
2/16/18	

1	

ì	
CS	189:	Autonomous	Robot	Systems	
Spring	2018,	Fridays	1-4pm,	Pierce	301	

Agenda	

ì  Today’s	Agenda	
ì  Lecture:	Autonomy	2:	Feedback	and	Vision	

ì  Pset	2:	Wanderer	demonstration	

ì  What	happens	next	Friday?	

ì  Pset	3a:	Follower.	Due	before	&	in	class	next	Friday!	
ì  Pset	3b:	Follower.	Due	week	after	that.	

ì  Reading	this	and	next	week:		
ì  PRR	Chapters	7	and	12.	

PERCEPTION	

PHYSICS	OF	
THE	WORLD	

ACTION	

COGNITION	

What	Does	it	Mean	to	be	Autonomous?	 Basics	of	Autonomy	

ì  Action	(Actuators)	
ì  Locomotion:	Wheels	(Differential	Drives,	Kinematics)		

ì  Perception	(Sensors)	
ì  Proprioception	and	Exteroception	(Bump,	Depth)	

ì  Today:	More	about	Cameras	and	Color	

ì  Cognition	(Control)	

ì  Reactive	Behaviors	(e.g.	roomba,	collision	avoidance)	

ì  Today:	PID	Controllers	

COGNITION	

PERCEPTION	

ACTION	

2/16/18	

2	

Feedback	Control	and	PID	

							Closed	Loop	Control	
ì  Desired	state	(goal	state,	setpoint)	

ì  Feedback	(i.e.	measured	-	desired)	
ì  Goal:	MAINTAIN	set-point	

ì  Classic	Example:	Thermostat	

World	
(Room)	

Actuation	
(Heater)	

Sensor	
(Temperature)	

Controller	
(Thermostat)	

Desired	goal	

Example:	Wall	Following	Robot	

ì  Simple	scenario:	trying	to	move	along	an	infinite	
straight	wall	while	maintaining	a	fixed	distance.	

R	

Example:	Wall	Following	Robot	

ì  Simple	scenario:	trying	to	move	along	an	infinite	
straight	wall	while	maintaining	a	fixed	distance.	

ì  Generic	Program	Loop	
Move 1 step forward
If distance-to-wall > desired,

Then turn towards the wall
Else turn away from the wall

R	

Example:	Wall	Following	Robot	

ì  Simple	scenario:	trying	to	move	along	an	infinite	
straight	wall	while	maintaining	a	fixed	distance.	

ì  Concrete	Generic	Program	Loop	
Move 0.5 body-length forward
If distance-to-wall > desired,

Then turn 45 degrees towards the wall
Else turn 45 degrees away from the wall

ì  How	does	this	Program	perform?	

R	

2/16/18	

3	

Example:	Wall	Following	Robot	

ì  Simple	scenario:	trying	to	move	along	an	infinite	
straight	wall	while	maintaining	a	fixed	distance.	

ì  Concrete	Generic	Program	Loop	
Move 0.5 body-length forward
If distance-to-wall > desired,

Then turn 45 degrees towards the wall
Else turn 45 degrees away from the wall

ì  How	does	this	Program	perform?	

ì  How	do	we	do	better?	
R	

Example:	Wall	Following	Robot	

ì  How	does	this	Program	perform?		
ì  Oscillates!!		

ì  How	do	we	do	better?	
ì  Reduce	turning	angle	to	be	very	small	(avoid	overshoot)	

ì  Check	for	error	very	frequently	(avoid	overshoot)	
ì  Define	some	“slop”	in	our	goal	(range	instead	of	exact)	

Sometimes	that	is	enough		

(e.g.	roomba	using	bump	sensors	to	wall-follow)	

ì  	How	do	we	do	even	better?	Use	more	information!	
	

R	

Generic	Program	
Move	1	body-length	forward	
if	distance-to-wall	is	larger	than	desired,	
			Then	turn	45	degrees	towards	the	wall	
			Else	turn	45	degrees	away	from	the	wall	

Proportional	(P)	Control	

ì  Use	more	information:	use	both	the	direction	and	
magnitude	of	the	error	to	decide	how	to	adjust.		

ì  Error	=	distance-to-wall	–	desired	distance	

ì  Adjustment		
ì  ChangeAngle	=	Kp	*	error	
ì  Current	action	is	just	your	past	action	+	adjustment	
ì  Kp	=	“gain”		

ì  High-level	idea	is	to	adjust	proportional	to	the	error	
ì  If	far	from	the	wall	---	we	will	turn	sharply	
								If	we	are	close	to	the	wall	---	then	turn	very	slowly	
ì  How	do	we	decide	what	Kp	is?	….Its	not	easy	

ì  Model	or	Experiments	(Control	Theory)	R	

Proportional	(P)	Control	

ì  Use	more	information:	use	both	the	direction	and	
magnitude	of	the	error	to	decide	how	to	adjust.		

ì  Error	=	distance-to-wall	–	desired	distance	

ì  Adjustment		
ì  ChangeAngle	=	Kp	*	error	
ì  Current	action	is	just	your	past	action	+	adjustment	
ì  Kp	=	“gain”		

ì  High-level	idea	is	to	adjust	proportional	to	the	error	
ì  If	far	from	the	Dline	---	we	will	turn	sharply	
								If	we	are	close	to	the	Dline	---	then	turn	very	slowly	
ì  How	do	we	decide	what	Kp	is?	

Model	or	Experiments	(Control	Theory)	R	

2/16/18	

4	

Proportional	(P)	Control	

ì  Proportional	Control	Program	Loop	
Move 0.5 body-length forward
If distance-to-wall > desired,

error = |desired – distance-to-wall|
Then turn Kp	*	error towards the wall
Else turn Kp	*	error away from the wall

R	

P-controllers	are	very	useful!	

R	

New	Scenario	
Orient	towards	a	“Source”	

R	

Proportional	Control	Program	Loop	
									Measure	error	

	angular-speed	=	k.	error	
	
			i.e.		Turn	faster	if	big	angle	
										Turn	slowly	if	small	angle	

Hint:		
Pset		3	“Follower”	
	

Many	Reactive	Behaviors		==	Feedback	Control	

Wall	Following	 Visual	Homing	 Centering	 Collision	Avoidance	

Lots	of	P-Controllers!	

When	P	Control	is	not	enough	

	Ignores	inertia!	
ì  Momentum	=	mass*velocity	

ì  Car	(heavy)	at	10mph	vs	100mph	
ì  P-control	only	reacts	to	current	“error”	
ì  But	error	is	changing	also	based	on	speed	
ì  Can	we	“predict	the	future	change	in	error”	=>	

Derivative	(D)	Control!	

error	

P	Controller	
Loop	
				Measure	error	
				ApplyAccelerator	=	k.error		
			(as	I	get	closer,	I	apply	less	gas)	

PD	Controller	
Loop	
Measure	error	=	distance-to-wall							
Deriv-error	=	d(error)/dt	
Change	=	Kp	*	error			
														-		Kd	*	deriv-error	

2/16/18	

5	

When	P	Control	is	not	enough	

error	

P	Controller	
Loop	
				Measure	error	
				ApplyAccelerator	=	k.error		
				

Adjust	based	on	“past	failures”	
	
PID	Controller	
Loop	
Measure	error	=	distance-to-wall							
Deriv-error	=	d(error)/dt	
Integral-error	=	sum(error	+	past)	
Change	=	Kp	*	error			
														-		Kd	*	deriv-error	
														+	Ki	*	integral-error	

What	if	there	is	an	
“external”	constant	
source	of	error?	

time	

error	 Error	goes		
to	zero	

Integral	
(area	under	curve)	

Is	not	zero	

And	that’s	PID	Control!	

Proportional	Integral	Derivative		

PRESENT									PAST													FUTURE	

P		I		D	
Caveats:		
In	this	class,	we	will	only	really	use	P-controllers	since	our	robots	are	slow	
Integral	control	is	more	commonly	used	than	derivative,		
Derivative	control	while	important	is	the	most	complex,	since	derivatives	tend	to	be	noisy	
		

Basics	of	Autonomy	

ì  Action	(Actuators)	
ì  Locomotion:	Wheels	(Differential	Drives,	Kinematics)		

ì  Perception	(Sensors)	
ì  Proprioception	and	Exteroception	(Bump,	Depth)	

ì  Today:	More	about	Cameras	and	Color	

ì  Cognition	(Control)	

ì  Reactive	Behaviors	(e.g.	roomba,	collision	avoidance)	

ì  Today:	PID	Controllers	

COGNITION	

PERCEPTION	

ACTION	

Perception:	Robot	Vision	

ì  Why	Robot	Vision?	
ì  Operate	in	human	designed	world!	
ì  Cheaper	and	cheaper	Cameras!	

ì  But	robots	vision	!=	computer	vision		
ì  Robots	have	limited	computation	

time	and	not	a	lot	of	memory					
(real-time)	

ì  Robots	are	action	driven,	and	thus	
perception	is	task	driven	–	can	be	
less	general	(minimalism)	

ì  Robots	also	have	the	advantage	(?)	
that	they	see	images	over	and	over	
while	they	move	(video)		

	

Pioneer	robot	with	stereo	cameras,	
sonar	ring,	and	LIDAR	

2/16/18	

6	

Vision:	Many	Options	

COLOR	CAMERAS													DEPTH	SENSING													VIDEO/MOTION						

Why	Object		
Recognition	
Is	hard.	

How	Depth		
Cameras	work	
&	When	to	use	

Optic	Flow	and	
Object	Tracking	

But	First:	A	Video……	

“James	Bruce.	CMU,	2001	

Vision:	Many	Options	

COLOR	CAMERAS	
ì  Object	Recognition	

ì  Classically	hard	AI	problem!	
ì  Camera	gives	an	array	of	light	pixels	
ì  How	do	you	recognize	a	chair?	

Task-driven	Approach	
ì  Segmentation	(shape/color	characteristics)	

ì  Colorspaces	(HSV)	
ì  Typical	Style:	Blur	=>	Mask	=>	Contours	
ì  OpenCV!	(real-time	vision)	

ì  Non-Segmentation	(“features”)	
ì  Template	Matching	and	Histogram	Backprojection	
ì  Classifiers	(“Face	Detection”)	
ì  Fiducials	(e.g.	AprilTag)	
	

Why	Object		
Recognition	is	hard.	

Segmentation:	Color	Space	

ì  Digital	Camera	=	Array	of	pixels	
(picel	==	“picture	element”)		

ì  RGB	
ì  24	bit	(0-255,	0-255,	0-255)	

ì  HSV	or	HSI	
ì  Hue	=	actual	color		

ì  Saturation	=	amount	of	color	

ì  Intensity	=	amount	of	light	
Equivalent	to	RGB,	but	easier	to	
numerically	threshold	on	human	
“meaningful”	notions	of	color	

R	G	B 								H	S	V	
255,0,0	 								0,100,100	
	
100,0,0											0,100,39.2	
	
255,100,100			0,60,100	
	
100,255,255				180,60,100	
	
	
I	can	easily	identify	a	RED	
(hue=0)	object	even	if	its	
dark	or	sunlight	is	on	it!	

2/16/18	

7	

Segmentation:	Blur		

Noisy	pixels	in	
the	image	are	
removed		
	
	
	
Use	a	Filter	to	
“smooth”	the	
image	out	
	
	
Filtering	is	a	
general	concept:	
“apply”	a	matrix	
to	every	pixel	

Gaussian	Filter	
(one	of	many	possibilities)	

“91.450	Robotics	1”,	Lecture	Notes,	
	Holly	Yanco,	UMass	Lowell	

Segmentation:	Blur	=>	Mask		

ì  MASK	==	Threshold	image	based	on	“Color”		
ì  Can	combine	masks	

ì  Can	“Posterize”	(assign	color	bins)	

Segmentation:	Blur	=>	Mask	=>	“Blob”		

ì  Give	me	Objects!	
ì  Segment	my	image	into		“contiguous	regions”	of	color	(blob)	
ì  OpenCV:	Find	Contours	–	gives	you	a	curve	around	each	object			

(curve	is	represented	by	an	array	of	boundary	points)	

ì  Then	you	can	do	stuff!	(boundingbox,	areas)	

Segmentation:	Blur	=>	Mask	=>	“Blob”		

ì  OpenCV	libraries	make	much	of	this	very	easy	
ì  Good	documentation	and	online	examples	

ì  BUT	still	need	lots	of	testing!	(customize	to	your	errors)	

ì  Lab2	Solutions	repository	has	lots	of	goodies	
ì  Example	of	blur=>mask=>contours	

ì  Trackbar!	For	calibrating	HSV	bounds		

2/16/18	

8	

Digression:	Other	Filters	

Edge	detection:	(Sobel	or	Canny)	
Corner	Detection:	(Harris)		
	
“Feature	Detection”:	more	general	
SIFT	=	Scale	Invariant	Feature	Detection	
	

91.450	Robotics	1”,	Lecture	Notes,	
	Holly	Yanco,	UMass	Lowell	

Digression:	Find	Blobs	Algorithm	

1	0000000000000000	
2	000XXX00000XXX00	
3	000XXX00000XXX00	
4	000XXX00000XXX00	
5	000XXXXXXXXXXX00	
6	000XXX00000XXX00	
7	000XXX00000XXX00	
8	000XXX00000XXX00	
9	0000000000000000	

Run-Length	Encoding:		
Find	the	contiguous	row-regions	of	color	of	choice	
	
Foreach row

While there are still pixels in the row
discard pixels until see redX
record start of a “run” by (row, column)
discard pixels until see black0

 record end of a “run” by (row, column)
	
Region	Extraction	
Link	together	the	row-runs	that	touch	in	columns	
Create	a	directed	graph	over	the	row-runs	
	
List	of	Regions	
Return	a	list	of	connected	graphs	(“bob”)	or	compute	a	
boundaries	(“Bounding	Box”,	or	“Contour”)	

Runs:	[(2,4)	to	(2,6)]	[(2,12)	to	(2,15)]		
											[(3,4)	to	(3,6)]	[(3,12)	to	(3,15)]	

										…..	[(5,4)	to	(5,15)]…..		
											[(8,4)	to	(8,6)]	[(8,12)	to	(8,15)]	
	

Digression:	Object	Size		

91.450	Robotics	1”,	Lecture	Notes,	
	Holly	Yanco,	UMass	Lowell	

Vision:	Many	Options	

COLOR	CAMERAS	
ì  Object	Recognition	

ì  Classically	hard	AI	problem!	
ì  Camera	gives	an	array	of	light	pixels	
ì  How	do	you	recognize	a	chair?	

Task-driven	Approach	
ì  Segmentation	(shape/color	characteristics)	

ì  Colorspaces	(HSV)	
ì  Typical	Style:	Blur	=>	Mask	=>	Contours	
ì  OpenCV!	(real-time	vision)	

ì  Non-Segmentation	(“features”)	
ì  Template	Matching	and	Histogram	Backprojection	
ì  Classifiers	(“Face	Detection”)	
ì  Fiducials	(e.g.	AprilTag)	
	

Why	Object		
Recognition	is	hard.	

2/16/18	

9	

Non-Segmentation	Approaches	

You	don’t	need	to	always	“recognize”	the	objects	in	your	image	–	
as	the	background	gets	more	cluttered	and	complex	this	
becomes	hard	anyways…..	

ì  Image	Signature	

ì  Template	matching	(“image”	itself)	

ì  Color	Histogramming	(pixel	distribution)	

ì  Classifiers	(requires	training	data)	

ì  Cascade	Classifiers	(face	detection)	

Image	Signatures	
	

Signature	=	
Take	“desired”	image		
And	compute	a		
Histogram	of	Pixel		
Color	distributions	
	
	
Match	=		
histogram(current)	–	signature	
	
Example:	Robot	“imprints”	on	an	object.	
Then	robot	would	moves	with	a	speed	
proportional	to	the	match….	Follows	a	
purple	triangle	too…..	

Template	=	
Take	a	closeup	of	the		
“desired”	object			
	
	
	
Match	=		
Image	Region	–	Template	
(sliding	window)	
	
Color	Templates	are	a	good	choice	
Use	many	windows	sizes	
Many	types	of	“difference	metrics”	
	
Problem:	too	detail	oriented	

*OpenCV:	see	Template	Matching,	Histogram	Backprojection,	and	Image	Pyramids	

Non-Segmentation	Approaches	

You	don’t	need	to	always	“recognize”	the	objects	in	your	image	–	
as	the	background	gets	more	cluttered	and	complex	this	
becomes	hard	anyways…..	

ì  Image	Signature	
ì  Template	matching	(“image”	itself)	
ì  Color	Histogramming	(pixel	distribution)	
ì  Classifiers	(Requires	training	data)	
ì  Cascade	Classifiers	(e.g.	Face	Detection)	

Nothing	is	perfect!	

Non-Segmentation	Approaches	

You	don’t	need	to	always	“recognize”	the	objects	in	your	image	–	
as	the	background	gets	more	cluttered	and	complex	this	
becomes	hard	anyways…..	

ì  Image	Signature	
ì  Template	matching	(“image”	itself)	
ì  Color	Histogramming	(pixel	distribution)	
ì  Classifiers	(Requires	training	data)	
ì  Cascade	Classifiers	(e.g.	Face	Detection)	

ì  Fiducials		
ì  Place	easy	to	recognize	landmarks		
ì  in	your	environment	 AprilTag	System,	Ed	Olson,	

Univ	of	Michigan	

2/16/18	

10	

Outline	

COLOR	CAMERAS													DEPTH	SENSING													VIDEO/MOTION						

Object	Recognition	
(segmentation	vs		
non-segmentation)	

How	Depth		
Cameras	work	
&	When	to	use	

Optic	Flow	and	
Object	Tracking	

Video!	

Motion	can	reveal	many	things!	
ì  Background	subtraction	

(humans	move!)	

ì  Optic	flow	(recover	motion)	

ì  Tracking	objects	

[Compare	frames	in	RGB	or	Depth!]	

*These	slides	are	adapted	from	OpenCV	tutorial	(which	is	great	reading!	docs.opencv.org)	
And	OpenCV	provides	implementations	that	you	can	use	out	of	the	box	

Video!	

Motion	can	reveal	many	things!	
ì  Background	subtraction	

(humans	move!)	

ì  Optic	flow	(recover	motion)	

ì  Tracking	objects	

[Compare	frames	in	RGB	or	Depth!]	

Basic	idea	–	take	a	“window”	of	frames	and	look	at	all	the	pixels	that	don’t	
change	(or	median	pixel	value).		Subtract	from	your	image…		
	
Smarter	algorithms:	GMM	and	Bayesian	models	of	the	background	

Video!	

Motion	can	reveal	many	things!	
ì  Background	subtraction	

(humans	move!)	

ì  Optic	flow	(recover	motion)	

ì  Tracking	objects	

[Compare	frames	in	RGB	or	Depth!]	

Instead	of	just	subtraction,		
Try	to	“track”	where	each	pixel	moved	to.	

	
Can	give	you	SPEED	and	DIRECTION!		

And	segmentation….		
Color	represents	direction	
Brightness	represents	speed	

2/16/18	

11	

Optic	Flow	

Robotics!	Can	recover	your	own	motion	
ì  Speed	(magnitude	and	direction	of	arrows)	

ì  Or	Distance	to	objects	(at	given	speed)	
	

Can	also	recover		
“Behavior”	

These	algorithms	depend	on	“feature	matching”	
Pixel	window	matching		(dense	OF)	or	track	features	(corners/sift)	

Video!	

Motion	can	reveal	many	things!	
ì  Background	subtraction	

(humans	move!)	

ì  Optic	flow	(recover	motion)	

ì  Tracking	objects	

[Compare	frames	in	RGB	or	Depth!]	

Basic	idea:	Follow	a	“subwindow”		
as	it	moves	through	the	image.	

	
OpenCV:	Combine	Histogram		
Backprojection		+	Camshift	

Later:	Kalman	Filter	

Digression:	Kalman	Filter	

T=0	 T=1	

Motion	Model	Prediction	(T=1)	

Image	Model	Prediction	(T=1)	

T=1	

Both	provide	independent					
Probability(pixel)	
	
Compute	normalized	sum		
	
Get	a	confidence	value	for	
your	tracked	object!	

Outline	

COLOR	CAMERAS													DEPTH	SENSING													VIDEO/MOTION						

Object	Recognition	
(segmentation	vs		
non-segmentation)	

How	Depth		
Cameras	work	
&	When	to	use	

Optic	Flow	and	
Object	Tracking	

2/16/18	

12	

Vision	is	Complex	

ì  We	still	understand	very	little	about	human	visual	cortex		
ì  Much	less	than	the	eye	“hardware”	

ì  We	do	understand	that	animal	vision	systems	use	tricks	
ì  Bees,	spiders,	fish,	employ	many	tricks	that	are	Task	Specific	
ì  And	just	good	enough	-	not	“logical”	or	fool	proof.	

ì  For	Robots,	finding	appropriate	tricks	is	critical	
ì  Not	just	for	simple	robots	like	Turtlebot	
ì  Google	Self-Driving	Car	(“background	substraction”)	

ì  Finally	Vision	is	just	one	sensor	out	of	many	sensors	we	have;				
Choose	the	right	sensor	for	the	job	

ì  Human	existence	does	not	rely	on	vision	–	touch,	balance,	sound	

Upcoming:	Pset	3	Follower		

ì  You	have	a	cycling	band	to	put	on	your	ankle	

ì  Part	(a)	Your	robot	should	recognize	the	band	

ì  Draw	a	bounding	box	around	the		ankle	band	
ì  Try	to	recognize	at	least	up	to		4	feet	away	
ì  Calibrate!	(“trackbar”)	

ì  Part	(b)	Your	robot	should	follow	it	

ì  P-control		will	be	helpful	to	adjust	quickly	
ì  Hint,	will	need	to	deal	with	occasional	disappearance	(other	leg	blocks	it)	

vs	longer	disappearance	(robot	lost	you)	

ì  Avoid	running	into	obstacles	

