
3/2/18	

1	

ì	
CS	189:	Autonomous	Robot	Systems	
Spring	2018,	Fridays	1-4pm,	Pierce	301	

Pset	4:	Scavenger	Hunt!	

ì  Part	(a):	Due	next	Friday	
ì  Recognize	all	three	objects	

ì  Part	(b)	Due	Friday	after	Spring	Break	
ì  Competition!	
ì  Wandering	Rough	Space	Map:	Similar	

corridor	widths	to	last	time,	but	some	
“side	arm”	areas.	

ì  Competition	(full	class	time)	
ì  First	round:	5	robots	and	teams	
ì  Second	round:	5	robots	and	teams	
ì  You	only	need	to	come	for	your	round	

Pierce	301	
ROOM		
PLAN	

3	TREASURES	

Agenda	

ì  Lecture:	Navigation	I:	Path	Planning	

ì  Demo	Time:	Pset	3b	Follower,	Pierce	301	

ì  Upcoming:	
ì  Following	week:	Pset	4a	(scavenger,	part	1)	

ì  References:	[see	note	on	Piazza]	
ì  “Introduction	to	AI	Robotics”,	chapter	9	and	10,	Robin	Murphy,	2000.	
ì  “Intro	to	Autonomous	Mobile	Robots”,	chapter	5.5	,	6.1-2,	Seigwart	et	al,	2004	

ì  “Robot	Motion	Planning”,	Lecture	Notes,	Choset	and	others	(CMU	16-735)	
PERCEPTION	

PHYSICS	OF	
THE	WORLD	

ACTION	

COGNITION	

What	Does	it	Mean	to	be	Autonomous?	



3/2/18	

2	

Today:	Robots	Navigating	the	World	

Scenarios	
•  Hospital	Helper							

(e.g.	Diligent,	Tugs)	
•  Office	security	or	mail-

delivery	(e.g.	Cobal,	
Savioke)	

•  Tour	Guide	robot	in	a	
museum	(Minerva)	

•  Autonomous	Car	with	
GPS	and	Nav	system	

	
Biological	analogies:	
Humans,	bees	and	ants,	
migrating	birds,	herds	

DILIGENT	
(hospitals)	

SAVIOKE	
(hotels)	

GOOGLE	CAR	

COBALT	
(hotels)	

Today:	Robots	Navigating	the	World	

Second	Part	of	CS189:	High-level	reasoning	
From	finite	state	machines	to	complex	

representation	and	memory	
	

ì  Path	Planning:	How	to	I	get	to	my	Goal?	

ì  Localization:	Where	am	I?	

ì  Mapping:	Where	have	I	been?	

ì  Exploration:	Where	haven’t	I	been?	

What	is	Path	Planning?	

ì  Simple	Question:	How	do	I	get	to	my	Goal?	

ì  Not	a	simple	answer!	
ì  Can	you	see	your	goal?		
								Do	you	have	a	map?	
								Are	obstacles	unknown	or	dynamic?	
ì  Does	it	matter	how	fast	you	get	there?		
								Does	it	matter	how	smooth	the	path	is	?		
ì  How	much	compute	power	do	you	have?	
								How	precise	is	your	motion	control?	

ì  Path	Planning	is	best	thought	of	as	a	Collection	of	Algorithms	
ì  You	have	to	match	the	method	to	the	“ecological	niche”	

ì  Environment,	Success	metrics,	Robot	capability.	

Types	of	Path	Planning	Approaches	

ì  Reminder	of	the	Basics		
ì  Visual	homing	(Purely	local	sensing	and	feedback	control)	
ì  Inverse	Kinematics	(Turn-move-turn	to	get	from	A	to	B)	

ì  Bug-based	Path	Planning	(mostly-local	without	a	map)	
ì  Robots	can	see	the	Goal	(direction	and	distance)	
ì  But	there	are	unknown	obstacles	in	the	way	(No	map)	

ì  Metric	(A*)	Path	Planning	(global	with	a	map)	
ì  Assumes	that	you	have	a	map	(distance	or	graph)	and	you	know	

where	you	and	the	goal	are	located	in	it.	
ì  Path	is	represented	as	a	of	series	of	waypoints	



3/2/18	

3	

Basics:	Visual	Homing		

ì  Purely	Reactive	Navigation	
ì  Measure	Visual	(x,y)	Position	of	Goal	
ì  Move	to	bring	goal	to	Visual	Center	
ì  Proportional	Control	(if	you	see	the	goal),	Random	walk	(if	you	don’t)	
	

Basics:	Inverse	Kinematics	

Path	Planned	is:	Turn	A	then	Move	D	
	
Turn	A	=	atan2	(x/y)	=	W	x	duration	
Move	D	=	sqrt	(x^2	+	y^2)	=	L	x	duration	
(Turn	again,	to	end	in	new	orientation)	

(0,0,0)	

D	

(x,y,A)	

A	

x	

y	
Thinking	in		the		
“Robot	Frame”	
(ego-centric)	

ì  Getting	from	Here	to	Point	B	
ì  Popular	Option:	Turn-Move-Turn	[Lecture:	Autonomy	1]	
ì  Non-holonomic	constraints;	Infinite	possible	paths	
ì  No	obstacles	(like	in	visual	homing	example)	

Example:	
Line	up	
Ball	&	Goal	

Bug-based	Path	Planning	

ì  What	if	the	Robot	has	obstacles	in	the	way?	
ì  Always	have	Goal	direction	and/or	distance	(Global)	
ì  But	No	Map:	Only	local	knowledge	of	environment	(Local)	
ì  Example	Scenario:		

ì  Robot	knows	GPS	location	of	goal,	but	unknown	buildings	in	the	way	
ì  Indoor	robot	see	goal	location,	but	furniture	in	the	way.	

ì  “Bug”	Algorithms	depend	on	simple	but	provable	behaviors!	
ì  Don’t	need	to	build	a	map	
ì  Simple	Computation:	Visual	Homing	+	Wall-following	+	Odometry	

ì  Very	intuitive	class	of	algorithms	–	but	surprisingly	powerful	

Basic	Idea:	Bug	0		

ì  Robot		
ì  Known	direction	to	goal	
ì  Wall-following	

ì  Bug	0	Algorithm	
ì  Head	towards	goal	
ì  If	obstructed,	follow	

obstacle	wall	until	you	
can	head	towards	goal	
again.	

ì  Continue	

Adapted	from	Choset	16-735	



3/2/18	

4	

Basic	Idea:	Bug	0		

ì  Robot		
ì  Known	direction	to	goal	
ì  Wall-following	

ì  Bug	0	Algorithm	
ì  Head	towards	goal	
ì  If	obstructed,	follow	

obstacle	wall	until	you	
can	head	towards	goal	
again.	

ì  Continue	

Adapted	from	Choset	16-735	

What	map	will	foil	Bug	0?		

ì  Robot		
ì  Known	direction	to	goal	
ì  Wall-following	

ì  Bug	0	Algorithm	
ì  Head	towards	goal	
ì  If	obstructed,	follow	

obstacle	wall	until	you	
can	head	towards	goal	
again.	

ì  Continue	
*	

Start	

Goal	
*	

Adapted	from	Choset	16-735	

What	map	will	foil	Bug	0?		

ì  Robot		
ì  Known	direction	to	goal	
ì  Wall-following	

ì  Bug	0	Algorithm	
ì  Head	towards	goal	
ì  If	obstructed,	follow	

obstacle	wall	until	you	
can	head	towards	goal	
again.	

ì  Continue	
*	

Start	

Goal	
*	

Adapted	from	Choset	16-735	

What	map	will	foil	Bug	0?		

ì  Robot		
ì  Known	direction	to	goal	
ì  Wall-following	

ì  Bug	0	Algorithm	
ì  Head	towards	goal	
ì  If	obstructed,	follow	

obstacle	wall	until	you	
can	head	towards	goal	
again.	

ì  Continue	

Adapted	from	Choset	16-735	



3/2/18	

5	

What	map	will	foil	Bug	0?		

ì  Robot		
ì  Known	direction	to	goal	
ì  Wall-following	

ì  Bug	0	Algorithm	
ì  Head	towards	goal	
ì  If	obstructed,	follow	

obstacle	wall	until	you	
can	head	towards	goal	
again.	

ì  Continue	

Adapted	from	Choset	16-735	

A	Better	Bug:	Bug	1	

ì  Robot		
ì  Known	direction	to	goal	
ì  Wall-following		
ì  Measure	distance	to	goal	
ì  Odometry	with	encoders	

ì  Bug	1	Algorithm	
ì  Head	towards	goal	
ì  If	obstructed,	

circumnavigate	the	
obstacle	and	remember	
the	point	P	on	the	
perimeter	that	is	closest	to	
the	goal		

ì  Return	to	that	closest	
point	and	continue.	

Adapted	from	Choset	16-735	

GOAL	

START	

A	Better	Bug:	Bug	1	

ì  Robot		
ì  Known	direction	to	goal	
ì  Wall-following		
ì  Measure	distance	to	goal	
ì  Odometry	with	encoders	

ì  Bug	1	Algorithm	
ì  Head	towards	goal	
ì  If	obstructed,	

circumnavigate	the	
obstacle	and	remember	
the	point	P	on	the	
perimeter	that	is	closest	to	
the	goal		

ì  Return	to	that	closest	
point	and	continue.	

Adapted	from	Choset	16-735	

GOAL	

START	

What	map	will	foil	Bug	1?	

ì  None!		
ì  Any	reasonable	world	(finite	number	of	obstacles	with	finite	perimeter)		
ì  Analysis:	It	is	possible	to	bound	worst	and	best	case	trajectories	
ì  Discussion:	What	do	you	think	are	the	pros	and	cons	of	this	approach?	

Adapted	from	Choset	16-735	



3/2/18	

6	

An	Alternative:	Bug	2	

ì  Robot		
ì  Known	direction	to	goal	
ì  Wall-following		
ì  Measure	distance	to	goal	
ì  Odometry	with	encoders	
										or	orientation	to	goal	

ì  M-line	
ì  Line	from	the	start	to	goal	

ì  Bug	2	Algorithm	
ì  Head	toward	goal	on	the	m-line		
ì  If	an	obstacle	is	in	the	way,	follow	it	

until	you	encounter	the	m-line	again	
and	you	are	closer	to	the	goal.		

ì  Leave	the	obstacle	and	continue	
toward	the	goal		

Some	Fun	Examples:	Bug2	

Adapted	from	Choset	16-735	

Many	Types	of	Bug	Algorithms!	

ì  Recent	Variant:	i-Bug		(intensity-Bug,	Lavalle	etc	al)			
ì  Proved	that	you	can	exit	an	obstacle	at	the	first	point	“closer”	to	

the	goal	(don’t	need	to	keep	track	of	m-line)	

ì  Attractive	for	many	reasons	
ì  Simplicity	of	implementation	and	robot	assumptions,	ability	to	

deal	with	unknown	and	dynamic	environments,	and	the	analogy	
to	ant	behavior.	

	

												Open	question:	Do	ants	(bugs)	use	the	bug	algorithms?	

Many	Types	of	Bug	Algorithms!	



3/2/18	

7	

Types	of	Path	Planning	Approaches	

ì  Reminder	of	the	Basics		
ì  Visual	homing	(Purely	local	sensing	and	feedback	control)	
ì  Inverse	Kinematics	(Turn-move-turn	to	get	from	A	to	B)	

ì  Bug-based	Path	Planning	(mostly-local	without	a	map)	
ì  Robots	can	see	the	Goal	(direction	and	distance)	
ì  But	there	are	unknown	obstacles	in	the	way	(No	map)	

ì  Metric	(A*)	Path	Planning	(global	with	a	map)	
ì  Assumes	that	you	have	a	map	(distance	or	graph)	and	you	know	

where	you	and	the	goal	are	located	in	it.	
ì  Path	is	represented	as	a	of	series	of	waypoints	

Metric/Global	Path	Planning	

ì  What	if	the	Robot	has	Full	Knowledge	
ì  A	map	of	the	environment	and	robot	+	goal’s	locations	
ì  Goal:	Find	a	“optimal”	path	(typically	distance	but	other	possibilities)	
ì  We	will	focus	on	robots,	but	it’s	a	general	problem	(think	Google	maps)	

ì  Two	Components	
ì  Map	Representation	(“graph”):	

ì  Feature	based	maps	(office	numbers,	landmarks)	
ì  Grid	based	maps	(cartesian,	quadtrees)	
ì  Polygonal	maps	(geometric	decompositions)	

ì  Path	Finding	Algorithms:	
ì  Shortest-Path	Graph	Algorithms	(Breadth-First-Search,	A*	Algorithm)	

Map	Representation:	Feature	based	

ì  Also	known	as	a	Topological	or	Landmark-based	Map	
ì  Features	your	robot	can	recognize:		

ì  Includes	both	natural	landmarks	(corner,	doorway,	hallways)																																				
and	artificial	ones	(office	door	numbers;	or	robot-friendly	tags)		

ì  Gateways	are	landmarks	that	represent	decisions	(e.g.	intersection)	
ì  Distinguishable	places	are	unique	landmarks	

ì  World	is	a	graph	that	connects	landmarks	
ì  Edges	represent	actual	motion:	how	to	get	from	landmark	A	to	landmark	B	
								Usually	visual/reactive	navigation	is	possible	along	an	edge	
ì  Edges	can	also	keep	extra	attributes:	distance,	time	it	takes,	etc.	

ì  Google	Maps	are	topological	maps	for	humans	(e.g.	turn	at	intersection)	
ì  Caveat:	Much	less	easy	to	construct	topological	maps	for	robots!	

Example:	Maxwell-Dworkin	

MD235	

MD234	MD236	

MD238	

…….	

MD253	

EDGE:	Follow-hall	
until	see	office	door	
on	right	and	left	
(weight	=	distance)	

Layered	Representation	
=	Landmarks	(names,	types)	
=	Topological	connectivity	
=	Edge	local	control	strategy	



3/2/18	

8	

Map	Representation:	Grid	based	

ì  Ignore	any	notion	of	Features	

ì  Instead,	Convert	the	map	into	a	grid-graph	
ì  Step	1:	Grow	the	boundaries	(by	robot	size)	
ì  Step	2:	Overlay	a	grid	

Adapted	from	Murphy	2000	

Map	Representation:	Grid	based	

ì  Basic:	An	Occupancy	Matrix		
ì  Problem:		

ì  How	do	you	choose	the	
“resolution”	of	the	grid?	

ì  Too	small	–	computationally	
expensive,	jagged	paths	

ì  Too	big	–	might	miss	paths	

ì  Quadtree	
ì  Create	a	grid	recursively!	
ì  Start	with	very	coarse	grid;	then	

for	each	grid	section	if	there	are	
obstacles,	then	refine	grid	
further.		

ì  Captures	large	open	spaces	as	a		
single	big	grid	point	

								(Try	writing	the	pseudocode)	

Note:	Occupancy	Grids	will	be	more	useful	
later,	when	the	robot	is	responsible	for	
making	the	map!	

Map	Representation:	Grid	based	

ì  Basic:	An	occupancy	matrix		
ì  Problem:		

ì  How	do	you	choose	the	
“resolution”	of	the	grid?	

ì  Too	small	–	computationally	
expensive,	jagged	paths	

ì  Too	big	–	might	miss	paths	

ì  Quadtree	
ì  Create	a	grid	recursively!	
ì  Start	with	very	coarse	grid;		
ì  Then	for	each	grid	section,	if	

there	is	an	obstacles,	refine.	
ì  Outcome:	Captures	large	open	

spaces	as	a		single	big	grid	point	
								

Map	Representation:	Grid	based	

ì  Basic:	An	occupancy	matrix		
ì  Problem:		

ì  How	do	you	choose	the	
“resolution”	of	the	grid?	

ì  Too	small	–	computationally	
expensive,	jagged	paths	

ì  Too	big	–	might	miss	paths	

ì  Quadtree	
ì  Create	a	grid	recursively!	
ì  Start	with	very	coarse	grid;		
ì  Then	for	each	grid	section,	if	

there	is	an	obstacles,	refine.	
ì  Outcome:	Captures	large	open	

spaces	as	a		single	big	grid	point	
								

Murphy	2000	



3/2/18	

9	

More	Map	Representations	
From	“Introduction	to	Autonomous	Mobile	Robots”,		

Chapter	5	and	6,	Seigwart	and	Nourbaksh,		2004.	

Visibility	Graph	

Voronoi	Graph	

Cell	Decomposition	Map	

Metric/Global	Path	Planning	

ì  What	if	the	Robot	has	Full	Knowledge	
ì  A	map	of	the	environment	and	robot	+	goal’s	locations	
ì  Goal:	Find	a	“optimal”	path	(typically	distance	but	other	possibilities)	
ì  We	will	focus	on	robots,	but	it’s	a	general	problem	(think	Google	maps)	

ì  Two	Components	
ì  Map	Representation	(“graph”):	

ì  Feature	based	maps	(office	numbers,	landmarks)	
ì  Grid	based	maps	(cartesian,	quadtrees)	
ì  Polygonal	maps	(geometric	decompositions)	

ì  Path	Finding	Algorithms:	
ì  Shortest-Path	Graph	Algorithms	(Breadth-First-Search,	A*	Algorithm)	

Path	Finding	Algorithms	

ì  All	Map	Representations	are	a	weighted	“graph”	
ì  Nice	part	is	that	you	only	need	to	do	this	once	(amortize	

computation)	

ì  Algorithm:	Compute	shortest	paths	in	the	graph	
ì  Path	is	represented	by	a	series	of	waypoints	
ì  Single	Path	Search	Algorithms:		Find	shortest	path	A	to	B		

ì  Breadth-First-Search	(simple	graphs);	Dijkstra’s	(weighted)	
ì  A*	search	for	large	graphs	(BFS	+	Heuristic)	

ì  Gradient	Path	Algorithms:		Find	all	paths	towards	B	
ì  E.g.	Fixed	Basestation:	BFS,	Dijkstra’s,	Wavefront	algorithms,	etc	

Breadth-First	Search	



3/2/18	

10	

Breadth-First	Search	 Breadth-First	Search	
Note	that	bug	2	(“m-line”)	would	have	worked	well	in	this	case	too!		

If	few	obstacles,	then	bug	is	good	enough		

A*	Algorithm	

A*	Algorithm	
Similar	to	BFS	but	choose	next	node	to	
expand	based	on	two	things	
1.  Distance	from	start	(like	BFS)	
2.  Expected	distance	from	goal	(H)	
	
“H”	is	the	heuristic.	The	theory	shows	that	
so	long	as	the	heuristic	is	“optimistic”	then	
A*	returns	the	best	path.	
	
Key	point:		
Average	behavior	can	be	awesome!	
	
For	maps,			
H	=	straight-line	distance	is	a	good	heuristic	

Start																																							Goal	

How	A*	works	
5

5 4 5
5 4 3

5 4 3 2
5 4 3 2 1

5 3 2 1 0

4 5
3 4 5
2 3 4 5
1 2 3 4 54

5 4 3 2 1
5 4 3 2

5 4 3
5 4

2 3 4 5
3 4 5
4 5
5

5

7
7 6

8 7 6 5

6 5 4
5 4 3 2
4 3 2 1 0

7 6
7
5 4 3 2
6 5 4

How	BFS	would	
Explore	the	space	

Manhattan	distance	to	Green	
(easy	to	compute	directly)	
(no	obstacles	considered)	

A*	criteria	=	BFS+Manhattan	

5
7

7
7



3/2/18	

11	

How	A*	works	
5

5 4 5
5 4 3

5 4 3 2
5 4 3 2 1

5 3 2 1 0

4 5
3 4 5
2 3 4 5
1 2 3 4 54

5 4 3 2 1
5 4 3 2

5 4 3
5 4

2 3 4 5
3 4 5
4 5
5

5

7
7 6

8 7 6 5

6 5 4
5 4 3 2
4 3 2 1 0

7 6
7
5 4 3 2
6 5 4

How	BFS	would	
Explore	the	space	

Manhattan	distance	to	Green	
(easy	to	compute	directly)	
(no	obstacles	considered)	

A*	criteria	=	BFS+Manhattan	

5
7

7
7

7
5

7

How	A*	works	
5

5 4 5
5 4 3

5 4 3 2
5 4 3 2 1

5 3 2 1 0

4 5
3 4 5
2 3 4 5
1 2 3 4 54

5 4 3 2 1
5 4 3 2

5 4 3
5 4

2 3 4 5
3 4 5
4 5
5

5

7
7 6

8 7 6 5

6 5 4
5 4 3 2
4 3 2 1 0

7 6
7
5 4 3 2
6 5 4

e
e 9

e 9 7
9 7 5

e e
9 9 9
7 7 7 7
5 5 5 5 5

e 9 7
e 9

e

7 7 7 7
9 9 9
e e

e

How	BFS	would	
Explore	the	space	

Manhattan	distance	to	Green	
(easy	to	compute	directly)	
(no	obstacles	considered)	

A*	criteria	=	BFS+Manhattan	

A*	Algorithm	

A*	Algorithm	
Similar	to	BFS	but	choose	next	node	to	
expand	based	on	two	things	
1.  Distance	from	start	(like	BFS)	
2.  Expected	distance	from	goal	(H)	
	
“H”	is	the	heuristic.	The	theory	shows	that	
so	long	as	the	heuristic	is	“optimistic”	then	
A*	returns	the	best	path.	
	
Key	point:		
Average	behavior	can	be	awesome!	
	
For	maps,			
H=	straight-line	distance	is	a	good	heuristic	

A*	is	a	“general”	graph	search	(AI,	game	tree,	orbitz,	etc);	see	Murphy	2000	chapter	10	for	more	details	

Case	Studies	and	AAAI	Competitions	

Given	a	“map”	of	the	
environment	with	some	
landmarks.	
	
Given	initial	position	(not	
pose)	and	final	goal	
	
Unknown	obstacles	
might	be	introduced	

AAAI	1992	and	1994	Mobile	robot	competitions	[Murphy	2000]	



3/2/18	

12	

DARPA	Urban	Challenge	(2007)	 Final	Thoughts	

ì  Robot	systems	must	combine	many	ideas	
ì  Interleave	bug	like	navigation	with	serious	path	planning	
ì  High-level	maps	and	low-level	primitives		

ì  e.g.	collision	avoidance,	feature	recognition,	etc	
ì  Ecological	niche	matters!	

ì  E.g.	Robot	soccer	is	very	different	from	a	mail-delivery	robot.	

ì  Cool	New	Methods	
ì  RRT:	Rapidly	exploring	Random	Trees	
ì  Combining	with	Probabilistic	localization	

RRT	solves	hard	problems	
High-dimensional	Spaces	
Complex	movement	constraints	
	
(Parallel	parking	is	hard,	but	now	
imagine	parking	a	car	with	three	
hitched	trailers!)	

RRT	

ì  Sample	
ì  Pick	some	random	points		
ì  Based	on	voronoi	areas	

ì  Bias	towards	open	spaces)	
ì  Bias	towards	goal,	if	one	exists	

ì  Extend	
ì  Connect	the	new	point	to	your	

old	path	by	seeing	how	close	
your	robot	can	get	to	that	point		
ì  extend	using	actual	(complex)	

dynamics	model	of	the	robot	


