

Introduction to Multi-Robot Systems

→ Why Multiple Robots?

Centralized

- 7 Parallelism: Many robots can accomplish the task faster
- 7 Redundancy: Hazardous environment with chances of losing robots
- **Required:** Too difficult to do with a single size robot
- 7 Complex Tasks: Need several specialized robots
- 7 Real-time Requirements: Monitor large areas, respond quickly

Introduction to Multi-Robot Systems

Why Multiple Robots?

- Redundancy: Hazardous environment with chances of losing robots
- Required: Too difficult to do with a single size robot
- 7 Complex Tasks: Need several specialized robots
- 7 Real-time Requirements: Monitor large areas, respond quickly

nple Applications (which aspect do they focus on?) Exploration of a abandoned mine to construct a map

- Exploration of a adult of the instruction of the in
- Tracking and capturing an intruder Automated warehouse

Introduction to Multi-Robot Systems Why Multiple Robots? 7 Parallelism: Many robots can accomplish the task faster ■ Redundancy: Hazardous environment with chances of losing robots 7 Required: Too difficult to do with a single size robot Complex Tasks: Need several specialized robots 7 Real-time Requirements: Monitor large areas, respond quickly 7 How do we make Robots Cooperate Effectively? 7

Semi-Centralized

Decentralized


Architectures for Coordination

Centralized

- Global Controller with Global Vie 7 7
- Good for Tightly-coupled tasks, Efficiency, Adversarial
- Good for Small Teams (exception: Kiva!) Requires: High Bandwidth/Computation/Sensing (at least for Leader

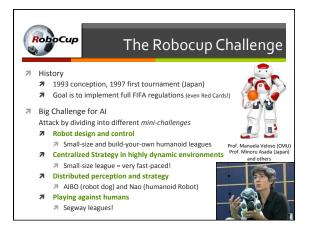
- Try to approximate the effect of a centralized system
- Supervisor and Team (supervisor acts as global controller) Hive-based (homebase or rendevous to deposit information)
- Role-based coordination (pre-decide responsibilities)
- When? Communication is available but slow or limited range.

- No one has a full world view
- Independent acting robots (purely local or no communication)
- Good for large distributed teams (no centralized bottleneck/failure) Often biologically-inspired (swarm intelligence)

Soccer as a New Grand Challenge

By the year 2050, Develop a team of *fully autonomous humanoid robots* that can win against the human world soccer champion team

What makes Soccer Different From Chess?


It is a Game!

- 7 Dynamic and Adversarial
- → But lots of differences too
 - **7** Not Symbolic (In AI, Math is easier than Vision)
 - Not turn taking (harder for Game heory)
 - **7** Distributed and Multi-agent (cooperation)
- - "physical" systems that operate in our world
 - オ Moravec's Paradox

What makes Soccer Different From Chess?

オ It is a Game!

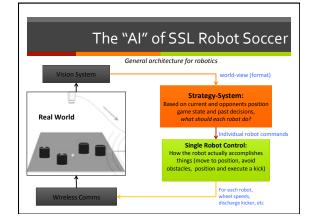
- Dynamic and Adversaria But Also Different from
- But lots of differences too
 Other Robotics Challenges
- Not Symbolic (In Al, Mat
 e.g. DARPA Challenges
 Static & slow environments
 Distributed and Multi-ag
 Single robots
 - We still understand very little about how to make
 - "physical" systems that operate in our world
 - Moravec's Paradox

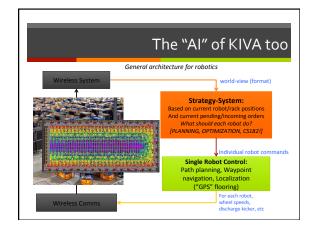
Today: How do Robots Play Soccer?

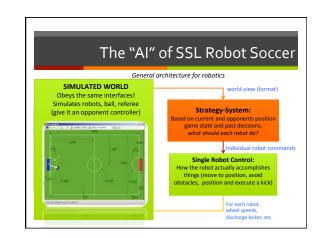
Contrast the AI Architectures from two different leagues

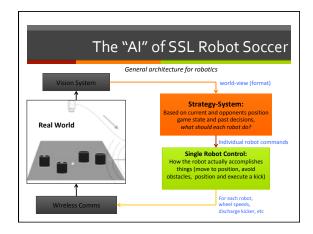
Ability to generate and respond to opportunities
 ■

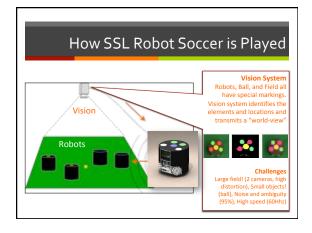
- RoboCup small-size league
 - Skills, Tactics, and Plays
 Centralized intelligence, very fast paced
- RoboCup four-legged league (briefly)
 - Distributed Centralized Systems

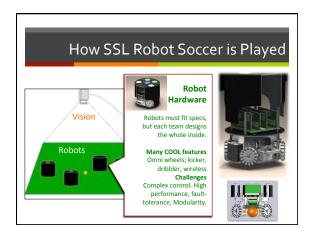

 - Icow reliability of communication
 - Æ Emulate central control + decoupled strategie

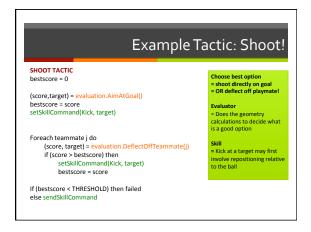


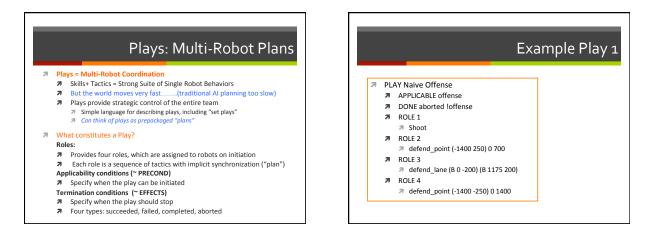


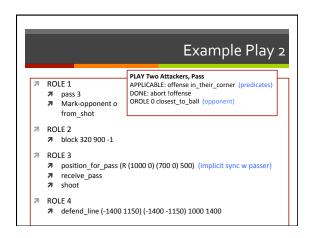

- Competition between two teams of 5 robots each
- Overhead vision, single computer controller, wireless comms to robots
- Small robot design size (20cm diam) and large field (6x4meters)
 Very fast-paced! (robots 2m/s, ball speeds 4m/s)
- Very fast-paced: (10005 211/s, ball speeds 411/s)
 Soccer-like Rules and Soccer-like Behavior! <u>Video2010</u> (2007)



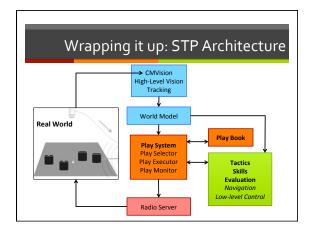


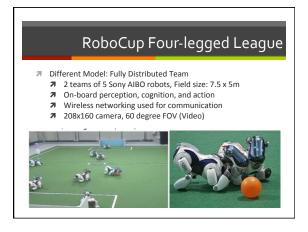






	What is a Tactic?
 Top-level Single Robot behav Tactics call skills to generate commands Can be quite complex! e.g dribble_to_position <co <x1="" defend_line="" li="" or="" x2="" y1="" y2<=""> A robot continues executing otherwise </co>	 stoot steal <x,y></x,y> clear dribble_to_region <region></region> Etc



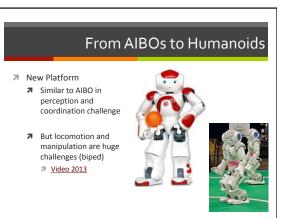

刀 Play Selection

7

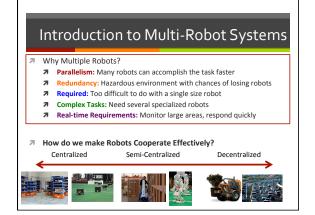
Я

- Find all applicable plays 7
- 7 Choose plays according to their weights
 - Choose the highest-weight play? Choose probabilistically?
- Adapt play weights based on past success/failure!
- **➢** Play Executor and Monitor 7
 - "Interprets" the play by turning it into real robot commands
 - ↗ Monitors how well things are going (e.g. termination conditions)
 - ℬ "Hysteresis" (switch to take advantage of sudden opportunities, but not too often)

Distributed Playbook

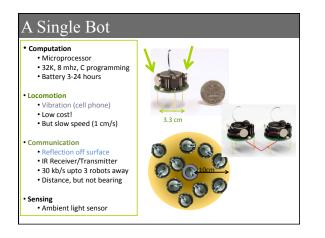

- Challenges: Coordination is Difficult 7
 - 7 Each robot has only limited view of the world (distributed perception)
 - ↗ Communication is low reliability and low bandwidth/high latency
 - Robots are slow and less reliable

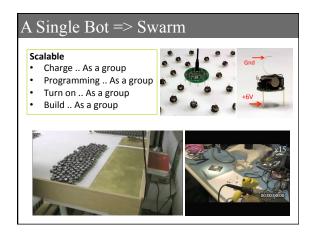
But: Coordination is still Essential

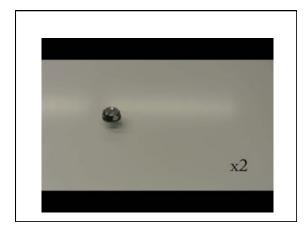

- ↗ Conflicting decisions, lack of knowledge on opponent

Distributed Playbook

- Challenges: Coordination is Difficult
- ℬ But: Coordination is still Essential
- Distributed PlayBook: The Team Leader chooses the Play 7 Play Selection runs on one robot arbitrarily chosen as leader 7
 - Leader chooses the highest-weight applicable play and broadcasts periodically 7
 - 7 Plays tend to be longer in duration (minutes instead of seconds) 7
 - Plays depend on roles loosely coupled behaviors of different robots (much like real soccer)
- This requires a world model beyond what the leader can see! Use communication to share world views amongst all robots 7
 - 7 Leader uses it to decide play, others use it to localize
 - 7 But world view is now uncertain
 - attach a confidence and priority level to every object


Building the Swarm


• What would it take to create (build and program) our own artificial collectives of the scale and complexity that nature achieves?


Challenges of Scaling Up

- Manufacturing
 - What is a "minimal" swarm robot? (open question) • Simple computation, locomotion, sensing, communication
 - Cost \$1 → \$1000
 - * Assembly 1 min \rightarrow 17 hours
- Operations

 - Need "hands-off operation" (charging, programming)
 - · Individual operations no longer possible
 - A Power Switch: 4 seconds \rightarrow > 1 hour!

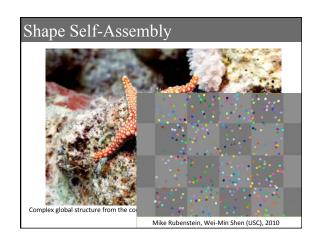
rogramming the Swarm

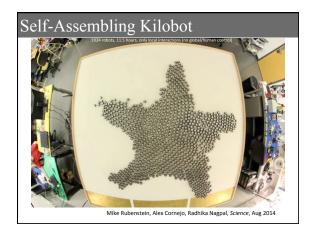
 What would it take to create (build and program) our own artificial collectives of the scale and complexity that nature achieves?

Challenges of Scaling Up


Programming

- What global behaviors are possible from local interactions?
- Bio-inspired: Decentralized, Robust, Scalable
- But how to generalize? Compile complex behavior?


Mathematical Models


- How do we prove things about collective behavior?
- Simple algorithms → Complex analysis
 (Control theory, Distributed Computing, Graph Theory & Geometry)

