

Today: Robots Navigating the World

Scenarios

- Hospital Helper
(e.g. Diligent, Tugs)
- Office security or maildelivery (e.g. Cobal,
- Savioke)
- Tour Guide robot in a
museum (Minerva)
- Autonomous Car with GPS and Nav system

Biological analogies. Humans, bees and ants, migrating birds, herds

Today: Robots Navigating the World

Second Part of CS189: High-level reasoning
From finite state machines to complex
representation and memory

7 Path Planning: How to I get to my Goal?
π Localization: Where am I?
π Mapping: Where have I been?
\# Exploration: Where haven't I been?

Today's Localization Techniques

π Dead-reckoning (motion)
π Keep track of where you are without a map,
by recording the series of actions that you made,
using internal proprioceptive sensors. (also called Odometry, Path Integration)
ス Landmarks (sensing)
π Triangulate your position geometrically,
by measuring distance to one or more known landmarks
E.g. Visual beacons or features, Radio/Cell towers and signal strength, GPS

7 State Estimation (uncertainty in motion \& sensing) Probabilistic Reasoning
$\boldsymbol{\pi}$ Kalman Filters (combine both motion and sensing)
π Particle Filters (also known as Monte Carlo Localization)
π Who are the world's best localizers?

Dead-Reckoning

π FORWARD KINEMATICS repeated
π Keep track of initial position and the series of movements/actions that you made.
л Method: Take a "step", compute new position.
त Also called odometry or path integration.

π Our Motion Model
π Position at time $t=\left(x_{t}, y_{t}, o_{t}\right)$
π Linear velocity $=\mathbf{v}_{\mathbf{t}}$; Angular velocity $=\mathbf{w}_{\mathrm{t}}$
π Then for a small time step dt, we can compute the new position $x_{t+d t}=x_{t}+v_{t} d t \cos o_{t}$
$y_{t+d t}=y_{t}+v_{t} d t \sin o_{t}$
$o_{t+d t}=o_{t}+w_{t} d t$
Dead-reckoning is even easier to calculate if you only Move or Turn at one time.

Example: GPS

7 GPS Satellites are your "landmarks"
π Continually transmits a message
λ Message includes both time of transmission, and satellite position
π GPS Receiver
π Compute distance by measuring signal transmission time (speed of light)
π 3D: Lie on the intersection of 4 spheres!
π What are some limitation of GPS?

Today's Localization Techniques
π Dead-reckoning (motion)
$\boldsymbol{\pi}$ Keep track of where you are without a map,
by recording the series of actions that you made, using internal proprioceptive sensors. (also called Odometry, Path Integration)

ㄱ Landmarks (sensing)
$\boldsymbol{\pi}$ Triangulate your position geometrically,
by measuring distance to one or more known landmarks

7 State Estimation (uncertainty in motion \& sensing) Probabilistic Reasoning
$\boldsymbol{\pi}$ Kalman Filters (combine both motion and sensing)
π Particle Filters (also known as Monte Carlo Localization)
π Who are the world's best localizers?

入 Key Idea：Combine Motion and Sensing
л（Dead－reckoning＋uncertainty）＋（Landmarks＋uncertainty）
π Each has error，but the error can be complementary
π Kalman Filters
π Take advantage of mathematics of Gaussians to model uncertainty
π General method for state estimation（not just localization）
π Applications：Car＋GPS，Lawnmower＋beacons，warehouse robots
入 Particle Filters（Monte Carlo Localization）
7 Use a discrete distribution of＂Particles＂to represent uncertainty （think of sampling or histograms）
π Useful when environment is complex and ambiguous
Application：A robot wandering in a building with a map

Dead－reckoning＋＋uncertainty Landmarks＋uncertainty
 Kalman Filters

π How it works
π Take a motion step：use dead－reckoning to get position（mean）but also keep track of uncertainty in movement
π Take a sensing step：use landmarks to triangulate position，then combine with previous estimate based on relative confidence．
入 Technique and Limitations
π Uses Gaussians（bell curves）to capture uncertainty

1D Kalman Filter Example

π＂Belief＂of my current state
$\pi \mathrm{x}_{\mathrm{t}-1}$ with variance $\sigma_{\mathrm{t}-1}$

π＂Model＂of how I work
λ Control u_{t} and its variance r
$\boldsymbol{\pi}$ Measurement z_{t} and its variance q
7 We are assuming that we can model noise as a Gaussian，with a mean and variance（experimentally determined）
π Step 1：Take a step，calculate new belief
$\boldsymbol{\pi} e x_{t}=x_{t-1}+u_{t}$
$\boldsymbol{\lambda} \quad e \sigma_{t}=\sigma_{t-1}+r$
π Note that my uncertainty has increased due to the noise in my control

1D Kalman Filter Example

7 Final Form 1D example
$\boldsymbol{\pi} \mathrm{ex}_{\mathrm{t}}=\mathrm{x}_{\mathrm{t}-1}+\mathrm{u}_{\mathrm{t}}$
$\boldsymbol{\pi} e \sigma_{t}=\sigma_{t-1}+r$
$\boldsymbol{\pi} \mathrm{x}_{\mathrm{t}}=\sigma_{\mathrm{t}}\left(\mathrm{ex}_{\mathrm{t}} / \mathrm{e} \sigma_{\mathrm{t}}+\mathrm{z}_{\mathrm{t}} / \mathrm{q}\right)$
$\boldsymbol{\pi} \sigma_{\mathrm{t}}=\left(1 / \mathrm{e} \sigma_{\mathrm{t}}+1 / \mathrm{q}\right)^{-1}$

Step 1: Motion
Adds uncertainty
Step 2: Measurement
Reduces uncertainty
And Repeat!

π Caveats
π We assumed that ut and zt were in the same state space as xt (position), often not true.
π Also still 1D.....

Take a Sensing Step

त STEP1: Take a sensor reading and get "evidence"
π Lets say the Sensor => in a hallway
त STEP2: Weight each location's particles by likelihood of that reading $\boldsymbol{\pi} \operatorname{Pr}(\mathrm{xt} \mid$ given that you sensed a hallway)

त STEP3: Resample N particles but from the distribution of weights $\boldsymbol{\pi}$ Create a new particle distribution that represents your believed location

Take a Motion Step

7 Take a motion step
$\boldsymbol{\pi}$ Lets say you move west 1 spot
त STEP4 Use your motion model to predict what will happen
$\boldsymbol{\pi}$ E.g. If at $(1,0)$ and take a step west, 90% chance you succeed $(0,0)$ But there's a 10% chance you will not move and end up still in $(1,0)$
π Roll the dice for each particle and move.
7 STEP5:
π Repeat: Take a Sensor Reading and reduce your uncertainty!

