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ì	
CS	189:	Autonomous	Robot	Systems	
Spring	2018,	Fridays	1-4pm,	Pierce	301	

IMPORTANT	ANNOUNCEMENTS	

ì  LAB	SAFETY	TRAINING	
ì  Online	Training	(do	ASAP)	
ì  March	23,	1-2pm	in	person	lab	safety	

(before	the	scavenger	hunt)	

ì  Scavenger	Hunt	
ì  Part	(a):		Discussion	of	camera	issues	

and	object	difficulty.	
ì  Part	(b)	Due	Friday	after	Spring	Break.	
ì  TAKE	PICTURE!	To	acquire	the	object.	
ì  Competition:	everyone	together		
ì  (note	that	first	lab	safety	training)		

Pierce	301	
ROOM		
PLAN	

3	TREASURES?????	

Agenda	

ì  Lecture:	Robot	Navigation	->	Localization	

ì  Demo	Time:	Pset4	part(a)		

ì  Important:	MUST	DO	LAB	SAFETY	TRAINING!	See	Piazza	Note	

ì  Upcoming:	
ì  Have		a	Great	Spring	Break!	
ì  Pset	4	part	(b):	Start	AS	SOON	AS	you	get	back!	

ì  References:		
ì  Kalman	Filter	Notes,	from	“Computational	Principles	of	Mobile	Robotics”,	Dudek	

and	Jenkin,	2000;	posted	on	piazza.	

ì  This	lecture	is	based	on	“Introduction	to	AI	Robotics”,	chapter	11,	Robin	Murphy,	
2000	and	“Introduction	to	AI”,	chapters	15	and	25,	Russell	and	Norvig,	2009.	

Today:	Robots	Navigating	the	World	

Scenarios	
•  Hospital	Helper							

(e.g.	Diligent,	Tugs)	

•  Office	security	or	mail-

delivery	(e.g.	Cobal,	

Savioke)	

•  Tour	Guide	robot	in	a	

museum	(Minerva)	

•  Autonomous	Car	with	

GPS	and	Nav	system	

	

Biological	analogies:	
Humans,	bees	and	ants,	

migrating	birds,	herds	

DILIGENT	
(hospitals)	

SAVIOKE	
(hotels)	

GOOGLE	CAR	

COBALT	
(hotels)	
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Today:	Robots	Navigating	the	World	

Second	Part	of	CS189:	High-level	reasoning	
From	finite	state	machines	to	complex	

representation	and	memory	

	

ì  Path	Planning:	How	to	I	get	to	my	Goal?	

ì  Localization:	Where	am	I?	

ì  Mapping:	Where	have	I	been?	

ì  Exploration:	Where	haven’t	I	been?	

Localization	

ì  Simple	Question:	Where	am	I?	

ì  Not	a	simple	answer:		
ì  Do	you	have	a	map?		

ì  Yes	=>	a	global	position	in	the	world	
ì  No	=>	position	in	reference	to	other	objects?	Or	your	own	past?	

ì  What	can	you	sense?	
ì  Can	you	sense	and	record	your	own	self-movement?		

ì  Can	you	sense	external	things	like	landmarks?		
ì  How	certain	are	you	about	what	you	sense?	

ì  Localization	is	a	“collection	of	algorithms”	

Today’s	Localization	Techniques	

ì  Dead-reckoning	(motion)	
ì  Keep	track	of	where	you	are	without	a	map,	
									by	recording	the	series	of	actions	that	you	made,		
									using	internal	proprioceptive	sensors.	(also	called	Odometry,	Path	Integration)	

ì  Landmarks	(sensing)	
ì  Triangulate	your	position	geometrically,		
									by	measuring	distance	to	one	or	more	known	landmarks	

E.g.	Visual	beacons	or	features,	Radio/Cell	towers	and	signal	strength,	GPS!	

ì  State	Estimation	(uncertainty	in	motion	&	sensing)	
Probabilistic	Reasoning	
ì  Kalman	Filters	(combine	both	motion	and	sensing)	
ì  Particle	Filters	(also	known	as	Monte	Carlo	Localization)	

ì  Who	are	the	world’s	best	localizers?	

Dead-Reckoning	

ì  FORWARD	KINEMATICS	repeated	
ì  Keep	track	of	initial	position	and	the	series	of	

movements/actions	that	you	made.	
ì  Method:	Take	a	“step”,	compute	new	position.	

ì  Also	called	odometry	or	path	integration.	

ì  Our	Motion	Model	
ì  Position	at	time	t	=	(xt,	yt,	ot)	

ì  Linear	velocity	=	vt;	Angular	velocity	=	wt						
ì  Then	for	a	small	time	step	dt,		

								we	can	compute	the	new	position	
	 	 	xt+dt	=	xt	+	vt	dt	cos	ot			

		 	yt+dt	=	yt	+	vt	dt	sin	ot	
	 	ot+dt	=	ot	+	wt	dt	

R

Take	two	steps	forward,		
Take	two	steps	back,	

Are	you	back	where	you	started?	

xt	yt		 vt	dt	cos	ot	

v
t 	dt	sin	o

t 	ot	

xt+dt	yt+dt		

vtdt	

R

R

Dead-reckoning	is	even	easier	to	calculate	

if	you	only	Move	or	Turn	at	one	time.	
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Example:	INS	

Inertial	navigation	systems	(INS)	
ì  Complex	motion	(momentum,	

external	effects)	

ì  Include	accelerometers	and	
gyroscopes	to	provide	better	
measurements	of	
instantaneous	velocity.	

ì  Expensive	systems	very	good	
ì  satellites,	submarines	

ì  But,	low-cost	IMUs	
increasingly	available	

Bluefin	Robotics	

Landmarks	

ì  How	it	works	
ì  Opposite	of	dead-reckoning!		

ì  Use	measurements	to	external	landmarks	of	known	position		
ì  Examples:	visual	landmarks,	radio	towers,	GPS!	

ì  Example	1:	3	Landmarks	+	distance	only	(e.g.	Radio	towers)	
ì  Landmark	positions:	(xL1,	yL1)	(xL2,	yL2)	(xL3,	yL3)	
ì  If	you	have	three	non-colinear	landmarks,	
								then	you	lie	at	the	intersection	of	three	circles!	[triangulation]	
ì  Three	equations	of	the	form:		
								square(dL1)	=	square(xL1	–	x0)	+	square(yL1	–	y0)	(Landmark	L1)	
ì  Solve	for	(x0,	y0)		
								Or	if	they	don’t	intersect	exactly	(noise),	minimize	sum-of-squared-error	

ì  Example	2:	Single	Landmark	but	known	orientation	O	and	distance	d	
ì  E.g.	Facing	the	office	label	MD235	(can’t	see	it	from	inside	the	office)	

	 	cosO	=	(x1-x0)/dL				sinO	=	(yL	–	y0	)/	dL	

	

I	can	see	the	CITGO	sign	to	my	
southeast,	15	miles	away	

Where	am	I?	

L1	(xL1yL1)		

xoyo		

L2	

L3	

dL1	

x0y0		

L1	(xL1yL1)		
	

dL1	

0	

Example:	GPS	

ì  GPS	Satellites	are	your	“landmarks”	
ì  Continually	transmits	a	message	
ì  Message	includes	both	time	of	

transmission,	and	satellite		position	

ì  GPS	Receiver	
ì  Compute	distance	by	measuring	signal	

transmission	time	(speed	of	light)	
ì  3D:	Lie	on	the	intersection	of	4	spheres!	

ì  What	are	some	limitation	of	GPS?	

Today’s	Localization	Techniques	

ì  Dead-reckoning	(motion)	
ì  Keep	track	of	where	you	are	without	a	map,	
									by	recording	the	series	of	actions	that	you	made,		
									using	internal	proprioceptive	sensors.	(also	called	Odometry,	Path	Integration)	

ì  Landmarks	(sensing)	
ì  Triangulate	your	position	geometrically,		
									by	measuring	distance	to	one	or	more	known	landmarks	

E.g.	Visual	beacons	or	features,	Radio/Cell	towers	and	signal	strength,	GPS!	

ì  State	Estimation	(uncertainty	in	motion	&	sensing)	
Probabilistic	Reasoning	
ì  Kalman	Filters	(combine	both	motion	and	sensing)	
ì  Particle	Filters	(also	known	as	Monte	Carlo	Localization)	

ì  Who	are	the	world’s	best	localizers?	
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Two	Techniques	

ì  Key	Idea:	Combine	Motion	and	Sensing	
ì  (Dead-reckoning	+	uncertainty)	+	(Landmarks	+	uncertainty)	
ì  Each	has	error,	but	the	error	can	be	complementary	

	
ì  Kalman	Filters	

ì  Take	advantage	of	mathematics	of	Gaussians	to	model	uncertainty	
ì  General	method	for	state	estimation	(not	just	localization)	
ì  Applications:	Car	+	GPS,	Lawnmower	+	beacons,	warehouse	robots	

ì  Particle	Filters	(Monte	Carlo	Localization)	
ì  Use	a	discrete	distribution	of	“Particles”	to	represent	uncertainty	

(think	of	sampling	or	histograms)	
ì  Useful	when	environment	is	complex	and	ambiguous	
ì  Application:	A	robot	wandering	in	a	building	with	a	map	

Kalman	Filters	

ì  How	it	works	
ì  Take	a	motion	step:	use	dead-reckoning	to	get	position	(mean)	but	

also	keep	track	of	uncertainty	in	movement	
ì  Take	a	sensing	step:	use	landmarks	to	triangulate	position,	then	

combine	with	previous	estimate	based	on	relative	confidence.	

ì  Technique	and	Limitations	
ì  Uses	Gaussians	(bell	curves)	to	capture	uncertainty	

Dead-reckoning	+	uncertainty	
Landmarks	+	uncertainty	

Kalman	Filters	

ì  How	it	works	
ì  Take	a	motion	step:	use	dead-reckoning	to	get	position	(mean)	but	

also	keep	track	of	uncertainty	in	movement	
ì  Take	a	sensing	step:	use	landmarks	to	triangulate	position,	then	

combine	with	previous	estimate	based	on	relative	confidence.	

ì  Technique	and	Limitations	
ì  Uses	Gaussians	(bell	curves)	to	capture	uncertainty	

R

Dead-reckoning	+	uncertainty	
Landmarks	+	uncertainty	

Landmark	

Robot	

1D	Kalman	Filter	Example	

ì  “Belief”	of	my	current	state	
ì  xt-1	with	variance	σ	t-1		

ì  “Model”	of	how	I	work	
ì  Control	ut	and	its	variance	r	

ì  Measurement	zt	and	its	variance	q	
ì  We	are	assuming	that	we	can	model	

noise	as	a	Gaussian,	with	a	mean	and	
variance	(experimentally	determined)	

ì  Step	1:	Take	a	step,	calculate	new	belief	
ì  ext	=			xt-1	+			ut	
ì  eσ	t	=		σ	t-1	+	r	

ì  Note	that	my	uncertainty	has	increased	
due	to	the	noise	in	my	control.	

σt-1	

My	original	
position	

ext	

eσt	

My	“estimated”	position	
After	I	take	a	motion	step	

xt-1	



3/9/18	

5	

1D	Kalman	Filter	Example	

ì  Step	2:	Take	a	measurement	zt																																			
and	calculate	new	belief	
ì  Simple	idea?	take	the	average	xt	=	(ext	+	zt	)/2	

ì  Better	Idea!	New	estimate	is	a	weighted	combination	
of	our	old	estimate	and	measurement		
ì  xt	=	a*ext	+	(1-a)	zt	
ì  σt	=		(1/eσ	t	+	1/q)-1	

ì  The	Kalman	Gain	“a”	is	determined	by	our	relative	
confidence	in	our	belief	about	our	old	state	and	our	
confidence	in	the	current	measurement.	
ì  a	=	q	/	(q	+	eσ	t	)		
						Consider	case	where	q=0		
						then	we	will	go	with	our	noise	free	landmark	measurement	
						Consider	case	where	eσ	t=0	

						then	we	will	ignore	our	measurements	and	go	with	prev	position	
							

ext	

eσt	

zt		
(with	variance	q)	

ext	z	 xt	xt-1	

σt	

1D	Kalman	Filter	Example	

ì  Final	Form	1D	example	
ì  ext	=			xt-1	+			ut	
ì  eσ	t	=		σ	t-1	+	r	
ì  xt	=		σ	t		(ext/eσ	t+		zt/q)	
ì  σ	t	=	(1/eσ	t	+	1/q)-1	

ì  Caveats	
ì  We	assumed	that	ut	and	zt	were	in	the	same	state	

space	as	xt	(position),	often	not	true.	
ì  Also	still	1D…..	

	

Step	1:	Motion			
Adds	uncertainty	
	
Step	2:	Measurement	
Reduces	uncertainty	
	
And	Repeat!	

Kalman	Filter	

ì  Final	Form	1D	example	
ì  ext	=			xt-1	+			ut	
ì  eσ	t	=		σ	t-1	+	r	
ì  xt	=		σ	t		(ext/eσ	t+		zt/q)	

ì  σ	t	=	(1/eσ	t	+	1/q)-1	

ì  Final	Form	3D	
ì  ext	=			Axt-1	+		But	
ì  eσ	t	=		Aσ	t-1AT	+	R	
ì  xt	=		σ	t		(ext/eσ	t+		CT	Q-1	zt)	

ì  σ	t	=	(1/eσ	t	+	CT	Q-1	C)-1	

	

Position	x	=	[x,	y,	theta]	
	
A	and	B	and	C	are	matrices	that	
convert	old	position,	control	input,	
and	observation	into	the	correct	state	
space	(note	that	A	is	often	just	identity	
matrix)	
	
R	is	a	Co-variance	Matrix		
Q	is	a	Co-variance	Matrix	
The	uncertainty	in	[x,	y,	theta]	is	not	
all	independent	of	each	other.	
(you	have	to	supply	this!)	
	

Kalman	Filter	

ì  Final	Form	1D	example	
ì  ext	=			xt-1	+			ut	
ì  eσ	t	=		σ	t-1	+	r	
ì  xt	=		σ	t		(ext/eσ	t+		zt/q)	

ì  σ	t	=	(1/eσ	t	+	1/q)-1	

ì  Final	Form	3D	
ì  ext	=			Axt-1	+		But	
ì  eσ	t	=		Aσ	t-1AT	+	R	
ì  xt	=		σ	t		(ext/eσ	t+		CT	Q-1	zt)	

ì  σ	t	=	(1/eσ	t	+	CT	Q-1	C)-1	

	

Extended	Kalman	Filter	
	
Lets	say	that	ut	=	[D,	w]	(distance,	rotation)	
	
xt-1	=	[x’,y’,w’]	
ext	=	[x’	+	Dcosw’,	y’	+	Dsinw’,	w’+w]	
	
Unfortunately,	this	is	non-linear!		
(can’t	express	as	ext	=			Axt-1	+		But)	
	
In	EKF,	the	system	is	“linearized”	by	
computing	the	Jacobian	of	the	motion	model	
and	the	measurement	model.	
	
See	Dudek	and	Jenkins	notes	for	more	details	
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Extensions	of	the	basic	idea	

ì  Multiple	sensors!	(sensor	fusion)	
ì  Just	repeat	step	2	(sensing)	multiple	times	
ì  This	is	especially	useful	if	you	have	“occasional”	sensors	(e.g.	landmarks)		

ì  When	is	a	Kalman	Filter	good	to	use?	
ì  When	control	and	sensor	noise	are	well	approximated	by	a	Gaussian		

ì  (e.g.	GPS	and	car/robot	controls	are	usually	decently	approximated	this	way)	

ì  When	estimated	state	(x)	can	be	represented	by	just	a	Gaussian.	
ì  	Classic	bad	case:	car	and	two	neighboring	lanes;		
									=	expected	location	is	best	approximated	by	two	Gaussians	

ì  Many	Applications	of	Kalman	Filters!	
ì  Object	tracking	in	a	video!	(opposite	of	“self”	localization)	

	
									
	

Particle	Filters	

ì  What	if	you	are	in	a	building	with	a	map.	
ì  But	you	have	no	idea	where	you	are?	(ambiguity)	

ì  You	are	definitely	in	a	bathroom,	but	don’t	know	1st	or	2nd	floor	

ì  Problem:	Gaussians	are	not	the	right	model	of	uncertainty	

ì  Instead	
ì  Represent	our	estimated	position	and	uncertainty															

(our	“belief”)	using	a	constant	set	of	“particles”		

ì  Think	of	this	as	a	“sampling”	from	a	probability	distribution	

ì  That	is	why	it	is	called	Monte	Carlo	Localization	

I	could	be	TWO	PLACES	at	once!!		

I	could	be	TWO	PLACES	at	once!!		

	
Particle	“density”	=	Probability	

Initially	particles	everywhere	
	

Observation	of	corridors	narrows	the	
possibilities	(bimodal	distribution)	

	
More	movement	results	in	disambiguating		

the	two	cases	(now	more	Gaussian-like)	

What	it	looks	Like	 Lets	do	an	Example	

2,0	 3,0	

4,-1	

4,0	

4,1	

1,0	

0,-1	

0,1	

0,0	

My	world	consists	of	
hallways,	corridor	ends	
And	4	unique	offices	

North	

East	

2	 2	

4,-1	

3	

4,1	

2	

0,-1	

0,1	

3	

1	1	

1	1	

4,0	0,0	

0,-1	

0,1	

0,0	

0,0	

0,0	

0,0	

0,-1	

0,1	

0,0	

0,0	

0,0	

0,0	

4,0	0,0	0,0	 0,0	

Occupancy	Matrix	Map	

Topological	Map	
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Lets	do	an	Example	

ì  Sensor	Model		
Pr(zt	|	xt)	
ì  Depends	on	where	you	are	standing	
									And	your	error	in	feature	sensing	
ì  Pr	(hallway	detection	|	(1,0))	=	0.8	
ì  Pr	(end	detection	|	(1,0))	=	0.2		(error!)	

ì  There	is	a	small	chance	that	you	may	think	
you	are	at	the	end	instead	of	a	hallway….	

ì  Motion	Model	
Pr	(xt+1	|	xt,	action_t)	
ì  Extremely	simple	model	
ì  Move	using	a	Compass	(N,S,E,W)	
ì  Pr(stay)	=	0.1	(fail	to	move);	Pr(succeed)	=	0.9	
ì  Pr	(also	depends	on	position)	

ì  E.g.	if	obstacle	(like	a	wall)	then	Pr(stay)	=	1	

2,0	 3,0	

4,-1	

4,0	

4,1	

1,0	

0,-1	

0,1	

0,0	

My	world	consists	of	
hallways,	corridor	ends	
And	4	unique	offices	

North	

East	

**I	am	making	lots	of	simplifications	here	
that	you	wouldn’t	do	in	a	real	system	

Lets	do	an	Example	

ì  Basic	Question:	Where	am	I?	
ì  Instead	of	a	Gaussian	we	will	

represent	position	by	a	fixed	number	
of	particles	distributed	over	space	

ì  But	basic	ideas	same	as	Kalman	filter!	

	

ì  At	the	beginning	of	time		
ì  I	could	be	anywhere	

ì  With	equal	likelihood	

ì  N	particles,	then	avg	d/N		particles	in	
each	of	the	d	locations.	

Take		a	Sensing	Step	

ì  STEP1:	Take	a	sensor	reading	and	get	“evidence”	
ì  Lets	say	the	Sensor	=>	in	a	hallway	

ì  STEP2:	Weight	each	location’s	particles	by	likelihood	of	that	reading	
ì  Pr	(xt	|	given	that	you	sensed	a	hallway)	

ì  STEP3:	Resample	N	particles	but	from	the	distribution	of	weights	
ì  Create	a	new	particle	distribution	that	represents	your	believed	location	

STEP1	 STEP2	 STEP3	

Take		a	Motion	Step	

ì  Take	a	motion	step	
ì  Lets	say	you	move	west	1	spot	

ì  STEP4	Use	your	motion	model	to	predict	what	will	happen		
ì  E.g.	If	at	(1,0)	and	take	a	step	west,	90%	chance	you	succeed	(0,0)	
								But	there’s	a		10%	chance	you	will	not	move	and	end	up	still	in	(1,0)	
ì  Roll	the	dice	for	each	particle	and	move.	

ì  STEP5:		
ì  Repeat:	Take	a	Sensor	Reading	and	reduce	your	uncertainty!	

STEP4	STEP3	

Take	a	“noisy”		
step	west	

STEP5	

If	Sensor	=>	
Corridor	End		
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More	Sophisticated	Version	PseudoCode		

From	Russell	and	Norvig,		
Chapter	25	

Key	Differences:	
	
1.  N	Positions	particles	are	

in	continuous	space	
	
2.  Sensing	is	a	laser	scan	

comparison	P(z|z*)	

3.  You	have	a	map	(m)	
that	lets	you	“estimate”	
what	a	laserscan	should	
return	(“Raycast”)	and	
compared	to	what	you	
actually	sensed	(“z”)	

What	it	looks	Like	

What	it	looks	Like	 Today’s	Localization	Techniques	

ì  Dead-reckoning	(motion)	

ì  Landmarks	(sensing)	

ì  State	Estimation	(uncertainty	motion	&	sensing)	
ì  Kalman	Filters		

ì  Particle	Filters	

ì  Who	are	the	world’s	best	localizers?	
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Some	TINY	but	GREAT	Localizers	

Desert	Ant!	
Path	integration	
and	sun	compass	

Honey	Bees!	
Optical	flow	and	
sun	compass		

Muller,	Wehner,	PNAS	1988	
Argentine	Ant!	
Pheromone	Trails	
(aka	bread	crumbs)	


