadratic, 3, 4, any number. IfY is the frequency of an event and S measures the size of the event, the coefficient
linking them is usually a negative number -a. Big events rare; small events frequent.

The power law Y= S*= 1/S* gives the inverse relation between the frequency and the size of events. It says
that the frequency of an event, say ten times as large as S, 10S, is 1/(10S)*, which makes that event 1/10*™ as likely.
With a =1 the large event 10S is 1/10™ as likely as the smaller event S. With a =2 the large event is 1/100™ as likely.

Power law distribution differs from normal distribution where middling events are most common. Taking In
of both sides gives line in Ins of variables: In Y =1n B - a InS so that dInY/dInS = - a (constant elasticity relation).
This is scale free since the same pattern applies regardless of whether we have large or small units or changes in
units, but it often just fits the upper tail of a distribution. Economists who use constant elasticity functions for
demand, supply, and in the Cobb-Douglas production function but constant elasticities are more for convenience or
first-order Taylor Series expansion around a more complicated relation.

Bibliometric analysis of the number of papers scientists write, citations to people and to papers and MANY
other quantitative measures of scientific relations such as number of collaborators follow a power law AT THE
UPPER TAIL. But there are other functional forms that can fit some of the data — log normal also has a “fat” tail
that depends on its standard deviation. The stretched exponential function exp — t® adds the B parameter to stretch
the tail of exponential, where where 0< B <I. B=1 is exponential.
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Statistical problem is that power law depends critically on upper tail, but upper tail has few observations, so
danger of getting imprecise estimates. Since lots of distributions have long tails there must be some mechanism
generating this shape just as there is a random shock mechanism generating normal or lognormal distribution.

Mitzenmacher credits economists for discovering power laws as Pareto distribution. Another famous power
law is Zipf Law, that George Zipf, professor of German at Harvard, used to relate frequency to rank. Lada Adamic
(Power-law, Pareto - a ranking tutorial —-www.hpl.hp.com/research/idl/papers/ranking/ranking.html) shows that
Pareto and Zipf are alternative cumulative distribution representations of the same power law with independent and
dependent variables reversed. She related the three main tail distributions to power law.

The Pareto distribution: Let P(S > s) = s* — the probability that people have incomes above s. The cumulative
distribution 1- s* is the proportion of people below s in the ranking of income (ie cumulative distribution is
position/rank in a distribution). The frequency/density distribution is P(S =s) ks™®™,

Power law linking frequency to size of objects is Y= BS™, so this is just Pareto with a = k+ 1.

Zipf relates size to rank R: S = BR™®. But since rank is position in a distribution, when object of size s has rank R,
there are R objects with size >s. Rewrite Zipfas R= B " s "'®. Divide by # of objects T so R/T= (B "*/T) s '™,
For instance R/T is the proportion of cities with size > s. The Zipf coefficient b is thus 1/ Pareto coefficient. All
three forms represent the same power law coefficient for density a =k +1=1+ 1/b

A Summary Table

Distribution “dependent” Measure |Right hand side measure | Coefficient for density
Power law Density Size S* -a
Pareto Upper tail cumulative |s™*

Density -(k+1) -(k+1)
Zipf Size Rank/upper tail R®

Rank/upper tail Size s '*

Density g et -1/b -1

Power Law for Numbers of Papers — In 1926 Alfred Lotka,, statistician, applied mathematical scientist, creator
of the Lotka-Volterra predator-prey model in ecology, one of the first analysts of human capital, founder of
mathematical demography, developed Lotka's inverse square law of scientific productivity
(http://www.jehps.net/juin2008/Veron.pdf is a fascinating short intellectual bio of Lotka).



N(S) = # of scientists who write S papers, N=A S? sothatInN=InA-2InS. Let A=100. Then this says N =
100/ S* so that 1 scientist will write 10 papers while 100 scientists will write 1 paper. The top scientist will be ten
times as productive as one of the other scientists.

Example #sci total
10 papers 110 Does this distribution favor the view that the few are critical to science
9 1 9 or the collective view that the many are important?
8 2 16
7 2 14 Top 10% scientists = 15.5 write ~97 papers or about 1/3™ of papers
6 3 18 But low producers (those who write 3 or less papers) produce 60% of papers
5 4 20
4 6 24
3 11 33 What if low producers rely on ideas of top producers?
2 25 50
1 100 100
total: 155 303

Lotka analyzed chemists and found a power law coefficient of 1.88. Ensuing analysis gives estimates for
many fields: entomology (1.9) and psychology (2.8) in Africa (Gupta, 1987, 1989), geophysics (2.1) (Gupta 1992),
journal of oil seeds research (2.07) — Kalyane and Sen (1995); library and information science (Sen, Taib, Hassan,
1996), 3.23; 6 risk and insurance journals, 2.22-2.44 ,Chung and Peulz (1992), economics, 1.84; Cox and Chung
(1991); 1990, finance (—) ; Worthen (1978), medicine (—); Schorr (1974), library science (---); Newby, Greenberg,
Jones (2003) ... and you can find many more in recent years.

Without some theory of what differences in coefficients tell us about a field or or what might generate the
differences, thee is no ordering of the facts beyond that data fit a power law. Perhaps power law coefficient is larger
in fields with longer papers? Perhaps it depends on the number of authors, which has risen? Possible paper.

Do Power Laws Mean Science is Super-Star?

Power law production in science fuels debate over the role of individuals vs collective in production (of scientific
knowledge) just as like Pareto income distribution raises issues of the wealth makers vs the 99.9%.

Superstar view --Bibliometric data shows that most papers/citations are from small number of people, which
suggests that top performers — superstars — are all that matters. The implication is that to encourage scientific
innovation, we must attract the best and brightest and reward them accordingly. (It's Watson and Crick, not Maurice
Wilkins and Rosalind Franklin nor Pauling etc or others that discovered the double helix.) History of science is
history of great persons ... but also of dual discoveries and tournaments between comparably able folk.

Collective Enterprise view -Ideas are social, generated by combining/mutating previous knowledge often
dependent on networks of connections. The problems worth study are set by scientific community. Individuals
respond to the incentives. Merton's “Matthew effect” that the most renowned person gets more credit for a solution
than others explains part of the concentration of attention on the few. Multiple discoveries reflects competition
among similarly able teams, any one of which could get the answer. If we want to encourage science, must build
good network structure and teams and distribute rewards to all.

The “knock-out” test of marginal productivity: What happens if "superstar" scientist goes extinct? Azoulay et al
2010 finds that it reduces the output of co-workers but does this affect the power law or does it leave "space" for
someone else to move into that slot? His team's most recent work suggests the latter.

Power laws everywhere, even in number of times mention power law: Aaron Clauset,Cosma Shalizi, and Mark
Newman have 310 mentions of “power law” in their paper, “Power-Law Distributions in Empirical Data.”[2])



10 -

3
-'-'--
-

102
Li
—
o g
= 1077
=
0
=
sas Ex
£ 1480
=
=]
L

10"

"FPower-Laww Distributons im Empirncal CData™

A, Clauset, O R, Shalizi & MOE.J. MHewrman
T T T T
1 3 10 =20 100 b= " I

FMumb-er of "Fower Law™ Mentions

Source: http://messymatters.com/powerlaws/

3.Power Laws and citations

Analysis of citations as power law goes back to Derek de Solla Price's work. Little Science, Big Science,
New York: Columbia University Press (1963), Science since Babylon, New Haven: Yale University Press (1961) and
his “Networks of Scientific Papers” Science article (1965)

Citation statistics help determine careers.

It is the Government's intention that the current method for determining the quality of
university research—the UK Research Assessment Exercise (RAE)—should be replaced after the
next cycle is completed in 2008. Metrics, rather than peer-review, will be the focus of the new
system and it is expected that bibliometrics (using counts of journal articles and their citations)
will be a central aualitv index in this svstem. [Evidence Report 2007. p. 3]

Twenty or so years ago, an ad hoc committee reviewing a proposal to tenure someone at Harvard received a letter
from an outside scholar, who had not read the scientist's work but who produced an analysis of that persons'
citations along with comparison to others, and based his comments on tenure on the statistical analysis of whether
the life cycle of citation counts suggested the person would have as many/more/less than comparators! The
candidate did not get the job because university president read one of his books and decided it was not up to snuff.*!

Citations vary by field. The lifespan of citations reflects the speed with which the field is changing. Anne
Preston's book Leaving Science noted that since woman leave for child-bearing/rearing they should favor slow-
moving fields where citations have longer “half-life” but in fact concentrate in biological sciences where evidence
and techniques change rapidly.

1 'Up to snuff' originated in the early 19th century. In 1811, the English playwright John Poole wrote Hamlet
Travestie, a parody of Shakespeare, in the style of Doctor Johnson and George Steevens, which included the
expression. "He knows well enough The game we're after: Zooks, he's up to snuff." & "He is up to snuff, that is, he is the
knowing one." A slightly later citation of the phrase, in Grose's Dictionary, 1823, lists it as 'up to snuff and a pinch above it',
and defines the term as 'flash'. This clearly shows the derivation to be from 'snuff', the powdered tobacco that had become
fashionable to inhale in the late 17th century. The phrase derives from the stimulating effect of taking snuff. The association
of the phrase with sharpness of mind was enhanced by the fashionability and high cost of snuff and by the elaborate
decorative boxes that it was kept in.
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Figure 6 shows the distribution of citation ages from citing publications. This refers years in the past of each citation
in the reference list of a given paper. Figure 7 shows the ages of citations to cited publications. For a paper
published in 1980 that is cited once in 1982, twice in 1988 and three times in 1991, the citation age distribution has
discrete peaks at 2, 8 and 11 years, with respectively weights 1/6, 1/3, and 1/2.

(Redner, “How popular is your paper (The European Physical Journal B - Condensed Matter and Complex Systems
Volume 4, Number 2, 131-134) is a very popular paper in this area. )
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FIG. 6: The distribution of the ages of citations contained FIG. 7: Distribution of the ages of citations to cited papers in
in the reference lists of publications that were published in  selected years, as well as the integrated data over the period
selected years. Also shown is this same citing age distribution  1932-1982. The dashed line is the hest fit to the data in the
for the period 1913-2002. range 2 - 20 years (displaced for visibility).

Numerical data for the distribution of citations are examined for: (i) papers published in 1981 in journals which are
catalogued by the Institute for Scientic Information (783,339 papers) and (i1) 20 years of publications in Physical
Review D, vols. 11-50 (24,296 papers). A Zipf plot of the number of citations to a given paper versus its citation
rank appears to be consistent with a power-law dependence for leading rank papers, with exponent close to —1/2.
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This, in turn, suggests that the number of papers with x citations, N(x), has a large-x power law decay N(x)~ x—3.
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Fig. 1. Cumulative pl.‘obabi_lity distcributior.l (cFlf) of citatic.ms Fig. 4. Citation dynamics of 89 Physics papers published in
to 353,268 papers published in Physical Review journals during 1984. We chose all those papers that by 1986 (three years af-

1893-2003 and cited by 2003. Only PR to PR citations were C . -
counted. The data were adapted from Ref. [13]. The continuous tt?r PUbhca‘tmn? had 30 or 31 Clt‘_q"tlons' %th.llﬂuglh th? mm?l
red line shows a fit with the discrete-power-law cdf (Eq.1) with citation dynamics of these papers is very similar, it quickly di-
~ = 3.15,w = 10.2. The dashed blue line shows a fit with the verges in such a way that after 25 years (in 2008) the number
log-normal cdf (Eq.3) with u = 1.15, 0 = 1.42. of citations varies between 40 and 2254.

But even power laws have a problem at upper tail. Golosovsky and Solomon” Runaway events dominate the
heavy tail of citation distributions” measured citation distribution for 418,438 Physics papers published in 1980-
1989 and cited by 2008:  “Discrete power law function with exponent of 3.15 beats log-normal fit and fits 99.955%
of the data. However, the extreme tail of the distribution deviates upward even from the power-law fit and exhibits a
dramatic “runaway” behavior. The onset of the runaway regime is revealed macroscopically as the paper garners
1000-1500 citations, however the microscopic measurements of autocorrelation in citation rates are able to predict
this behavior in advance. Over time, the papers in the tail grow at a much faster rate than the rest of the distribution,
indicating the runaway effect.”

Many indicators built on the Thomson Scientific impact factors. For instance, there is a recursive impact
factor that gives citations from journals with high impact greater weight than citations from low-impact journals (see
http://eigenfactor.org/).
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Citations widely used to judge journals and departments

Here is ranking of Physics Departments by John Perdew and Frank Tipler of Tulane University and
published in Physics Today, October 1996, p. 15

Top 20 U.S. physics departments by number of citations per scientific paper published (1981-94)

University Papers Citations Impact NRC ranking
1. Princeton University 4,252 88,150 20.7 2

2. Harvard University 3,541 72,372 20.4 1

3. Tulane University 265 5,338 20.1 115.5
4. UC Santa Barbara 4,306 83,256 19.3 10

5. University of Chicago 2,439 45,729 18.8 7

6. Brandeis University 559 10,339 18.5 42 .5
7. UC Santa Cruz 709 13,068 18.4 47.5
8. Calif. Institute of Tech. 4,027 72,393 18.0 5

9. Univ. of Pennsylvania 3,047 53,854 17.7 17
10. Rockefeller University 523 8,597 16.4 30
11. Stanford University 6,659 105,736 15.9 9
12. Yale University 1,971 31,109 15.8 13
13. S.U.N.Y. at Stony Brook 3,052 43,871 14.4 22.5
14. Mass. Inst. of Tech. 9,382 132,948 14.2 3.5
15. UC Berkeley 5,474 75,411 13.8 3.5
16. Cornell University 4,776 63,605 13.3 6
17. UC Riverside 661 8,497 12.9 68.5
18. Michigan State Univ. 1,995 25,585 12.8 32
19. Tufts University 623 7,953 12.8 77

20. Illinois (Urb.-Cham.) 6,627 84,229 12.7 8

Note the difference between NAS-NRC ranking and ranking by rank by citations per paper.
And note that MIT would rank better by total citations.

More papers-->more cites. Is cites per paper be the right metric? Should we expect a negative relation
between # papers and cites per paper? And does more papers by department mean some of cites are self-department
and should be downvalued?

How does this connect with the Allison and Long paper that said citations follow department rather than department
chooses most cited? VERY NEAT AREA FOR PAPER
The 2014 NAS-NRC ratings show Tulane doing better

1--3 Harvard University Physics
1 1-6 Princeton University Physics
1 1-9 University of California-Berkeley Physics
1 2-12 Massachusetts Institute of Technology Physics
1 2-14 University of California-Santa Barbara Physics
] 3-18 Harvard University DEAS-Applied Physics
1 3-27 University of Hawaii at Manoa Physics
[ 4-22 California Institute of Technology Physics


http://graduate-school.phds.org/rankings/physics/program/ranking/caltech/2159
http://graduate-school.phds.org/rankings/physics/program/ranking/hawaii/6431
http://graduate-school.phds.org/rankings/physics/program/ranking/harvard/2612
http://graduate-school.phds.org/rankings/physics/program/ranking/ucsb/3620
http://graduate-school.phds.org/rankings/physics/program/ranking/mit/3443
http://graduate-school.phds.org/rankings/physics/program/ranking/berkeley/4988
http://graduate-school.phds.org/rankings/physics/program/ranking/princeton/5510
http://graduate-school.phds.org/rankings/physics/program/ranking/harvard/261

Pennsylvania State University-Main Campus

O 4-21 .
Physics
O 4-22 University of Chicago Physics
] 4-23 University of Pennsylvania Physics and Astronomy
Columbia University in the City of New York
O 5-24 ;
Physics
O 6-30 Boston University Physics
[ 8-35 Cornell University Physics
O 7-41 Yale University Physics
[1 8-40 Stanford University Physics
[ 8-40 University of California-Irvine Physics
1 10-41 California Institute of Technology Applied Physics
1 10-47 Carnegie Mellon University Physics
] 9-45 Tulane University of Louisiana Physics

For underlying data see

A Data-Based Assessment of Research-Doctorate
ASSESSMENT OF Programs in the United States (with CD)

(https://www.nap.edu/catalog/12994/a-data-based-
assessment-of-research-doctorate-programs-in-the-
united-states-with-cd)

IN THE LINI

The Data Table in Excel includes data from more than 5,000 doctoral programs offered at 212 universities across
the United States. This rich resource allows evaluation and comparison of programs in areas such as faculty
research activity, student support and outcomes, and diversity of the academic environment. Three formats of the
spreadsheet are available. The Windows and Excel 2004 and 2011 for Mac versions are optimized for users
through the use of macros that enable customized filtering and click-through to background data

In 2005 Hirsch, J. E. published "An index to quantify an individual's scientific research output". 102 (46):
16569-16572, which creates an index that downweights having a single paper cited multiple times (because some
may give mundane statistic - the newest digit on PI) and measures persons “productivity” in terms of a # of papers
each of which has been cited at least h times, to reflect both the number of publications and the number of citations
per publication. This paper was 9th most cited PNAS in Jan 2010. "In terms of a "usage' metric, Hirsch's h-index
paper (3) is exceptional in its number of downloads (111,126 downloads versus 262 citations since it was published
in November 2005). But they are all closely related AND as of 2018 citations to Hirsch are 7,384!!!

Four Spanish economists have estimated citation power laws for 23 aggregate fields and 250 sub-fields from the
Thomson web of science data set — 8.5 million articles and 65 million citations from 1998-2007 — and found that
77% had power law distributions with most parameters > 3. But references given > citations received because data
set is not complete to all possible references.


http://graduate-school.phds.org/rankings/physics/program/ranking/tulane/456
http://graduate-school.phds.org/rankings/physics/program/ranking/cmu/5147
http://graduate-school.phds.org/rankings/physics/program/ranking/caltech/2521
http://graduate-school.phds.org/rankings/physics/program/ranking/uci/3245
http://graduate-school.phds.org/rankings/physics/program/ranking/stanford/1977
http://graduate-school.phds.org/rankings/physics/program/ranking/yale/788
http://graduate-school.phds.org/rankings/physics/program/ranking/cornell/2426
http://graduate-school.phds.org/rankings/physics/program/ranking/bu/3970
http://graduate-school.phds.org/rankings/physics/program/ranking/columbia/5168
http://graduate-school.phds.org/rankings/physics/program/ranking/columbia/5168
http://graduate-school.phds.org/rankings/physics/program/ranking/upenn/5513
http://graduate-school.phds.org/rankings/physics/program/ranking/uchicago/3855
http://graduate-school.phds.org/rankings/physics/program/ranking/psu/3107
http://graduate-school.phds.org/rankings/physics/program/ranking/psu/3107

Table 3. The Distribution of Citations Received and References Made

LIFE SCIENCES
1)
2)
3)
(G
)
(o)
L))
(8) Immunology

PHYSICAL SCIENCES
(?) Chemistry
(10) Physics
(11) Computer Science

Clinical Medicine

Biol & Biochemistry
MNeurosci & Behav Sci
Molec Biol & Genetics
Psychiatry/Psvchology
Pharma & Toxicology
Microbiology

(12) Marhemarics

(13) Space Science
OTHER WATURATL,

a4
as)
16)
am
as)

Engineering
Plant & Animal Sci
Mlaterial Science
Geosciences
Environment/Ecology
(19) Agricultural Sciences
(20) NMultidisciplinary
SOCIATL SCIENCES
(21) Social Sci, General
(22) Econ & Business
ARTSEHUMANITIES

(23) Arts & Humanities

Panel A: The Entire Dataset

Citations References Refs./ Citat
%% of
reroes Median %e5 Most cited Median 95-Percetile
95-Percetile %6 Over Total

237 3 30 41.3 24 57 2.6
17.1 G 48 534.2 33 67 27
155 7 4 33.1 37 TG 27
149 35 o 38.6 38 73 2.0
270 3 33 38.8 34 TG 4.6
212 4 31 33.9 28 59 3.6
16.% G 43 30.9 32 G5 29
12.8 5 G0 328 35 GG 22
236 3 31 35.6 23 G0 3.4
289 2 28 41.7 18 50 32
557 o] 11 554 16 44 T2
44 4 1 11 42 4 15 39 G.7
232 4 42 37.2 30 T4 3.0

5.2 1 14 42.6 15 43 5.5
3001 2 22 36.3 28 G4 sS4
359 1 1o 432 16 43 4.0
204 2 28 36.2 30 TG 4.9
248 3 30 34.3 31 TO 4.4
333 2 21 36.7 24 53 5.0
450 1 20 50.9 14 =1+ 4.4
424 1 =] 41.3 30 78 9.6
44 3 1 s 47.8 24 71 G. 7
230 o] 2 24.6 14 67 333

In the Lancet, “ there was a strong association between increasing title length and citation rate, with the highest-
scoring articles having more than twice as many words in the title than the lowest-cited articles.” (Jacques, T. and N.
Sebire, “The Impact of article titles on citation hits: an analysis of general and specialist medical journals” J.R. Soc
Med, Special Reports, 2010, 1, 2

Sonnert finds publications are highly correlated with peer evalutions with the only other element that mattered

being graduate school prestige! (What Makes a Good Scientist?: Determinants of Peer Evaluation among

Biologists Social Studies of Science, Vol. 25, No.1 (Feb., 1995), pp. 35-55)

Citations as Choice Variable
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tis a bad paper and, as a reviewer, I should reject it:
but it cites five of my own papers...
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Assume more citations helps your career. You want to decide whether to research/publish in hot growing
area or in some more somnolent area. Will your paper be more/less cited in growth field or stable field?

New papers have two effects on citations of older papers. More new papers — more citations to older papers.
In most markets when more competitors enter, this harms current producers by driving down prices and
profits, but in science, the more people that enter the greater the likelihood someone will cite you.

But new papers tend to cite new papers. Your analysis of XYZ has been replaced by Jones & Wang's
analysis. They cited you but now people cite them. If your paper generated 10 “progeny” papers that do your 10
major results/ideas better than you did, your paper may disappear. Your career may be in trouble ... unless we
generate a new statistic that considers the references to the papers that referred to you.

This creates a differential equation model in which new papers both add to and reduce the citations to older
papers. Let CITE (t,t+) be the number of citations to an article published in year t j years after publication. Let
ART (t+j) be the number of articles published in year t+j. Then the reduced form of the impact of future articles
published on your year t article is:

CITE (t, t+j) = a ART(t+]j) for each year, with + a implying more articles published increases cites to you and
negative meaning more articles published reduces cites to you. Expect more articles published has positive effect on
cites to given article until the “newer version” comes along and cites to the t year paper falls. But of course
cumulated cites can only go up.

5. Power Econometrics and Mechanisms

There are statistical problems in fitting power laws because the number of rare events - scientists who

produce lots and lots of papers - is sparse. See A. Clauset, C.R. Shalizi, and M.E.J. Newman, "Power-law
distributions in empirical data" SIAM Review 51(4), 661-703 (2009). (arXiv:0706.1062, doi:10.1137/070710111) if
the estimation process interests you.

1) Fitting a log-log line by least squares not very informative. Sds etc not valid as depend on normality
“fitting lines on log-log graphs is what Pareto did back in the day when he started this in /890s”

2)Use maximum likelihood to estimate the scaling exponent. Sampling distribution is an inverse gamma to get
confidence intervals.

3)Use Kolmogorov -Smirnov goodness-of-fit statistic to estimate where the scaling region begins. goodness of fit
of a distribution, use a statistic meant for distributions, not R-squared etc as you get more data

4)If you care compare with non-power law distributions

5)Doing things with cumulative often better

-EVALU.# TE THE WORLD'S LEAD]NG JOURNF\LS
TO MEASURBNMNFLUENCE AND IMPA, N’T
JCIL.FRNAL AND&ATEL-;URY LI%‘E




PART II Team science — network analysis

There are two “narratives” about research discoveries:

the standing on shoulders of giants collective enterprise view that the scientific community and market
for ideas produces knowledge. According to this view, researchers work on problems set by the scientific
community by combining/ mutating previous knowledge obtained through networks of connections. Your new
results/paper is a predictable outcome from the 15 papers that you cite. Your experiment/innovation was on the
drawing board on many other scientists as the next step in the research program. You just got there first.”

The “Matthew effect” (in which the most renowned person gets more credit for a solution than others)
explains part of the concentration on the few. Human desire to have “heroes and stories” or the efficiency of
tournaments may help explain an overemphasis on individuals. Multiple discoveries proves that outcomes result
from competition among similarly able teams, any one of which could get the answer. If we want to encourage
science, must build good network structure and teams and distribute rewards to all.

the great scientist view that a few brilliant minds drive scientific progress. No one but Newton, Darwin,
Einstein, etc could have conceived the ideas associated with them. Without Watson-Crick, the world might have
waited for years to understand how DNA replicates. The division between the great scientists and the others is
discontinuous following a very steep power law.

o The Fermi Gamma-Ray Space Telescope
Discovers the Pulsar in the Young
Galactic Supernova Remnant CTA 1

A AL Abdo, ™ M. Ackermann,® W. B. Atwood,* L Baldini® . Ballet,® G. Barbiellini, **

M. G. Baring,” D. Bastieri, ' B. M. Baughman,™ K Bechtol,® R. Bellazzini,* B. Berenji,®

R D. Blandford,” E. D. Bloom,” G. Bogaert,™ E. Bonamente, ™™ A W. Borgland,” }. Bregeon,®
A Brez* M. Brigida, ™" P. Bruel,™ T. H. Bumett,®® G A. Caliandro,***" R. A Cameron,*

P. A Caraves,®® P. Carlson,™ ). M. Casandjian.® €. Cecchi,*-** E. Charles.* A. Chekhtman, ***
C. C. Cheung.*® . Chiang.* S Ciprini,**** R. Claus,* ). Cohen-Tanugi,** L. R Cominsky,**

1. Conrad, ®** 5, Cutini,™ D. 5. Davis™*" . D. Dermer,” A. de Angelis,™ F. de Palma,***’
5. W. Dvigel,” M. Dormody,* E. do Couto & Silva,” P. 5. Drell,’ R Dubois” 0. Dumora, ™"

¥. BEdmonds, * €. Farmnder,” W. B. Focke,” ¥. Fukazmwa,** 5. Funk,® P. Fusco,™*" F. Gargano,*’
O. Gasparming = M. Gehrels, = 5 Germani, **** B. Giebels,™ N. Giglette, " F. Giordano,**
T. Glanzman,® G. Godfrey,” L A Grender,® M.-H Grondin, = ). E Growe,* L Guillemot, =2

5. Guirier, “* AL K. Harding, “* R. C. Hartman,** E Hays“* R. E. Hughes ™ G. Jéhannesson,*

A S ot YR P. Joh 2T ) Joh ST L ML Johinson,* T, Kamae,” Y. Kanai,™

G. Kanbach,™* H. Katagiri,"® M. Kawai, ™ *® M. Kerr,'® T. Kishishita,"® B. Kiziltan,*"

1. Enddiseder,™ M. L Kocan,” M. Komin, ““'t F. Ksehn,™ M. Kuss,” L Latronia,”

M. Lemoine-Goumard, = F. Longo,”-® V. Lonjou,** F. Loparce, " B. Lott, =%

ML M. Lowvellette,® P. Lubramno, % &, Makeew, ** M. Marelli,®™ M. M. Mazriotta > ). E. McEnery, ™
5. McGlynn, “® €. Mewrer,*™ P. F. Michelson,” T. Mineo,*™ W. Mitthwmsiri,* T. Mizung, **

A A Moisesv,*™ C. Monte, 27 M. E. Monzamni,* A Morselli*? L V. Moskalenko,® S. Murgia,*

T. Nakamori,'" P. L Molan,” E. Nuss,™ M. Ohno,* T. Ohsugi, "™ A. Okuemura,** M. Omoded
E.Ofando.™™ |. F. Ormes*" M. Ozaki,** D. Panegue,” ]. H. Panetta,” D. Parent,**™ . Pelasa, ™
M. Pepe, ™" M. Pesce- Rollins,” G. Fiano,*” L Fier,’™ F. Piren,™ T. A, Porter,” 5. Raing, ™"
R Rando,™* P, 5. Ray,” M. Razmno,” A. Reimer,” O. Reimer,” T. Reposeur, ™*® 5, Ritz,***
L. 5. Rochester,” A. Y. Rodriguez,* R. W. Romani® M. Roth, ™ F. Ryde, ™ H. F.-W. Sadrozinski,®
O. Sanchez,™ A. Sander,™ P. M. Saz Parkinson,® T. L. Schalk,* A Sellerholm,** C. Sgra,*

E. ). Sisking,** D. A. Smith, % p. 0. Smith, > G. Spandre® P. Spinelli,?®*" ) .-L Stardk.®

M. S. Strickman,” D. ). Susen,™ H. Tajima,” H. Takahashi*® T. Takahashi** T. Tanaka,®

1. E. Thayer,” ]. G. Thayer,” D. ]. Thompson, ** 5. E. Thorsett,® L. Tibaldo, *3** D. F. Torres, **"
G. Tosti, ™% A Tramacere, ™ T. L. Usher,” A Wan Etten,” M. Wilchez, ™ W. Vitale,** P. Wang,*
K Watters,” B. L Winer,™ K. 5. Wood, " H. Yasuda, ™ T. ¥linen, ™" M. Zieglar®:

Team-based science Wuchty, Jones, and Uzzi analyzed 19.9 million papers in WOS from 1955 to 2000 and report
rise in multi-authored papers in all fields x arts & humanities. Is history science or humanities? Check # of authors.

100

B0
60

=1 = | iy | b | -
- Sclance & Engineering B
- Social Sciences
= Arts & Humanities
b = Patents

=4

|
L

40

S

mean E'Z%ams

20

percentage, .

—

u o = 5 L i | | 5 | | ™ I-1
1960 1970 1980 1990 2000 1960 1570 1980 1980 2000

years

Fig. 1. The growth of teams. These plots present changes over time in the fraction of papers and
patents written in teams (A) and in mean team size (B). Each line represents the arithmetic average
taken over all subfields in each year.



Some facts about collaborations (Social Studies of Science, Oct 2005: (Lee and Bozeman “Impact of Scientific

Collaboration on Productivity”)
TAEBLE 2

RHescarch tirmnc

Meoan

poercentage of
Wrorl serTitue Fa b rescarch time Sl
Rescarch timme working alone A0S 15 95 2.0l
Research time working with researchers and A0S 51,10 23,85
raduate students in my immmediate work group
Rescarch time working with researchers in mmy &5 11. 324 12 . 66
wurmiversity, bhut outside v immediate work
Erouapn
Research time working with researchers who 05 5.11 T.T3
reside in nation: other than the LI5S
Research time working with rezearchers in LIS 405 5821 10,63
universities other than moy own
Research time working with researchers iy LIS A0S 525 T
1ndhastry
Research time working withh researchers inn LIS A5 2.8 6.53

government laboratories

Shapiro,et al JAMA feb 1994, notice # of tasks — last author as manager;would be great to relate hours to cites, etc

Table 3.—First Authors” Assassments of the Contributions of Authors to Specific Tasks

All Authors First Second Middie Last
Together Authors Authors Authors Authors
Taak* (n=1014), % (n=184), % (N=175), % (N=479), % [(N=176), %

initial conception 42 O 34 19 G
Design 47 a7 41 24 61
Provision of resources 64 T2 62 62 85
Data coliection 54 a9 62 45 34
Analysis and interpretation of data 52 98 56 30 61
Writing and revision 57 100 55 33 2]
Total Mo. of tasks contributed to

0or1 24 Q 17 42 10

2or3 az a 45 40 29

4, 5 o0rB 43 a7 ar 18 B1

*For each task, P=.0001 for differences among author positions.

Table 4.—First Authors' Estimates of the Number of Hours Authors Spent Contributing Directly to the
Research

Al Authors First Second Ml be Last
Together Authorst Authorst Authorst Authorst
Mo. of Hours® (n=0G6), % {n=178), % (n=167), % (N=456), %% (n=16T), %
0-10 20 0 13 a1 20
11-50 26 4 27 A | as
51-500 26 43 42 31 ar
=500 18 53 18 T 8

*Hours categories are collapsed from the questionnaire’s categories of 0, less than 1, 1 to 5, 6 to 10, 11 to 25,
26 to 50, 51 to 100, 101 to 500, 501 wo 1000, and more than 1000.
1P 0001 for ditferences among these four author positicns.



Four questions about teams

Question 1: Are teams more/ less productive than individuals? Could measure whether produce more
papers in given period but that requires counter-factual of what would have produced separately. And requires some
fractional count (Wuchty, et al Science, May 2007)
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Fig. 2. The relative impact of teams. (A to D) Mean team size comparing all papers and patents with
those that received more citations than average in the relevant subfield. (E to H) The RTI, which is the
mean number of citations received by team-authored work divided by the mean number of citations
received by solo-authored work. A ratio of 1 indicates that team- and solo-authored work have

equivalent impact on average. Each point represents the RTI for a given subfield and year, whereas the
black lines present the arithmetic average in a given year.

They calculate RTI — relative team impact = cites to “team authored” paper/cites to solo authored paper 1955-2001 :
RTI 1.7 to 2.1 BUT authors per paper 1.9 to 3.5 so cites/author 0.9 to 0.6 fell while 2 authors' have relative rise
from 1.3 to 1.74

Table 2 - Impact of author and foreign collaboration

Papers Citations  Ave.

Science Authors Countries (P) (C) C/P
All One and many Any 376,226 2,411,789 6.4
One One! 74,481 285,536 3.8
One Many? 1,505 7,705 5.1
Many One 236,592 1,525,400 6.5
Many Many 63,648 593,148 9.3
Table 7 - Authors from the same institution
Table J - Impact of author and domestic institution collahoration Papers Citations  Ave.
- — Authors (P) (C) C/P
Authors - domestic  Papers  Citations Ave. 1 72350 278514 3.8
. e v 2 85,486 444010 52
Science Institutions P € Ccr 3 49751 304714 o1
All One - One 72350 278514 39 23263 168.504 73
5 10,048 86.576 8.6
One-Many 2,131 7022 33 6 4217  42.285 10.0
_ 7 1718 21245 12 4
Many - One 175,741 1,086,179 6.2 8 663 8.708 13.1
Many - Many 60851 43921 12 o 13 s1s 164

How much is a collaboration worth? J. S. Katz, Diana Hicks (Scientometrics,Nov 1997)



http://link.springer.com/search?facet-author=%22Diana+Hicks%22
http://link.springer.com/search?facet-author=%22J.+S.+Katz%22

Is there an optimal team size? James D. Adams, Grant C. Black, J. Roger Clemmons, Paula E. Stephan Research
Policy 34 (2005) 259-285 Scientific teams and institutional collaborations: Evidence from U.S. Universities, 1981-1999

Table 12

Determinants of research

Sariable or statistic

I og (Citations over 5 years)

Eq. (12.4)

Eq. (12.5)

Eq. (12.6)

Tiime period
Fields included

Fear duammies imcluded

Field dununies included

Lo (stock of federally
fiimded R.S12)

T.o (aunthors per paper)

T.og (mmiversity-field
authors per paper)

Top 110 TT.S. universitss

share per paper
Foreign share per paper

T.S. corporate share per

pPaper
Root WIS E.
Aodjusted B2

MNumber of observations

1951-1995

All 12 main
fields

Yes, significant
Yes, significant
0.553 (69.6)""

0.312 (10.2)""

0.688
0.82
8.504

1981 -1995

All 12 main
fields

Yes. significant
Yes, significant
0.546 (68.0)""

0.548 (10.8)""

0.687
0.82
8.504

1981—-1995

All 12 main
fields

Yes. significant
Yes. significant
0.557 (69.6) "

0.264 (8.4)""

1.276 (4.0)"™

1.237 (5.2)"7
0.094 (0.2)

0.686
0.82
8.504

But the production function presumably differ between large and small papers. Calculations do not include capital
equipment, need for experts with different skills, time spent producing papers, and “opportunity cost”.
ENDOGENEITY OF CO-AUTHORSHIP. Probably useful to examine same author, with others etc.

Question 2: What makes for productive team? NAS-NRC 2015 study

Whooley et al. “Evidence for a collective intelligence factor in the performance of human groups(Science, 30 Sept 2010)
What is collective intelligence? Ability to perform wide variety of tasks related to a measure of the
performance of the group on other tasks that is independent from the IQ of its members.
How would you show this? 1Q asks paper/pencil questions in different areas — math, reading, problem
solving — and correlate results across test domains and with other tasks — producing single general measure that is
related to many tasks. Use factor analysis based on correlation of answers to reduce dimensionality of data.
Single factor explain 30-50% of variance — general intelligence, not math, reading, three-dimensional, etc.

To measure CQ, Wooley et al assign 120 people to 40 three person teams, give them tasks, and see if some
groups do better. Tasks drawn from McGrath Task Circumplex — solving puzzles, dividing limited resources,
making moral judgments. Second study with 152 people with groups of different size. To calculate group

intelligence, used set of tests:

The tests were checkers game against computer, architectural design problem.

BrainstormingOuadrant 1), Groups spent 10 minutes braimstorming possible uses for a
brick. Groups received one point for each non-redundant 1dea they generated, independent of

quality of the ideas.

Crroup Matrix Reasoning (Ouadrant 1), Groups completed the ever-numbered queshon:
of RAPM guestions as a group. Groups were scored on the number of items answered correctly,

Crronp Moral Reasoming (Ouadrant ), Using the “Disciplinary Action Case™ (3],
eroups decided on disciplinary actions in a fictitions case in which a college basketball player
bribed an instructor to change his grade on an exam. The groups were given a list of five 1ssues



Based on task Circumplex

GEMERATE
Semmerating ldeas —_— | e _Cansarafing Slans
Cooperaiion
Sokeing
Frobliems Per'ommarcs
Wl Cormect
A
IIII Trea B L]
|I ridectew Tosby Pt eon! I|
| Pasyedwe—rrosier Tasks |
CHOOSE | | EXECUTE
| |
i
e !
1o e Bl gy
Tess s
Deciding Resohving
ot b Saght Confices
Aunsaer Ty K of Poarsr
Csprrillm G pom el Bt
Carflhet Torkbs
Resoraing — Resordng Confictks
o Vimwpoins o
MEGOTIATE
Comcephual | Behavicral
Figure 2
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Tabhle 52

Besults of OLS Regression Analyses of Effects of Average Member Intelligence and Collective Intelligence on Criterion
Tasks m Study 1 and Smdy 2

Study 1: Video Game Study 2: Architectural Design
=i} (=152}

Siep 1 Step 2 Step 3 Step 1 Siep 2 Slep 2 Siep 4
Mumber of members® =004 ={1.013 =020 =) 27™
Average Member Intelligence 018 008 018 0.05
Maximurm Member Intelhgence .01 01z
Collective Intelligence 5]** ,53% 0.3kt N37*
F 121 7. 14+ 0, Guj 020 262 I R haR"
R’ 003 DX+ H2T*e 004 0.la 0. 34%* 35+
chanpe R’ [25%% L 0.12 0.18* i, ]19*

* gignificant at p<_005, tovo=tailed ** zignficant at g1, twostailed

* Mumber of members is constant for Smdy 1 and thus not a vanable in the analysis



What makes the groups more effective?
Table 54

Eesults of (L3S Eepression Analvses of Effecis of Percent Female, Average Member Social

Sensitivity and Speaking Tum Variance on Collective Intelligence (n=46 groups)

Collective Intelligence fcd

Step 1 Step X Step 3 Step 4
Mumber of members 1,09 N B | 02
Percent Female 0.40= 2é 025
Social Sensitivity 37+ 0.33%
Speaking Tum Yartance 127
E 028 3.01 R R IET#
R’ 0,08 o1& 0o.x7 01,34
change B .0 011 0.07

* Coeflicient is significant at p<.0%, rewo=tailed

Missing from analysis: Financial/other incentive for better performance/experimentation with different reward
systems. And discussion of division of credit

Q3 Who writes with whom? Homophily Economics: women tend to write more papers with women; (Boschini
&Sjogren, Is team formation neutral? Journal of Labor Economics, 2007, 25, 325-365
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Ethnic groups write more with persons of same ethnicity.
Probabulity of all authors same

ethmicity (%) e
TiE Ratio (8)(3) -
Furst Second Thard Fowth Fandomm  Realzed 3

| R e position (%
Eilmicity Authors' ethmicity distibution by posinon (%)

(€ -(3)
Panel A: Two-author paper
CHN 16.63 9.15 1.52 416 164 17
ENG 49.80 6021 2999 33.36 3.5 .12
EUR 12.76 14,63 1.87 227 0.40 1.2
HIN [N ! 6.53 0.50 1.61 1.10 319
HIS 457 376 0.17 0.43 0.26 250
JAP 34 131 0.03 027 0.24 9.3
KOR 239 1.02 0.02 0.14 0.11 5.58
RUS 3.55 3.15 0.11 0.40 0.29 3.5
VM 0.35 0.13 0.00 0.01 0.01 11.13
Panel B: Three-author paper
CHN 16.30 1049 §.08 0.14 1.7 1.58 15.36
ENG 49.76 4542 62.19 14.06 1847 142 1.6
EUR 12.76 1058 1474 0.20 031 0.11 1.90
HIN 192 541 5.87 0.03 0.43 0.41 21.36
HIS 482 3.55 378 0.01 0.10 0.10 19.36
JAP 2.60 1.59 1.37 0.00 0.12 0.12 21252
EOR 120 1.30 0.93 0.00 0.03 0.03 11743
RUS 30 243 283 0.00 0.04 0.04 19.311
VM 0.37 0.8 0.21 0.00 0.00 0.00

Q4What induces people to collaborate with others in a team?

Recently Melin (2000) surveyed 195 university professors about their
motives for collaboration and the chief benefits of collaboration. In their
answers to open-ended questions, the respondents’ most often-reported
(41%) motive for collaboration i1s that the ‘co-author has special compe-
tence’. Other common motives included ‘co-author has special data or
equipment (209%)’, “social reasons: old friends, past collaboration (16%)°,
‘supervisor—student relation (14%)’, and ‘development and testing of new
methods (9%)’. With regard to the benefits of collaboration, the respon-
dents pointed to ‘increased knowledge (38%)’, ‘higher scientific quality
(30%)’, ‘contact and connections for future work (25%)’, and ‘generation
of new ideas (17%)’. Melin concluded that scientists collaborate for strong
pragmatic reasons.

What are the pragmatics? Working alone, A and B can produce 1 paper each in a year , so the output is 2 papers.
Working together, if they produce > 2 papers in a year of similar quality, the team is better.
Working alone, A and B's 1 paper per year of given quality generate 5 cites each, for 10 total cites for both.
Working together, they produce 1 better paper that generates 10 cites. But the fact that multi-authored papers have
more cites is not sufficient to demonstrate the superiority of teams. Cites per author says that these two are
equivalent. But if each gets credit for the 10 cites, it benefits us (but not science) to work together.



Power laws and more in collaborations (Newman, PNAS, Jan 22, 2004)Milojevik,

http://arxiv.org/ftp/arxiv/papers/1004/1004.5176.pdf
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Acknowledgments — another form of collaboration — Giles and Council, PNAS Dec 21,2004
Table 2. Number of dtations to the most i
atknowledged individuals .
- & chrennladomants Ciations B,
Althor Scknowledgments Citad g o
Olivier Danvy 268 847 §, |
0ded Goldralch 259 3277 T
‘ 47 3,847 s 10
Luca Cardelll 247 3,847 % .
Tom Mitchell 226 3,336 g
Martin Abadi 22 3,507 8 1¢f
Phil Wadler 181 Ma;:r =
Moshe vandi 180 3,788 E |
pater Los 167 1750 g 10
Avlaigderson 160 1,566 3
matthizs Falletsan 154 1622 i _ -
Banjamin Plarca 152 1,484 " 2 i &
i 2640 10 10 10 10
Hoga Alon 152 ) Ently rumber
John Qusterhout 152 3,693 - :
Frark Pfenning 148 1,63% Fip. 3. The distribution of acknowledgments in the CiteSeer decument
Andrews Appel 144 2064 collection fallows a power law with the exponert ~065. & line with —0.65

slope is drawn for referance.

Q5 How is credited allocated in team science? — In terms of jobs, pay, etc. There is division among authors.
Could ask reviewers. Granting agencies likely give heavy weight to PI. “Support person, not projcct”



NETWORK ANALYSIS

Apenimhazed
Models

Mathematisal
Ecolapy

Ag. 1.  Anexampleof asmall coauthaorship netsork deplcting collaborations
among sdentists at a private ressarch Institution. Nodes In the neteork
represent sdentlsts, and a line beteween two of them Indicates they Coau-
thared a paper during the period of study. This particular netvork appears to
divide Into a member of subommunites, as indicated by the shapes of the
nades, and these subcommunities comaspond roughly totoplc of research, as
discussed by Girvan and Newman (27).

Table 1. Summary statistics for the three coauthorship networks
analyzed here

Blology Phiysics Mathematics

Mumbser of authors 1,520,251 52,909 253339
Mumber of papers 2,163,923 9,502 —
Papers par author 6.4 5.1 6.9
Authors per paper 1.75 2.53 1.45
Average collaborators 18.1 9.7 39
Largest component 902% 85% 82%
Average distance 4.6 5.9 7.6
Largest distance 24 0 7
Clustering coefficdent 0.066 0.43 0.15
Assortativity 0.13 0.36 012

The statistics are, from top to bottom, total number of awthors appearing In
the commesponding databasss: total numbsar of papers appearing: mesn numbar
of papars publishad by an author mean numiber of coauthors on 3 paper; maan
numbsr of diffierant indhiduats an author collaborated withs langest connectad
group of Individuals In the networks mean vertax-vertay distance betwesn
connectad indkdduals In the network: lanpest such distancs; the dustering coef-
ficlent, wehich ks the mean probabiiity that two coauthorswill also be coawthors
of one another; and the degres asortativity coetfident, which Is the Pearson
cormelation coatficlent of the dagraes (Le., numiber of collaborators) of adjacent
vertiees In the network. The materlal showen here |8 aiter Mewwman (12) and
Grossman (3.

What are the networks and what do they tell us about the way science produces knowledge?

Networks link scientists, papers. On the one side, they emphasize the collective nature of science and the
position/location of people or documents in the system/network. The notion is that you need many bits of
knowledge from diverse people to produce results and it gets communicated along networks. But they also pinpoint
the tendency for a small number of people to have key positions in a network — for instance with a disproportionate
numbers of collaborators, supporting the great person view of scientific progress.

The math is graph theory which has two elements: vertexes and edges that link vertexes.

-

C i

Papers could be vertexes and the edges could be co-authors
Papers could be vertexes and the edges could be citations — with arrows to show directions

Authors could be vertexes and edges could be papers

Authors could be vertexes and edges could be citations

Could have authors and papers be edges but that is not commonly done.

Google graph theory and you can learn the basics easily. Hundreds of tutorials, including one on spectral
graph theory https://www.youtube.com/watch?v=8XJes6 XFjxM&list=PLW3Tw6vi-WwA_ Zh8y4WPtclgtDnz-

H701&index=4

If you can get from any vertex to any other you have a



CONNECTED GRAPH. Most scientists are connected through co-authors or citations. A group that is
not connected could be a strange sect: creationist scientists might all cite papers and coauthor with their
gang only. Marxists might cite different studies/have different co-authors than others. Since unlikely to have
completely connected, often measure the largest component in terms of the % who are connected. You can devise
other indicators to determine cliques or groups.

Graphs have natural distance metric d(i,j) is minimum number of edges to get from i to j. For a connected graph the
average distance is the sum of all distances (counted once) divide by order of graph. Characteristic path length or
#verage distance: Average of d(i,j) over all i,j — if you have distances of 5, 6, 7 you have characteristic path length of 6. If
chntacteristic path length is large then you have a more dispersed network than if the average length is small. Diameter
of .graph is Max(i,j) d(i,j) — the biggest distance between any two vertices.

How local are connections? If you are connected to two neighbors, what is the chance they are connected? Take a
point, look at all its neighbors, find max links, divide actual links by max. Cluster coefficient measure local
neighborhood, C(v). If v has k neighbors, the ratio of actual edges to possible edges among neighbors: (k) = k!/[( k-2)!
2!1 =k (k-1)/2. If your neighbors are closely linked we have a highly clustered neighborhood.

Three types of graphs

Regular Network — Lattice graph. Bach vertex is connected to its k nearest neighbors. All vertices have same degree
Long characteristic path length because you move slowly from your neighborhood to some other space. NO SHORTCUTS.
Large clustering because everyone is connected in area. Know only people in your dorm/group. Get linear increase in
characteristic path length as n grows.

Random graph — In the 1950s Paul Erdos, the great wandering mathematician, and Alfred Renyi developed random
giaph model: G(n,p), where n = number of vertices of the graph; and p is the probability any two vertices are connected.
Thare are n(n-1)/2 or —n¥2. number of edges. The p that is the probability of two nodes linking does not depend on distance

Small World: (Watts-Strogatz) — start with a lattice graph and reconnect vertices with probability P by randomly
shifting one edge to a randomly selected vertex (or just add link). The SW graph has path length comparable to the
random graph but connectedness close to the lattice graph. On average, nodes can be connected through a short path in the
network through one long shortcut; while probability that two nodes are linked is greater if they share a neighbor, the
network has a large cluster coefficient. Small characteristic path length and large cluster coefficient. We can connect to
people far away because we are in a cluster where someone has a long link.

Scientific productivity and networks Scientists write papers with other scientists. They can be treated as nodes and
the papers as edges or links. So write with me and I write with Pierre and you are connected to Pierre so we have a
connected gaph. This is co-authorship network

Very famous measure of graph are Erdos numbers — Erdds wrote around 1,500 mathematical articles in his
lifetime, mostly co-written. He had 511 direct collaborators; these are the people with Erdds number 1. The
people who have collaborated with them (but not with Erdés himself) have an Erdés number of 2 (8,162 people
as of 2007), those who have collaborated with people who have an Erd6s number of 2 (but not with Erd6s or
anyone with an Erds number of 1) have an Erdés number of 3, and so forth.

Question: do people who write with Erdos have particular characteristics? Does writing with Erdos improve
their mathematical knowledge/skills? In the production of science was Erdos a positive force only on the
papers he co-authored? Could we track an Erdos effect on people with number 2?
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Moe Howard (I
was in
The Outlaws Is Coming (1965)
with
Henry Gibson (ID
was in
The Last Remake of Beau Geste (1977)
with
Michael York (D)
was in
The IMill and the Cross (2011)
with
Tomasz L uczak
was in

N Is a WNWumber: A Portrait of Paul Erdos
(1993)

with

Paul Exrdos

Moe Howard (I) has a Paul Erdos number of 4.

Barabasi et al have a differential equation model for the evolution of networks that is mechanical based on
preferential attachments where people co-author with people who have lots of co-authors. Not decision behavioral
but descriptive differential equation which provides dynamic perspective.
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