Introduction to ROS for Office Hour 1 in week 2
CS189, 2018
Julia Ebert and Florian Berlinger



ROS systems are organized as a computation graph

——
7 I N

o ]

A number of independent programs each perform some piece of computation, passing
data and results to other programs, arranged in a pre-defined network.

Task can be decomposed into many independent subsystems.
Each subsystem is called a node, which is usually a single-purpose program.

Event-driven system.



ROS systems are organized as a computation graph

// s IR \\

a

Perception L

el
N~

A number of independent programs each perform some piece of computation, passing
data and results to other programs, arranged in a pre-defined network.

Task can be decomposed into many independent subsystems.
Each subsystem is called a node, which is usually a single-purpose program.

Event-driven system.



ROS systems are organized as a computation graph

—\ )
// 7/ N N\

\

4

Bl
N~ -

A number of independent programs each perform some piece of computation, passing
data and results to other programs, arranged in a pre-defined network.

Task can be decomposed into many independent subsystems.
Each subsystem is called a node, which is usually a single-purpose program.

Event-driven system.



The ROS master manages the communication between nodes

roscore invisible masterthat manages communication between nodes
rosrun runs a node
roslaunch runs a collection of nodes

Ctrl+C stops the program @

ROS nodes communicate over topics

publish send messages on a topic
subscribe receive messages on a topic

Topic = stream of messages

Publish or subscribe to a topic (typically 1 publisher, n subscribers)



ROS systems are organized as a computation graph




ROS is an event-driven system

1
s R

s S

cmd_vel_pub = rospy.Publisher('cmd_vel', Twist, queue_size=1)
move = Twist()
move.linear.x = 0.5 # drive straight ahead at 0.5 m/s
rate = rospy.Rate{10) # iterate at 10 Hz
while not rospy.is_shutdown():
cmd_vel_pub.publish(move)
rate.sleep()

Wheels for action.

Bumper sensors for perception.

Physical world imposes events on the robot’s sensors, e.g., robot might bump into a wall.



ROS is an event-driven system

M cogmion |
& SN

Bumpers f—

II ’

bump_sub = rospy.Subscriber('bumper’, BumperEvent, bump_callback)
rate = rospy.Rate(10) # iterate at 10 Hz

def bump_callback(data):
bump = False
if data.state == BumperEvent. PRESSED:
bump = True

while not rospy.is_shutdown():
ifbump:
move.linearx =0 # stop
rate.sleep()

Stop at bumper event.

Event-driven! No need to call bump_sub in each iteration of the while loop like it was the
case for cmd_vel_pub.




To do

Read chapters 1,2,3,7 in “Programming Robots with ROS”

More info: “Getting Started 2: ROS, Turtlebot Sensors, and Code” on Canvas




